xemu/hw/nvram/eeprom93xx.c
Juan Quintela d49805aeea savevm: Remove all the unneeded version_minimum_id_old (x86)
After previous Peter patch, they are redundant.  This way we don't
assign them except when needed.  Once there, there were lots of case
where the ".fields" indentation was wrong:

     .fields = (VMStateField []) {
and
     .fields =      (VMStateField []) {

Change all the combinations to:

     .fields = (VMStateField[]){

The biggest problem (appart from aesthetics) was that checkpatch complained
when we copy&pasted the code from one place to another.

Signed-off-by: Juan Quintela <quintela@redhat.com>
Acked-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
2014-06-16 04:55:26 +02:00

337 lines
10 KiB
C

/*
* QEMU EEPROM 93xx emulation
*
* Copyright (c) 2006-2007 Stefan Weil
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Emulation for serial EEPROMs:
* NMC93C06 256-Bit (16 x 16)
* NMC93C46 1024-Bit (64 x 16)
* NMC93C56 2028 Bit (128 x 16)
* NMC93C66 4096 Bit (256 x 16)
* Compatible devices include FM93C46 and others.
*
* Other drivers use these interface functions:
* eeprom93xx_new - add a new EEPROM (with 16, 64 or 256 words)
* eeprom93xx_free - destroy EEPROM
* eeprom93xx_read - read data from the EEPROM
* eeprom93xx_write - write data to the EEPROM
* eeprom93xx_data - get EEPROM data array for external manipulation
*
* Todo list:
* - No emulation of EEPROM timings.
*/
#include "hw/hw.h"
#include "hw/nvram/eeprom93xx.h"
/* Debug EEPROM emulation. */
//~ #define DEBUG_EEPROM
#ifdef DEBUG_EEPROM
#define logout(fmt, ...) fprintf(stderr, "EEPROM\t%-24s" fmt, __func__, ## __VA_ARGS__)
#else
#define logout(fmt, ...) ((void)0)
#endif
#define EEPROM_INSTANCE 0
#define OLD_EEPROM_VERSION 20061112
#define EEPROM_VERSION (OLD_EEPROM_VERSION + 1)
#if 0
typedef enum {
eeprom_read = 0x80, /* read register xx */
eeprom_write = 0x40, /* write register xx */
eeprom_erase = 0xc0, /* erase register xx */
eeprom_ewen = 0x30, /* erase / write enable */
eeprom_ewds = 0x00, /* erase / write disable */
eeprom_eral = 0x20, /* erase all registers */
eeprom_wral = 0x10, /* write all registers */
eeprom_amask = 0x0f,
eeprom_imask = 0xf0
} eeprom_instruction_t;
#endif
#ifdef DEBUG_EEPROM
static const char *opstring[] = {
"extended", "write", "read", "erase"
};
#endif
struct _eeprom_t {
uint8_t tick;
uint8_t address;
uint8_t command;
uint8_t writable;
uint8_t eecs;
uint8_t eesk;
uint8_t eedo;
uint8_t addrbits;
uint16_t size;
uint16_t data;
uint16_t contents[0];
};
/* Code for saving and restoring of EEPROM state. */
/* Restore an uint16_t from an uint8_t
This is a Big hack, but it is how the old state did it.
*/
static int get_uint16_from_uint8(QEMUFile *f, void *pv, size_t size)
{
uint16_t *v = pv;
*v = qemu_get_ubyte(f);
return 0;
}
static void put_unused(QEMUFile *f, void *pv, size_t size)
{
fprintf(stderr, "uint16_from_uint8 is used only for backwards compatibility.\n");
fprintf(stderr, "Never should be used to write a new state.\n");
exit(0);
}
static const VMStateInfo vmstate_hack_uint16_from_uint8 = {
.name = "uint16_from_uint8",
.get = get_uint16_from_uint8,
.put = put_unused,
};
#define VMSTATE_UINT16_HACK_TEST(_f, _s, _t) \
VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint16_from_uint8, uint16_t)
static bool is_old_eeprom_version(void *opaque, int version_id)
{
return version_id == OLD_EEPROM_VERSION;
}
static const VMStateDescription vmstate_eeprom = {
.name = "eeprom",
.version_id = EEPROM_VERSION,
.minimum_version_id = OLD_EEPROM_VERSION,
.fields = (VMStateField[]) {
VMSTATE_UINT8(tick, eeprom_t),
VMSTATE_UINT8(address, eeprom_t),
VMSTATE_UINT8(command, eeprom_t),
VMSTATE_UINT8(writable, eeprom_t),
VMSTATE_UINT8(eecs, eeprom_t),
VMSTATE_UINT8(eesk, eeprom_t),
VMSTATE_UINT8(eedo, eeprom_t),
VMSTATE_UINT8(addrbits, eeprom_t),
VMSTATE_UINT16_HACK_TEST(size, eeprom_t, is_old_eeprom_version),
VMSTATE_UNUSED_TEST(is_old_eeprom_version, 1),
VMSTATE_UINT16_EQUAL_V(size, eeprom_t, EEPROM_VERSION),
VMSTATE_UINT16(data, eeprom_t),
VMSTATE_VARRAY_UINT16_UNSAFE(contents, eeprom_t, size, 0,
vmstate_info_uint16, uint16_t),
VMSTATE_END_OF_LIST()
}
};
void eeprom93xx_write(eeprom_t *eeprom, int eecs, int eesk, int eedi)
{
uint8_t tick = eeprom->tick;
uint8_t eedo = eeprom->eedo;
uint16_t address = eeprom->address;
uint8_t command = eeprom->command;
logout("CS=%u SK=%u DI=%u DO=%u, tick = %u\n",
eecs, eesk, eedi, eedo, tick);
if (!eeprom->eecs && eecs) {
/* Start chip select cycle. */
logout("Cycle start, waiting for 1st start bit (0)\n");
tick = 0;
command = 0x0;
address = 0x0;
} else if (eeprom->eecs && !eecs) {
/* End chip select cycle. This triggers write / erase. */
if (eeprom->writable) {
uint8_t subcommand = address >> (eeprom->addrbits - 2);
if (command == 0 && subcommand == 2) {
/* Erase all. */
for (address = 0; address < eeprom->size; address++) {
eeprom->contents[address] = 0xffff;
}
} else if (command == 3) {
/* Erase word. */
eeprom->contents[address] = 0xffff;
} else if (tick >= 2 + 2 + eeprom->addrbits + 16) {
if (command == 1) {
/* Write word. */
eeprom->contents[address] &= eeprom->data;
} else if (command == 0 && subcommand == 1) {
/* Write all. */
for (address = 0; address < eeprom->size; address++) {
eeprom->contents[address] &= eeprom->data;
}
}
}
}
/* Output DO is tristate, read results in 1. */
eedo = 1;
} else if (eecs && !eeprom->eesk && eesk) {
/* Raising edge of clock shifts data in. */
if (tick == 0) {
/* Wait for 1st start bit. */
if (eedi == 0) {
logout("Got correct 1st start bit, waiting for 2nd start bit (1)\n");
tick++;
} else {
logout("wrong 1st start bit (is 1, should be 0)\n");
tick = 2;
//~ assert(!"wrong start bit");
}
} else if (tick == 1) {
/* Wait for 2nd start bit. */
if (eedi != 0) {
logout("Got correct 2nd start bit, getting command + address\n");
tick++;
} else {
logout("1st start bit is longer than needed\n");
}
} else if (tick < 2 + 2) {
/* Got 2 start bits, transfer 2 opcode bits. */
tick++;
command <<= 1;
if (eedi) {
command += 1;
}
} else if (tick < 2 + 2 + eeprom->addrbits) {
/* Got 2 start bits and 2 opcode bits, transfer all address bits. */
tick++;
address = ((address << 1) | eedi);
if (tick == 2 + 2 + eeprom->addrbits) {
logout("%s command, address = 0x%02x (value 0x%04x)\n",
opstring[command], address, eeprom->contents[address]);
if (command == 2) {
eedo = 0;
}
address = address % eeprom->size;
if (command == 0) {
/* Command code in upper 2 bits of address. */
switch (address >> (eeprom->addrbits - 2)) {
case 0:
logout("write disable command\n");
eeprom->writable = 0;
break;
case 1:
logout("write all command\n");
break;
case 2:
logout("erase all command\n");
break;
case 3:
logout("write enable command\n");
eeprom->writable = 1;
break;
}
} else {
/* Read, write or erase word. */
eeprom->data = eeprom->contents[address];
}
}
} else if (tick < 2 + 2 + eeprom->addrbits + 16) {
/* Transfer 16 data bits. */
tick++;
if (command == 2) {
/* Read word. */
eedo = ((eeprom->data & 0x8000) != 0);
}
eeprom->data <<= 1;
eeprom->data += eedi;
} else {
logout("additional unneeded tick, not processed\n");
}
}
/* Save status of EEPROM. */
eeprom->tick = tick;
eeprom->eecs = eecs;
eeprom->eesk = eesk;
eeprom->eedo = eedo;
eeprom->address = address;
eeprom->command = command;
}
uint16_t eeprom93xx_read(eeprom_t *eeprom)
{
/* Return status of pin DO (0 or 1). */
logout("CS=%u DO=%u\n", eeprom->eecs, eeprom->eedo);
return eeprom->eedo;
}
#if 0
void eeprom93xx_reset(eeprom_t *eeprom)
{
/* prepare eeprom */
logout("eeprom = 0x%p\n", eeprom);
eeprom->tick = 0;
eeprom->command = 0;
}
#endif
eeprom_t *eeprom93xx_new(DeviceState *dev, uint16_t nwords)
{
/* Add a new EEPROM (with 16, 64 or 256 words). */
eeprom_t *eeprom;
uint8_t addrbits;
switch (nwords) {
case 16:
case 64:
addrbits = 6;
break;
case 128:
case 256:
addrbits = 8;
break;
default:
assert(!"Unsupported EEPROM size, fallback to 64 words!");
nwords = 64;
addrbits = 6;
}
eeprom = (eeprom_t *)g_malloc0(sizeof(*eeprom) + nwords * 2);
eeprom->size = nwords;
eeprom->addrbits = addrbits;
/* Output DO is tristate, read results in 1. */
eeprom->eedo = 1;
logout("eeprom = 0x%p, nwords = %u\n", eeprom, nwords);
vmstate_register(dev, 0, &vmstate_eeprom, eeprom);
return eeprom;
}
void eeprom93xx_free(DeviceState *dev, eeprom_t *eeprom)
{
/* Destroy EEPROM. */
logout("eeprom = 0x%p\n", eeprom);
vmstate_unregister(dev, &vmstate_eeprom, eeprom);
g_free(eeprom);
}
uint16_t *eeprom93xx_data(eeprom_t *eeprom)
{
/* Get EEPROM data array. */
return &eeprom->contents[0];
}
/* eof */