xemu/target/s390x/translate_vx.inc.c
David Hildenbrand 44951e6b03 s390x/tcg: Implement VECTOR EXCLUSIVE OR
Easy, we can reuse an existing gvec helper.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
2019-05-17 10:54:13 +02:00

1486 lines
44 KiB
C

/*
* QEMU TCG support -- s390x vector instruction translation functions
*
* Copyright (C) 2019 Red Hat Inc
*
* Authors:
* David Hildenbrand <david@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
/*
* For most instructions that use the same element size for reads and
* writes, we can use real gvec vector expansion, which potantially uses
* real host vector instructions. As they only work up to 64 bit elements,
* 128 bit elements (vector is a single element) have to be handled
* differently. Operations that are too complicated to encode via TCG ops
* are handled via gvec ool (out-of-line) handlers.
*
* As soon as instructions use different element sizes for reads and writes
* or access elements "out of their element scope" we expand them manually
* in fancy loops, as gvec expansion does not deal with actual element
* numbers and does also not support access to other elements.
*
* 128 bit elements:
* As we only have i32/i64, such elements have to be loaded into two
* i64 values and can then be processed e.g. by tcg_gen_add2_i64.
*
* Sizes:
* On s390x, the operand size (oprsz) and the maximum size (maxsz) are
* always 16 (128 bit). What gvec code calls "vece", s390x calls "es",
* a.k.a. "element size". These values nicely map to MO_8 ... MO_64. Only
* 128 bit element size has to be treated in a special way (MO_64 + 1).
* We will use ES_* instead of MO_* for this reason in this file.
*
* CC handling:
* As gvec ool-helpers can currently not return values (besides via
* pointers like vectors or cpu_env), whenever we have to set the CC and
* can't conclude the value from the result vector, we will directly
* set it in "env->cc_op" and mark it as static via set_cc_static()".
* Whenever this is done, the helper writes globals (cc_op).
*/
#define NUM_VEC_ELEMENT_BYTES(es) (1 << (es))
#define NUM_VEC_ELEMENTS(es) (16 / NUM_VEC_ELEMENT_BYTES(es))
#define NUM_VEC_ELEMENT_BITS(es) (NUM_VEC_ELEMENT_BYTES(es) * BITS_PER_BYTE)
#define ES_8 MO_8
#define ES_16 MO_16
#define ES_32 MO_32
#define ES_64 MO_64
#define ES_128 4
static inline bool valid_vec_element(uint8_t enr, TCGMemOp es)
{
return !(enr & ~(NUM_VEC_ELEMENTS(es) - 1));
}
static void read_vec_element_i64(TCGv_i64 dst, uint8_t reg, uint8_t enr,
TCGMemOp memop)
{
const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);
switch (memop) {
case ES_8:
tcg_gen_ld8u_i64(dst, cpu_env, offs);
break;
case ES_16:
tcg_gen_ld16u_i64(dst, cpu_env, offs);
break;
case ES_32:
tcg_gen_ld32u_i64(dst, cpu_env, offs);
break;
case ES_8 | MO_SIGN:
tcg_gen_ld8s_i64(dst, cpu_env, offs);
break;
case ES_16 | MO_SIGN:
tcg_gen_ld16s_i64(dst, cpu_env, offs);
break;
case ES_32 | MO_SIGN:
tcg_gen_ld32s_i64(dst, cpu_env, offs);
break;
case ES_64:
case ES_64 | MO_SIGN:
tcg_gen_ld_i64(dst, cpu_env, offs);
break;
default:
g_assert_not_reached();
}
}
static void read_vec_element_i32(TCGv_i32 dst, uint8_t reg, uint8_t enr,
TCGMemOp memop)
{
const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);
switch (memop) {
case ES_8:
tcg_gen_ld8u_i32(dst, cpu_env, offs);
break;
case ES_16:
tcg_gen_ld16u_i32(dst, cpu_env, offs);
break;
case ES_8 | MO_SIGN:
tcg_gen_ld8s_i32(dst, cpu_env, offs);
break;
case ES_16 | MO_SIGN:
tcg_gen_ld16s_i32(dst, cpu_env, offs);
break;
case ES_32:
case ES_32 | MO_SIGN:
tcg_gen_ld_i32(dst, cpu_env, offs);
break;
default:
g_assert_not_reached();
}
}
static void write_vec_element_i64(TCGv_i64 src, int reg, uint8_t enr,
TCGMemOp memop)
{
const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);
switch (memop) {
case ES_8:
tcg_gen_st8_i64(src, cpu_env, offs);
break;
case ES_16:
tcg_gen_st16_i64(src, cpu_env, offs);
break;
case ES_32:
tcg_gen_st32_i64(src, cpu_env, offs);
break;
case ES_64:
tcg_gen_st_i64(src, cpu_env, offs);
break;
default:
g_assert_not_reached();
}
}
static void write_vec_element_i32(TCGv_i32 src, int reg, uint8_t enr,
TCGMemOp memop)
{
const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);
switch (memop) {
case ES_8:
tcg_gen_st8_i32(src, cpu_env, offs);
break;
case ES_16:
tcg_gen_st16_i32(src, cpu_env, offs);
break;
case ES_32:
tcg_gen_st_i32(src, cpu_env, offs);
break;
default:
g_assert_not_reached();
}
}
static void get_vec_element_ptr_i64(TCGv_ptr ptr, uint8_t reg, TCGv_i64 enr,
uint8_t es)
{
TCGv_i64 tmp = tcg_temp_new_i64();
/* mask off invalid parts from the element nr */
tcg_gen_andi_i64(tmp, enr, NUM_VEC_ELEMENTS(es) - 1);
/* convert it to an element offset relative to cpu_env (vec_reg_offset() */
tcg_gen_shli_i64(tmp, tmp, es);
#ifndef HOST_WORDS_BIGENDIAN
tcg_gen_xori_i64(tmp, tmp, 8 - NUM_VEC_ELEMENT_BYTES(es));
#endif
tcg_gen_addi_i64(tmp, tmp, vec_full_reg_offset(reg));
/* generate the final ptr by adding cpu_env */
tcg_gen_trunc_i64_ptr(ptr, tmp);
tcg_gen_add_ptr(ptr, ptr, cpu_env);
tcg_temp_free_i64(tmp);
}
#define gen_gvec_2(v1, v2, gen) \
tcg_gen_gvec_2(vec_full_reg_offset(v1), vec_full_reg_offset(v2), \
16, 16, gen)
#define gen_gvec_3(v1, v2, v3, gen) \
tcg_gen_gvec_3(vec_full_reg_offset(v1), vec_full_reg_offset(v2), \
vec_full_reg_offset(v3), 16, 16, gen)
#define gen_gvec_3_ool(v1, v2, v3, data, fn) \
tcg_gen_gvec_3_ool(vec_full_reg_offset(v1), vec_full_reg_offset(v2), \
vec_full_reg_offset(v3), 16, 16, data, fn)
#define gen_gvec_3_ptr(v1, v2, v3, ptr, data, fn) \
tcg_gen_gvec_3_ptr(vec_full_reg_offset(v1), vec_full_reg_offset(v2), \
vec_full_reg_offset(v3), ptr, 16, 16, data, fn)
#define gen_gvec_4(v1, v2, v3, v4, gen) \
tcg_gen_gvec_4(vec_full_reg_offset(v1), vec_full_reg_offset(v2), \
vec_full_reg_offset(v3), vec_full_reg_offset(v4), \
16, 16, gen)
#define gen_gvec_4_ool(v1, v2, v3, v4, data, fn) \
tcg_gen_gvec_4_ool(vec_full_reg_offset(v1), vec_full_reg_offset(v2), \
vec_full_reg_offset(v3), vec_full_reg_offset(v4), \
16, 16, data, fn)
#define gen_gvec_dup_i64(es, v1, c) \
tcg_gen_gvec_dup_i64(es, vec_full_reg_offset(v1), 16, 16, c)
#define gen_gvec_mov(v1, v2) \
tcg_gen_gvec_mov(0, vec_full_reg_offset(v1), vec_full_reg_offset(v2), 16, \
16)
#define gen_gvec_dup64i(v1, c) \
tcg_gen_gvec_dup64i(vec_full_reg_offset(v1), 16, 16, c)
#define gen_gvec_fn_3(fn, es, v1, v2, v3) \
tcg_gen_gvec_##fn(es, vec_full_reg_offset(v1), vec_full_reg_offset(v2), \
vec_full_reg_offset(v3), 16, 16)
/*
* Helper to carry out a 128 bit vector computation using 2 i64 values per
* vector.
*/
typedef void (*gen_gvec128_3_i64_fn)(TCGv_i64 dl, TCGv_i64 dh, TCGv_i64 al,
TCGv_i64 ah, TCGv_i64 bl, TCGv_i64 bh);
static void gen_gvec128_3_i64(gen_gvec128_3_i64_fn fn, uint8_t d, uint8_t a,
uint8_t b)
{
TCGv_i64 dh = tcg_temp_new_i64();
TCGv_i64 dl = tcg_temp_new_i64();
TCGv_i64 ah = tcg_temp_new_i64();
TCGv_i64 al = tcg_temp_new_i64();
TCGv_i64 bh = tcg_temp_new_i64();
TCGv_i64 bl = tcg_temp_new_i64();
read_vec_element_i64(ah, a, 0, ES_64);
read_vec_element_i64(al, a, 1, ES_64);
read_vec_element_i64(bh, b, 0, ES_64);
read_vec_element_i64(bl, b, 1, ES_64);
fn(dl, dh, al, ah, bl, bh);
write_vec_element_i64(dh, d, 0, ES_64);
write_vec_element_i64(dl, d, 1, ES_64);
tcg_temp_free_i64(dh);
tcg_temp_free_i64(dl);
tcg_temp_free_i64(ah);
tcg_temp_free_i64(al);
tcg_temp_free_i64(bh);
tcg_temp_free_i64(bl);
}
typedef void (*gen_gvec128_4_i64_fn)(TCGv_i64 dl, TCGv_i64 dh, TCGv_i64 al,
TCGv_i64 ah, TCGv_i64 bl, TCGv_i64 bh,
TCGv_i64 cl, TCGv_i64 ch);
static void gen_gvec128_4_i64(gen_gvec128_4_i64_fn fn, uint8_t d, uint8_t a,
uint8_t b, uint8_t c)
{
TCGv_i64 dh = tcg_temp_new_i64();
TCGv_i64 dl = tcg_temp_new_i64();
TCGv_i64 ah = tcg_temp_new_i64();
TCGv_i64 al = tcg_temp_new_i64();
TCGv_i64 bh = tcg_temp_new_i64();
TCGv_i64 bl = tcg_temp_new_i64();
TCGv_i64 ch = tcg_temp_new_i64();
TCGv_i64 cl = tcg_temp_new_i64();
read_vec_element_i64(ah, a, 0, ES_64);
read_vec_element_i64(al, a, 1, ES_64);
read_vec_element_i64(bh, b, 0, ES_64);
read_vec_element_i64(bl, b, 1, ES_64);
read_vec_element_i64(ch, c, 0, ES_64);
read_vec_element_i64(cl, c, 1, ES_64);
fn(dl, dh, al, ah, bl, bh, cl, ch);
write_vec_element_i64(dh, d, 0, ES_64);
write_vec_element_i64(dl, d, 1, ES_64);
tcg_temp_free_i64(dh);
tcg_temp_free_i64(dl);
tcg_temp_free_i64(ah);
tcg_temp_free_i64(al);
tcg_temp_free_i64(bh);
tcg_temp_free_i64(bl);
tcg_temp_free_i64(ch);
tcg_temp_free_i64(cl);
}
static void gen_gvec_dupi(uint8_t es, uint8_t reg, uint64_t c)
{
switch (es) {
case ES_8:
tcg_gen_gvec_dup8i(vec_full_reg_offset(reg), 16, 16, c);
break;
case ES_16:
tcg_gen_gvec_dup16i(vec_full_reg_offset(reg), 16, 16, c);
break;
case ES_32:
tcg_gen_gvec_dup32i(vec_full_reg_offset(reg), 16, 16, c);
break;
case ES_64:
gen_gvec_dup64i(reg, c);
break;
default:
g_assert_not_reached();
}
}
static void zero_vec(uint8_t reg)
{
tcg_gen_gvec_dup8i(vec_full_reg_offset(reg), 16, 16, 0);
}
static void gen_addi2_i64(TCGv_i64 dl, TCGv_i64 dh, TCGv_i64 al, TCGv_i64 ah,
uint64_t b)
{
TCGv_i64 bl = tcg_const_i64(b);
TCGv_i64 bh = tcg_const_i64(0);
tcg_gen_add2_i64(dl, dh, al, ah, bl, bh);
tcg_temp_free_i64(bl);
tcg_temp_free_i64(bh);
}
static DisasJumpType op_vge(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
read_vec_element_i64(tmp, get_field(s->fields, v2), enr, es);
tcg_gen_add_i64(o->addr1, o->addr1, tmp);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 0);
tcg_gen_qemu_ld_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
write_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static uint64_t generate_byte_mask(uint8_t mask)
{
uint64_t r = 0;
int i;
for (i = 0; i < 8; i++) {
if ((mask >> i) & 1) {
r |= 0xffull << (i * 8);
}
}
return r;
}
static DisasJumpType op_vgbm(DisasContext *s, DisasOps *o)
{
const uint16_t i2 = get_field(s->fields, i2);
if (i2 == (i2 & 0xff) * 0x0101) {
/*
* Masks for both 64 bit elements of the vector are the same.
* Trust tcg to produce a good constant loading.
*/
gen_gvec_dup64i(get_field(s->fields, v1),
generate_byte_mask(i2 & 0xff));
} else {
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_movi_i64(t, generate_byte_mask(i2 >> 8));
write_vec_element_i64(t, get_field(s->fields, v1), 0, ES_64);
tcg_gen_movi_i64(t, generate_byte_mask(i2));
write_vec_element_i64(t, get_field(s->fields, v1), 1, ES_64);
tcg_temp_free_i64(t);
}
return DISAS_NEXT;
}
static DisasJumpType op_vgm(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
const uint8_t bits = NUM_VEC_ELEMENT_BITS(es);
const uint8_t i2 = get_field(s->fields, i2) & (bits - 1);
const uint8_t i3 = get_field(s->fields, i3) & (bits - 1);
uint64_t mask = 0;
int i;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/* generate the mask - take care of wrapping */
for (i = i2; ; i = (i + 1) % bits) {
mask |= 1ull << (bits - i - 1);
if (i == i3) {
break;
}
}
gen_gvec_dupi(es, get_field(s->fields, v1), mask);
return DISAS_NEXT;
}
static DisasJumpType op_vl(DisasContext *s, DisasOps *o)
{
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(t0, o->addr1, get_mem_index(s), MO_TEQ);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
tcg_gen_qemu_ld_i64(t1, o->addr1, get_mem_index(s), MO_TEQ);
write_vec_element_i64(t0, get_field(s->fields, v1), 0, ES_64);
write_vec_element_i64(t1, get_field(s->fields, v1), 1, ES_64);
tcg_temp_free(t0);
tcg_temp_free(t1);
return DISAS_NEXT;
}
static DisasJumpType op_vlr(DisasContext *s, DisasOps *o)
{
gen_gvec_mov(get_field(s->fields, v1), get_field(s->fields, v2));
return DISAS_NEXT;
}
static DisasJumpType op_vlrep(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m3);
TCGv_i64 tmp;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
gen_gvec_dup_i64(es, get_field(s->fields, v1), tmp);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vle(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
write_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vlei(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_const_i64((int16_t)get_field(s->fields, i2));
write_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vlgv(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
TCGv_ptr ptr;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/* fast path if we don't need the register content */
if (!get_field(s->fields, b2)) {
uint8_t enr = get_field(s->fields, d2) & (NUM_VEC_ELEMENTS(es) - 1);
read_vec_element_i64(o->out, get_field(s->fields, v3), enr, es);
return DISAS_NEXT;
}
ptr = tcg_temp_new_ptr();
get_vec_element_ptr_i64(ptr, get_field(s->fields, v3), o->addr1, es);
switch (es) {
case ES_8:
tcg_gen_ld8u_i64(o->out, ptr, 0);
break;
case ES_16:
tcg_gen_ld16u_i64(o->out, ptr, 0);
break;
case ES_32:
tcg_gen_ld32u_i64(o->out, ptr, 0);
break;
case ES_64:
tcg_gen_ld_i64(o->out, ptr, 0);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_ptr(ptr);
return DISAS_NEXT;
}
static DisasJumpType op_vllez(DisasContext *s, DisasOps *o)
{
uint8_t es = get_field(s->fields, m3);
uint8_t enr;
TCGv_i64 t;
switch (es) {
/* rightmost sub-element of leftmost doubleword */
case ES_8:
enr = 7;
break;
case ES_16:
enr = 3;
break;
case ES_32:
enr = 1;
break;
case ES_64:
enr = 0;
break;
/* leftmost sub-element of leftmost doubleword */
case 6:
if (s390_has_feat(S390_FEAT_VECTOR_ENH)) {
es = ES_32;
enr = 0;
break;
}
default:
/* fallthrough */
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
t = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(t, o->addr1, get_mem_index(s), MO_TE | es);
zero_vec(get_field(s->fields, v1));
write_vec_element_i64(t, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(t);
return DISAS_NEXT;
}
static DisasJumpType op_vlm(DisasContext *s, DisasOps *o)
{
const uint8_t v3 = get_field(s->fields, v3);
uint8_t v1 = get_field(s->fields, v1);
TCGv_i64 t0, t1;
if (v3 < v1 || (v3 - v1 + 1) > 16) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/*
* Check for possible access exceptions by trying to load the last
* element. The first element will be checked first next.
*/
t0 = tcg_temp_new_i64();
t1 = tcg_temp_new_i64();
gen_addi_and_wrap_i64(s, t0, o->addr1, (v3 - v1) * 16 + 8);
tcg_gen_qemu_ld_i64(t0, t0, get_mem_index(s), MO_TEQ);
for (;; v1++) {
tcg_gen_qemu_ld_i64(t1, o->addr1, get_mem_index(s), MO_TEQ);
write_vec_element_i64(t1, v1, 0, ES_64);
if (v1 == v3) {
break;
}
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
tcg_gen_qemu_ld_i64(t1, o->addr1, get_mem_index(s), MO_TEQ);
write_vec_element_i64(t1, v1, 1, ES_64);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
}
/* Store the last element, loaded first */
write_vec_element_i64(t0, v1, 1, ES_64);
tcg_temp_free_i64(t0);
tcg_temp_free_i64(t1);
return DISAS_NEXT;
}
static DisasJumpType op_vlbb(DisasContext *s, DisasOps *o)
{
const int64_t block_size = (1ull << (get_field(s->fields, m3) + 6));
const int v1_offs = vec_full_reg_offset(get_field(s->fields, v1));
TCGv_ptr a0;
TCGv_i64 bytes;
if (get_field(s->fields, m3) > 6) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
bytes = tcg_temp_new_i64();
a0 = tcg_temp_new_ptr();
/* calculate the number of bytes until the next block boundary */
tcg_gen_ori_i64(bytes, o->addr1, -block_size);
tcg_gen_neg_i64(bytes, bytes);
tcg_gen_addi_ptr(a0, cpu_env, v1_offs);
gen_helper_vll(cpu_env, a0, o->addr1, bytes);
tcg_temp_free_i64(bytes);
tcg_temp_free_ptr(a0);
return DISAS_NEXT;
}
static DisasJumpType op_vlvg(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
TCGv_ptr ptr;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/* fast path if we don't need the register content */
if (!get_field(s->fields, b2)) {
uint8_t enr = get_field(s->fields, d2) & (NUM_VEC_ELEMENTS(es) - 1);
write_vec_element_i64(o->in2, get_field(s->fields, v1), enr, es);
return DISAS_NEXT;
}
ptr = tcg_temp_new_ptr();
get_vec_element_ptr_i64(ptr, get_field(s->fields, v1), o->addr1, es);
switch (es) {
case ES_8:
tcg_gen_st8_i64(o->in2, ptr, 0);
break;
case ES_16:
tcg_gen_st16_i64(o->in2, ptr, 0);
break;
case ES_32:
tcg_gen_st32_i64(o->in2, ptr, 0);
break;
case ES_64:
tcg_gen_st_i64(o->in2, ptr, 0);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_ptr(ptr);
return DISAS_NEXT;
}
static DisasJumpType op_vlvgp(DisasContext *s, DisasOps *o)
{
write_vec_element_i64(o->in1, get_field(s->fields, v1), 0, ES_64);
write_vec_element_i64(o->in2, get_field(s->fields, v1), 1, ES_64);
return DISAS_NEXT;
}
static DisasJumpType op_vll(DisasContext *s, DisasOps *o)
{
const int v1_offs = vec_full_reg_offset(get_field(s->fields, v1));
TCGv_ptr a0 = tcg_temp_new_ptr();
/* convert highest index into an actual length */
tcg_gen_addi_i64(o->in2, o->in2, 1);
tcg_gen_addi_ptr(a0, cpu_env, v1_offs);
gen_helper_vll(cpu_env, a0, o->addr1, o->in2);
tcg_temp_free_ptr(a0);
return DISAS_NEXT;
}
static DisasJumpType op_vmr(DisasContext *s, DisasOps *o)
{
const uint8_t v1 = get_field(s->fields, v1);
const uint8_t v2 = get_field(s->fields, v2);
const uint8_t v3 = get_field(s->fields, v3);
const uint8_t es = get_field(s->fields, m4);
int dst_idx, src_idx;
TCGv_i64 tmp;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
if (s->fields->op2 == 0x61) {
/* iterate backwards to avoid overwriting data we might need later */
for (dst_idx = NUM_VEC_ELEMENTS(es) - 1; dst_idx >= 0; dst_idx--) {
src_idx = dst_idx / 2;
if (dst_idx % 2 == 0) {
read_vec_element_i64(tmp, v2, src_idx, es);
} else {
read_vec_element_i64(tmp, v3, src_idx, es);
}
write_vec_element_i64(tmp, v1, dst_idx, es);
}
} else {
/* iterate forward to avoid overwriting data we might need later */
for (dst_idx = 0; dst_idx < NUM_VEC_ELEMENTS(es); dst_idx++) {
src_idx = (dst_idx + NUM_VEC_ELEMENTS(es)) / 2;
if (dst_idx % 2 == 0) {
read_vec_element_i64(tmp, v2, src_idx, es);
} else {
read_vec_element_i64(tmp, v3, src_idx, es);
}
write_vec_element_i64(tmp, v1, dst_idx, es);
}
}
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vpk(DisasContext *s, DisasOps *o)
{
const uint8_t v1 = get_field(s->fields, v1);
const uint8_t v2 = get_field(s->fields, v2);
const uint8_t v3 = get_field(s->fields, v3);
const uint8_t es = get_field(s->fields, m4);
static gen_helper_gvec_3 * const vpk[3] = {
gen_helper_gvec_vpk16,
gen_helper_gvec_vpk32,
gen_helper_gvec_vpk64,
};
static gen_helper_gvec_3 * const vpks[3] = {
gen_helper_gvec_vpks16,
gen_helper_gvec_vpks32,
gen_helper_gvec_vpks64,
};
static gen_helper_gvec_3_ptr * const vpks_cc[3] = {
gen_helper_gvec_vpks_cc16,
gen_helper_gvec_vpks_cc32,
gen_helper_gvec_vpks_cc64,
};
static gen_helper_gvec_3 * const vpkls[3] = {
gen_helper_gvec_vpkls16,
gen_helper_gvec_vpkls32,
gen_helper_gvec_vpkls64,
};
static gen_helper_gvec_3_ptr * const vpkls_cc[3] = {
gen_helper_gvec_vpkls_cc16,
gen_helper_gvec_vpkls_cc32,
gen_helper_gvec_vpkls_cc64,
};
if (es == ES_8 || es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
switch (s->fields->op2) {
case 0x97:
if (get_field(s->fields, m5) & 0x1) {
gen_gvec_3_ptr(v1, v2, v3, cpu_env, 0, vpks_cc[es - 1]);
set_cc_static(s);
} else {
gen_gvec_3_ool(v1, v2, v3, 0, vpks[es - 1]);
}
break;
case 0x95:
if (get_field(s->fields, m5) & 0x1) {
gen_gvec_3_ptr(v1, v2, v3, cpu_env, 0, vpkls_cc[es - 1]);
set_cc_static(s);
} else {
gen_gvec_3_ool(v1, v2, v3, 0, vpkls[es - 1]);
}
break;
case 0x94:
/* If sources and destination dont't overlap -> fast path */
if (v1 != v2 && v1 != v3) {
const uint8_t src_es = get_field(s->fields, m4);
const uint8_t dst_es = src_es - 1;
TCGv_i64 tmp = tcg_temp_new_i64();
int dst_idx, src_idx;
for (dst_idx = 0; dst_idx < NUM_VEC_ELEMENTS(dst_es); dst_idx++) {
src_idx = dst_idx;
if (src_idx < NUM_VEC_ELEMENTS(src_es)) {
read_vec_element_i64(tmp, v2, src_idx, src_es);
} else {
src_idx -= NUM_VEC_ELEMENTS(src_es);
read_vec_element_i64(tmp, v3, src_idx, src_es);
}
write_vec_element_i64(tmp, v1, dst_idx, dst_es);
}
tcg_temp_free_i64(tmp);
} else {
gen_gvec_3_ool(v1, v2, v3, 0, vpk[es - 1]);
}
break;
default:
g_assert_not_reached();
}
return DISAS_NEXT;
}
static DisasJumpType op_vperm(DisasContext *s, DisasOps *o)
{
gen_gvec_4_ool(get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3), get_field(s->fields, v4),
0, gen_helper_gvec_vperm);
return DISAS_NEXT;
}
static DisasJumpType op_vpdi(DisasContext *s, DisasOps *o)
{
const uint8_t i2 = extract32(get_field(s->fields, m4), 2, 1);
const uint8_t i3 = extract32(get_field(s->fields, m4), 0, 1);
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
read_vec_element_i64(t0, get_field(s->fields, v2), i2, ES_64);
read_vec_element_i64(t1, get_field(s->fields, v3), i3, ES_64);
write_vec_element_i64(t0, get_field(s->fields, v1), 0, ES_64);
write_vec_element_i64(t1, get_field(s->fields, v1), 1, ES_64);
tcg_temp_free_i64(t0);
tcg_temp_free_i64(t1);
return DISAS_NEXT;
}
static DisasJumpType op_vrep(DisasContext *s, DisasOps *o)
{
const uint8_t enr = get_field(s->fields, i2);
const uint8_t es = get_field(s->fields, m4);
if (es > ES_64 || !valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tcg_gen_gvec_dup_mem(es, vec_full_reg_offset(get_field(s->fields, v1)),
vec_reg_offset(get_field(s->fields, v3), enr, es),
16, 16);
return DISAS_NEXT;
}
static DisasJumpType op_vrepi(DisasContext *s, DisasOps *o)
{
const int64_t data = (int16_t)get_field(s->fields, i2);
const uint8_t es = get_field(s->fields, m3);
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
gen_gvec_dupi(es, get_field(s->fields, v1), data);
return DISAS_NEXT;
}
static DisasJumpType op_vsce(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
read_vec_element_i64(tmp, get_field(s->fields, v2), enr, es);
tcg_gen_add_i64(o->addr1, o->addr1, tmp);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 0);
read_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_gen_qemu_st_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static void gen_sel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
{
TCGv_i64 t = tcg_temp_new_i64();
/* bit in c not set -> copy bit from b */
tcg_gen_andc_i64(t, b, c);
/* bit in c set -> copy bit from a */
tcg_gen_and_i64(d, a, c);
/* merge the results */
tcg_gen_or_i64(d, d, t);
tcg_temp_free_i64(t);
}
static void gen_sel_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b,
TCGv_vec c)
{
TCGv_vec t = tcg_temp_new_vec_matching(d);
tcg_gen_andc_vec(vece, t, b, c);
tcg_gen_and_vec(vece, d, a, c);
tcg_gen_or_vec(vece, d, d, t);
tcg_temp_free_vec(t);
}
static DisasJumpType op_vsel(DisasContext *s, DisasOps *o)
{
static const GVecGen4 gvec_op = {
.fni8 = gen_sel_i64,
.fniv = gen_sel_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
gen_gvec_4(get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3), get_field(s->fields, v4), &gvec_op);
return DISAS_NEXT;
}
static DisasJumpType op_vseg(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m3);
int idx1, idx2;
TCGv_i64 tmp;
switch (es) {
case ES_8:
idx1 = 7;
idx2 = 15;
break;
case ES_16:
idx1 = 3;
idx2 = 7;
break;
case ES_32:
idx1 = 1;
idx2 = 3;
break;
default:
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
read_vec_element_i64(tmp, get_field(s->fields, v2), idx1, es | MO_SIGN);
write_vec_element_i64(tmp, get_field(s->fields, v1), 0, ES_64);
read_vec_element_i64(tmp, get_field(s->fields, v2), idx2, es | MO_SIGN);
write_vec_element_i64(tmp, get_field(s->fields, v1), 1, ES_64);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vst(DisasContext *s, DisasOps *o)
{
TCGv_i64 tmp = tcg_const_i64(16);
/* Probe write access before actually modifying memory */
gen_helper_probe_write_access(cpu_env, o->addr1, tmp);
read_vec_element_i64(tmp, get_field(s->fields, v1), 0, ES_64);
tcg_gen_qemu_st_i64(tmp, o->addr1, get_mem_index(s), MO_TEQ);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
read_vec_element_i64(tmp, get_field(s->fields, v1), 1, ES_64);
tcg_gen_qemu_st_i64(tmp, o->addr1, get_mem_index(s), MO_TEQ);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vste(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
read_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_gen_qemu_st_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vstm(DisasContext *s, DisasOps *o)
{
const uint8_t v3 = get_field(s->fields, v3);
uint8_t v1 = get_field(s->fields, v1);
TCGv_i64 tmp;
while (v3 < v1 || (v3 - v1 + 1) > 16) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/* Probe write access before actually modifying memory */
tmp = tcg_const_i64((v3 - v1 + 1) * 16);
gen_helper_probe_write_access(cpu_env, o->addr1, tmp);
for (;; v1++) {
read_vec_element_i64(tmp, v1, 0, ES_64);
tcg_gen_qemu_st_i64(tmp, o->addr1, get_mem_index(s), MO_TEQ);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
read_vec_element_i64(tmp, v1, 1, ES_64);
tcg_gen_qemu_st_i64(tmp, o->addr1, get_mem_index(s), MO_TEQ);
if (v1 == v3) {
break;
}
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
}
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vstl(DisasContext *s, DisasOps *o)
{
const int v1_offs = vec_full_reg_offset(get_field(s->fields, v1));
TCGv_ptr a0 = tcg_temp_new_ptr();
/* convert highest index into an actual length */
tcg_gen_addi_i64(o->in2, o->in2, 1);
tcg_gen_addi_ptr(a0, cpu_env, v1_offs);
gen_helper_vstl(cpu_env, a0, o->addr1, o->in2);
tcg_temp_free_ptr(a0);
return DISAS_NEXT;
}
static DisasJumpType op_vup(DisasContext *s, DisasOps *o)
{
const bool logical = s->fields->op2 == 0xd4 || s->fields->op2 == 0xd5;
const uint8_t v1 = get_field(s->fields, v1);
const uint8_t v2 = get_field(s->fields, v2);
const uint8_t src_es = get_field(s->fields, m3);
const uint8_t dst_es = src_es + 1;
int dst_idx, src_idx;
TCGv_i64 tmp;
if (src_es > ES_32) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
if (s->fields->op2 == 0xd7 || s->fields->op2 == 0xd5) {
/* iterate backwards to avoid overwriting data we might need later */
for (dst_idx = NUM_VEC_ELEMENTS(dst_es) - 1; dst_idx >= 0; dst_idx--) {
src_idx = dst_idx;
read_vec_element_i64(tmp, v2, src_idx,
src_es | (logical ? 0 : MO_SIGN));
write_vec_element_i64(tmp, v1, dst_idx, dst_es);
}
} else {
/* iterate forward to avoid overwriting data we might need later */
for (dst_idx = 0; dst_idx < NUM_VEC_ELEMENTS(dst_es); dst_idx++) {
src_idx = dst_idx + NUM_VEC_ELEMENTS(src_es) / 2;
read_vec_element_i64(tmp, v2, src_idx,
src_es | (logical ? 0 : MO_SIGN));
write_vec_element_i64(tmp, v1, dst_idx, dst_es);
}
}
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_va(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
if (es > ES_128) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
} else if (es == ES_128) {
gen_gvec128_3_i64(tcg_gen_add2_i64, get_field(s->fields, v1),
get_field(s->fields, v2), get_field(s->fields, v3));
return DISAS_NEXT;
}
gen_gvec_fn_3(add, es, get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3));
return DISAS_NEXT;
}
static void gen_acc(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, uint8_t es)
{
const uint8_t msb_bit_nr = NUM_VEC_ELEMENT_BITS(es) - 1;
TCGv_i64 msb_mask = tcg_const_i64(dup_const(es, 1ull << msb_bit_nr));
TCGv_i64 t1 = tcg_temp_new_i64();
TCGv_i64 t2 = tcg_temp_new_i64();
TCGv_i64 t3 = tcg_temp_new_i64();
/* Calculate the carry into the MSB, ignoring the old MSBs */
tcg_gen_andc_i64(t1, a, msb_mask);
tcg_gen_andc_i64(t2, b, msb_mask);
tcg_gen_add_i64(t1, t1, t2);
/* Calculate the MSB without any carry into it */
tcg_gen_xor_i64(t3, a, b);
/* Calculate the carry out of the MSB in the MSB bit position */
tcg_gen_and_i64(d, a, b);
tcg_gen_and_i64(t1, t1, t3);
tcg_gen_or_i64(d, d, t1);
/* Isolate and shift the carry into position */
tcg_gen_and_i64(d, d, msb_mask);
tcg_gen_shri_i64(d, d, msb_bit_nr);
tcg_temp_free_i64(t1);
tcg_temp_free_i64(t2);
tcg_temp_free_i64(t3);
}
static void gen_acc8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
gen_acc(d, a, b, ES_8);
}
static void gen_acc16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
gen_acc(d, a, b, ES_16);
}
static void gen_acc_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
TCGv_i32 t = tcg_temp_new_i32();
tcg_gen_add_i32(t, a, b);
tcg_gen_setcond_i32(TCG_COND_LTU, d, t, b);
tcg_temp_free_i32(t);
}
static void gen_acc_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_add_i64(t, a, b);
tcg_gen_setcond_i64(TCG_COND_LTU, d, t, b);
tcg_temp_free_i64(t);
}
static void gen_acc2_i64(TCGv_i64 dl, TCGv_i64 dh, TCGv_i64 al,
TCGv_i64 ah, TCGv_i64 bl, TCGv_i64 bh)
{
TCGv_i64 th = tcg_temp_new_i64();
TCGv_i64 tl = tcg_temp_new_i64();
TCGv_i64 zero = tcg_const_i64(0);
tcg_gen_add2_i64(tl, th, al, zero, bl, zero);
tcg_gen_add2_i64(tl, th, th, zero, ah, zero);
tcg_gen_add2_i64(tl, dl, tl, th, bh, zero);
tcg_gen_mov_i64(dh, zero);
tcg_temp_free_i64(th);
tcg_temp_free_i64(tl);
tcg_temp_free_i64(zero);
}
static DisasJumpType op_vacc(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
static const GVecGen3 g[4] = {
{ .fni8 = gen_acc8_i64, },
{ .fni8 = gen_acc16_i64, },
{ .fni4 = gen_acc_i32, },
{ .fni8 = gen_acc_i64, },
};
if (es > ES_128) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
} else if (es == ES_128) {
gen_gvec128_3_i64(gen_acc2_i64, get_field(s->fields, v1),
get_field(s->fields, v2), get_field(s->fields, v3));
return DISAS_NEXT;
}
gen_gvec_3(get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3), &g[es]);
return DISAS_NEXT;
}
static void gen_ac2_i64(TCGv_i64 dl, TCGv_i64 dh, TCGv_i64 al, TCGv_i64 ah,
TCGv_i64 bl, TCGv_i64 bh, TCGv_i64 cl, TCGv_i64 ch)
{
TCGv_i64 tl = tcg_temp_new_i64();
TCGv_i64 th = tcg_const_i64(0);
/* extract the carry only */
tcg_gen_extract_i64(tl, cl, 0, 1);
tcg_gen_add2_i64(dl, dh, al, ah, bl, bh);
tcg_gen_add2_i64(dl, dh, dl, dh, tl, th);
tcg_temp_free_i64(tl);
tcg_temp_free_i64(th);
}
static DisasJumpType op_vac(DisasContext *s, DisasOps *o)
{
if (get_field(s->fields, m5) != ES_128) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
gen_gvec128_4_i64(gen_ac2_i64, get_field(s->fields, v1),
get_field(s->fields, v2), get_field(s->fields, v3),
get_field(s->fields, v4));
return DISAS_NEXT;
}
static void gen_accc2_i64(TCGv_i64 dl, TCGv_i64 dh, TCGv_i64 al, TCGv_i64 ah,
TCGv_i64 bl, TCGv_i64 bh, TCGv_i64 cl, TCGv_i64 ch)
{
TCGv_i64 tl = tcg_temp_new_i64();
TCGv_i64 th = tcg_temp_new_i64();
TCGv_i64 zero = tcg_const_i64(0);
tcg_gen_andi_i64(tl, cl, 1);
tcg_gen_add2_i64(tl, th, tl, zero, al, zero);
tcg_gen_add2_i64(tl, th, tl, th, bl, zero);
tcg_gen_add2_i64(tl, th, th, zero, ah, zero);
tcg_gen_add2_i64(tl, dl, tl, th, bh, zero);
tcg_gen_mov_i64(dh, zero);
tcg_temp_free_i64(tl);
tcg_temp_free_i64(th);
tcg_temp_free_i64(zero);
}
static DisasJumpType op_vaccc(DisasContext *s, DisasOps *o)
{
if (get_field(s->fields, m5) != ES_128) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
gen_gvec128_4_i64(gen_accc2_i64, get_field(s->fields, v1),
get_field(s->fields, v2), get_field(s->fields, v3),
get_field(s->fields, v4));
return DISAS_NEXT;
}
static DisasJumpType op_vn(DisasContext *s, DisasOps *o)
{
gen_gvec_fn_3(and, ES_8, get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3));
return DISAS_NEXT;
}
static DisasJumpType op_vnc(DisasContext *s, DisasOps *o)
{
gen_gvec_fn_3(andc, ES_8, get_field(s->fields, v1),
get_field(s->fields, v2), get_field(s->fields, v3));
return DISAS_NEXT;
}
static void gen_avg_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(t0, a);
tcg_gen_ext_i32_i64(t1, b);
tcg_gen_add_i64(t0, t0, t1);
tcg_gen_addi_i64(t0, t0, 1);
tcg_gen_shri_i64(t0, t0, 1);
tcg_gen_extrl_i64_i32(d, t0);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_avg_i64(TCGv_i64 dl, TCGv_i64 al, TCGv_i64 bl)
{
TCGv_i64 dh = tcg_temp_new_i64();
TCGv_i64 ah = tcg_temp_new_i64();
TCGv_i64 bh = tcg_temp_new_i64();
/* extending the sign by one bit is sufficient */
tcg_gen_extract_i64(ah, al, 63, 1);
tcg_gen_extract_i64(bh, bl, 63, 1);
tcg_gen_add2_i64(dl, dh, al, ah, bl, bh);
gen_addi2_i64(dl, dh, dl, dh, 1);
tcg_gen_extract2_i64(dl, dl, dh, 1);
tcg_temp_free_i64(dh);
tcg_temp_free_i64(ah);
tcg_temp_free_i64(bh);
}
static DisasJumpType op_vavg(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
static const GVecGen3 g[4] = {
{ .fno = gen_helper_gvec_vavg8, },
{ .fno = gen_helper_gvec_vavg16, },
{ .fni4 = gen_avg_i32, },
{ .fni8 = gen_avg_i64, },
};
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
gen_gvec_3(get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3), &g[es]);
return DISAS_NEXT;
}
static void gen_avgl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(t0, a);
tcg_gen_extu_i32_i64(t1, b);
tcg_gen_add_i64(t0, t0, t1);
tcg_gen_addi_i64(t0, t0, 1);
tcg_gen_shri_i64(t0, t0, 1);
tcg_gen_extrl_i64_i32(d, t0);
tcg_temp_free(t0);
tcg_temp_free(t1);
}
static void gen_avgl_i64(TCGv_i64 dl, TCGv_i64 al, TCGv_i64 bl)
{
TCGv_i64 dh = tcg_temp_new_i64();
TCGv_i64 zero = tcg_const_i64(0);
tcg_gen_add2_i64(dl, dh, al, zero, bl, zero);
gen_addi2_i64(dl, dh, dl, dh, 1);
tcg_gen_extract2_i64(dl, dl, dh, 1);
tcg_temp_free_i64(dh);
tcg_temp_free_i64(zero);
}
static DisasJumpType op_vavgl(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
static const GVecGen3 g[4] = {
{ .fno = gen_helper_gvec_vavgl8, },
{ .fno = gen_helper_gvec_vavgl16, },
{ .fni4 = gen_avgl_i32, },
{ .fni8 = gen_avgl_i64, },
};
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
gen_gvec_3(get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3), &g[es]);
return DISAS_NEXT;
}
static DisasJumpType op_vcksm(DisasContext *s, DisasOps *o)
{
TCGv_i32 tmp = tcg_temp_new_i32();
TCGv_i32 sum = tcg_temp_new_i32();
int i;
read_vec_element_i32(sum, get_field(s->fields, v3), 1, ES_32);
for (i = 0; i < 4; i++) {
read_vec_element_i32(tmp, get_field(s->fields, v2), i, ES_32);
tcg_gen_add2_i32(tmp, sum, sum, sum, tmp, tmp);
}
zero_vec(get_field(s->fields, v1));
write_vec_element_i32(sum, get_field(s->fields, v1), 1, ES_32);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(sum);
return DISAS_NEXT;
}
static DisasJumpType op_vec(DisasContext *s, DisasOps *o)
{
uint8_t es = get_field(s->fields, m3);
const uint8_t enr = NUM_VEC_ELEMENTS(es) / 2 - 1;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
if (s->fields->op2 == 0xdb) {
es |= MO_SIGN;
}
o->in1 = tcg_temp_new_i64();
o->in2 = tcg_temp_new_i64();
read_vec_element_i64(o->in1, get_field(s->fields, v1), enr, es);
read_vec_element_i64(o->in2, get_field(s->fields, v2), enr, es);
return DISAS_NEXT;
}
static DisasJumpType op_vc(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
TCGCond cond = s->insn->data;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tcg_gen_gvec_cmp(cond, es,
vec_full_reg_offset(get_field(s->fields, v1)),
vec_full_reg_offset(get_field(s->fields, v2)),
vec_full_reg_offset(get_field(s->fields, v3)), 16, 16);
if (get_field(s->fields, m5) & 0x1) {
TCGv_i64 low = tcg_temp_new_i64();
TCGv_i64 high = tcg_temp_new_i64();
read_vec_element_i64(high, get_field(s->fields, v1), 0, ES_64);
read_vec_element_i64(low, get_field(s->fields, v1), 1, ES_64);
gen_op_update2_cc_i64(s, CC_OP_VC, low, high);
tcg_temp_free_i64(low);
tcg_temp_free_i64(high);
}
return DISAS_NEXT;
}
static void gen_clz_i32(TCGv_i32 d, TCGv_i32 a)
{
tcg_gen_clzi_i32(d, a, 32);
}
static void gen_clz_i64(TCGv_i64 d, TCGv_i64 a)
{
tcg_gen_clzi_i64(d, a, 64);
}
static DisasJumpType op_vclz(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m3);
static const GVecGen2 g[4] = {
{ .fno = gen_helper_gvec_vclz8, },
{ .fno = gen_helper_gvec_vclz16, },
{ .fni4 = gen_clz_i32, },
{ .fni8 = gen_clz_i64, },
};
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
gen_gvec_2(get_field(s->fields, v1), get_field(s->fields, v2), &g[es]);
return DISAS_NEXT;
}
static void gen_ctz_i32(TCGv_i32 d, TCGv_i32 a)
{
tcg_gen_ctzi_i32(d, a, 32);
}
static void gen_ctz_i64(TCGv_i64 d, TCGv_i64 a)
{
tcg_gen_ctzi_i64(d, a, 64);
}
static DisasJumpType op_vctz(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m3);
static const GVecGen2 g[4] = {
{ .fno = gen_helper_gvec_vctz8, },
{ .fno = gen_helper_gvec_vctz16, },
{ .fni4 = gen_ctz_i32, },
{ .fni8 = gen_ctz_i64, },
};
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
gen_gvec_2(get_field(s->fields, v1), get_field(s->fields, v2), &g[es]);
return DISAS_NEXT;
}
static DisasJumpType op_vx(DisasContext *s, DisasOps *o)
{
gen_gvec_fn_3(xor, ES_8, get_field(s->fields, v1), get_field(s->fields, v2),
get_field(s->fields, v3));
return DISAS_NEXT;
}