xemu/cpu-all.h
bellard 93ac68bca5 sparc emulation target (thanx to Thomas M. Ogrisegg)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@388 c046a42c-6fe2-441c-8c8c-71466251a162
2003-09-30 20:57:29 +00:00

397 lines
8.4 KiB
C

/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
/* all CPU memory access use these macros */
static inline int ldub(void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb(void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
#if defined(WORDS_BIGENDIAN) || defined(__arm__)
/* conservative code for little endian unaligned accesses */
static inline int lduw(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
static inline int ldsw(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
static inline int ldl(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
static inline uint64_t ldq(void *ptr)
{
uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl(p);
v2 = ldl(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
static inline void stw(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
#endif
}
static inline void stl(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
#endif
}
static inline void stq(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
stl(p, (uint32_t)v);
stl(p + 4, v >> 32);
}
/* float access */
static inline float ldfl(void *ptr)
{
union {
float f;
uint32_t i;
} u;
u.i = ldl(ptr);
return u.f;
}
static inline void stfl(void *ptr, float v)
{
union {
float f;
uint32_t i;
} u;
u.f = v;
stl(ptr, u.i);
}
#if defined(__arm__) && !defined(WORDS_BIGENDIAN)
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
static inline double ldfq(void *ptr)
{
union {
double d;
uint32_t tab[2];
} u;
u.tab[1] = ldl(ptr);
u.tab[0] = ldl(ptr + 4);
return u.d;
}
static inline void stfq(void *ptr, double v)
{
union {
double d;
uint32_t tab[2];
} u;
u.d = v;
stl(ptr, u.tab[1]);
stl(ptr + 4, u.tab[0]);
}
#else
static inline double ldfq(void *ptr)
{
union {
double d;
uint64_t i;
} u;
u.i = ldq(ptr);
return u.d;
}
static inline void stfq(void *ptr, double v)
{
union {
double d;
uint64_t i;
} u;
u.d = v;
stq(ptr, u.i);
}
#endif
#elif defined(TARGET_WORDS_BIGENDIAN) && !defined(WORDS_BIGENDIAN)
static inline int lduw(void *ptr)
{
uint8_t *b = (uint8_t *) ptr;
return (b[0]<<8|b[1]);
}
static inline int ldsw(void *ptr)
{
int8_t *b = (int8_t *) ptr;
return (b[0]<<8|b[1]);
}
static inline int ldl(void *ptr)
{
uint8_t *b = (uint8_t *) ptr;
return (b[0]<<24|b[1]<<16|b[2]<<8|b[3]);
}
static inline uint64_t ldq(void *ptr)
{
uint32_t a,b;
a = ldl (ptr);
b = ldl (ptr+4);
return (((uint64_t)a<<32)|b);
}
static inline void stw(void *ptr, int v)
{
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 8;
d[1] = v;
}
static inline void stl(void *ptr, int v)
{
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 24;
d[1] = v >> 16;
d[2] = v >> 8;
d[3] = v;
}
static inline void stq(void *ptr, uint64_t v)
{
stl (ptr, v);
stl (ptr+4, v >> 32);
}
#else
static inline int lduw(void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw(void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl(void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq(void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float ldfl(void *ptr)
{
return *(float *)ptr;
}
static inline double ldfq(void *ptr)
{
return *(double *)ptr;
}
static inline void stfl(void *ptr, float v)
{
*(float *)ptr = v;
}
static inline void stfq(void *ptr, double v)
{
*(double *)ptr = v;
}
#endif
/* page related stuff */
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
extern unsigned long real_host_page_size;
extern unsigned long host_page_bits;
extern unsigned long host_page_size;
extern unsigned long host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
void page_dump(FILE *f);
int page_get_flags(unsigned long address);
void page_set_flags(unsigned long start, unsigned long end, int flags);
void page_unprotect_range(uint8_t *data, unsigned long data_size);
#define SINGLE_CPU_DEFINES
#ifdef SINGLE_CPU_DEFINES
#if defined(TARGET_I386)
#define CPUState CPUX86State
#define cpu_init cpu_x86_init
#define cpu_exec cpu_x86_exec
#define cpu_gen_code cpu_x86_gen_code
#define cpu_interrupt cpu_x86_interrupt
#define cpu_signal_handler cpu_x86_signal_handler
#elif defined(TARGET_ARM)
#define CPUState CPUARMState
#define cpu_init cpu_arm_init
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_interrupt cpu_arm_interrupt
#define cpu_signal_handler cpu_arm_signal_handler
#elif defined(TARGET_SPARC)
#define CPUState CPUSPARCState
#define cpu_init cpu_sparc_init
#define cpu_exec cpu_sparc_exec
#define cpu_gen_code cpu_sparc_gen_code
#define cpu_interrupt cpu_sparc_interrupt
#define cpu_signal_handler cpu_sparc_signal_handler
#else
#error unsupported target CPU
#endif
#endif /* SINGLE_CPU_DEFINES */
#define DEFAULT_GDBSTUB_PORT 1234
void cpu_abort(CPUState *env, const char *fmt, ...);
extern CPUState *cpu_single_env;
#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
void cpu_interrupt(CPUState *s, int mask);
int cpu_breakpoint_insert(CPUState *env, uint32_t pc);
int cpu_breakpoint_remove(CPUState *env, uint32_t pc);
void cpu_single_step(CPUState *env, int enabled);
/* memory API */
typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(uint32_t addr);
void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
long phys_offset);
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write);
/* gdb stub API */
extern int gdbstub_fd;
CPUState *cpu_gdbstub_get_env(void *opaque);
int cpu_gdbstub(void *opaque, int (*main_loop)(void *opaque), int port);
#endif /* CPU_ALL_H */