xemu/hw/pci.c
Paul Brook 53c25cea7d Separate virtio PCI code
Split the PCI host bindings from the VRing transport implementation.

Signed-off-by: Paul Brook <paul@codesourcery.com>
2009-05-18 18:26:33 +01:00

935 lines
26 KiB
C

/*
* QEMU PCI bus manager
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "monitor.h"
#include "net.h"
#include "sysemu.h"
//#define DEBUG_PCI
struct PCIBus {
int bus_num;
int devfn_min;
pci_set_irq_fn set_irq;
pci_map_irq_fn map_irq;
uint32_t config_reg; /* XXX: suppress */
/* low level pic */
SetIRQFunc *low_set_irq;
qemu_irq *irq_opaque;
PCIDevice *devices[256];
PCIDevice *parent_dev;
PCIBus *next;
/* The bus IRQ state is the logical OR of the connected devices.
Keep a count of the number of devices with raised IRQs. */
int nirq;
int irq_count[];
};
static void pci_update_mappings(PCIDevice *d);
static void pci_set_irq(void *opaque, int irq_num, int level);
target_phys_addr_t pci_mem_base;
static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET;
static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU;
static int pci_irq_index;
static PCIBus *first_bus;
static void pcibus_save(QEMUFile *f, void *opaque)
{
PCIBus *bus = (PCIBus *)opaque;
int i;
qemu_put_be32(f, bus->nirq);
for (i = 0; i < bus->nirq; i++)
qemu_put_be32(f, bus->irq_count[i]);
}
static int pcibus_load(QEMUFile *f, void *opaque, int version_id)
{
PCIBus *bus = (PCIBus *)opaque;
int i, nirq;
if (version_id != 1)
return -EINVAL;
nirq = qemu_get_be32(f);
if (bus->nirq != nirq) {
fprintf(stderr, "pcibus_load: nirq mismatch: src=%d dst=%d\n",
nirq, bus->nirq);
return -EINVAL;
}
for (i = 0; i < nirq; i++)
bus->irq_count[i] = qemu_get_be32(f);
return 0;
}
PCIBus *pci_register_bus(pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
qemu_irq *pic, int devfn_min, int nirq)
{
PCIBus *bus;
static int nbus = 0;
bus = qemu_mallocz(sizeof(PCIBus) + (nirq * sizeof(int)));
bus->set_irq = set_irq;
bus->map_irq = map_irq;
bus->irq_opaque = pic;
bus->devfn_min = devfn_min;
bus->nirq = nirq;
bus->next = first_bus;
first_bus = bus;
register_savevm("PCIBUS", nbus++, 1, pcibus_save, pcibus_load, bus);
return bus;
}
static PCIBus *pci_register_secondary_bus(PCIDevice *dev, pci_map_irq_fn map_irq)
{
PCIBus *bus;
bus = qemu_mallocz(sizeof(PCIBus));
bus->map_irq = map_irq;
bus->parent_dev = dev;
bus->next = dev->bus->next;
dev->bus->next = bus;
return bus;
}
int pci_bus_num(PCIBus *s)
{
return s->bus_num;
}
void pci_device_save(PCIDevice *s, QEMUFile *f)
{
int i;
qemu_put_be32(f, 2); /* PCI device version */
qemu_put_buffer(f, s->config, 256);
for (i = 0; i < 4; i++)
qemu_put_be32(f, s->irq_state[i]);
}
int pci_device_load(PCIDevice *s, QEMUFile *f)
{
uint32_t version_id;
int i;
version_id = qemu_get_be32(f);
if (version_id > 2)
return -EINVAL;
qemu_get_buffer(f, s->config, 256);
pci_update_mappings(s);
if (version_id >= 2)
for (i = 0; i < 4; i ++)
s->irq_state[i] = qemu_get_be32(f);
return 0;
}
static int pci_set_default_subsystem_id(PCIDevice *pci_dev)
{
uint16_t *id;
id = (void*)(&pci_dev->config[PCI_SUBVENDOR_ID]);
id[0] = cpu_to_le16(pci_default_sub_vendor_id);
id[1] = cpu_to_le16(pci_default_sub_device_id);
return 0;
}
/*
* Parse [[<domain>:]<bus>:]<slot>, return -1 on error
*/
static int pci_parse_devaddr(const char *addr, int *domp, int *busp, unsigned *slotp)
{
const char *p;
char *e;
unsigned long val;
unsigned long dom = 0, bus = 0;
unsigned slot = 0;
p = addr;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
dom = bus;
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
}
}
if (dom > 0xffff || bus > 0xff || val > 0x1f)
return -1;
slot = val;
if (*e)
return -1;
/* Note: QEMU doesn't implement domains other than 0 */
if (dom != 0 || pci_find_bus(bus) == NULL)
return -1;
*domp = dom;
*busp = bus;
*slotp = slot;
return 0;
}
int pci_read_devaddr(const char *addr, int *domp, int *busp, unsigned *slotp)
{
char devaddr[32];
if (!get_param_value(devaddr, sizeof(devaddr), "pci_addr", addr))
return -1;
return pci_parse_devaddr(devaddr, domp, busp, slotp);
}
int pci_assign_devaddr(const char *addr, int *domp, int *busp, unsigned *slotp)
{
char devaddr[32];
if (!get_param_value(devaddr, sizeof(devaddr), "pci_addr", addr))
return -1;
if (!strcmp(devaddr, "auto")) {
*domp = *busp = 0;
*slotp = -1;
/* want to support dom/bus auto-assign at some point */
return 0;
}
return pci_parse_devaddr(devaddr, domp, busp, slotp);
}
/* -1 for devfn means auto assign */
static PCIDevice *do_pci_register_device(PCIDevice *pci_dev, PCIBus *bus,
const char *name, int devfn,
PCIConfigReadFunc *config_read,
PCIConfigWriteFunc *config_write)
{
if (pci_irq_index >= PCI_DEVICES_MAX)
return NULL;
if (devfn < 0) {
for(devfn = bus->devfn_min ; devfn < 256; devfn += 8) {
if (!bus->devices[devfn])
goto found;
}
return NULL;
found: ;
}
pci_dev->bus = bus;
pci_dev->devfn = devfn;
pstrcpy(pci_dev->name, sizeof(pci_dev->name), name);
memset(pci_dev->irq_state, 0, sizeof(pci_dev->irq_state));
pci_set_default_subsystem_id(pci_dev);
if (!config_read)
config_read = pci_default_read_config;
if (!config_write)
config_write = pci_default_write_config;
pci_dev->config_read = config_read;
pci_dev->config_write = config_write;
pci_dev->irq_index = pci_irq_index++;
bus->devices[devfn] = pci_dev;
pci_dev->irq = qemu_allocate_irqs(pci_set_irq, pci_dev, 4);
return pci_dev;
}
PCIDevice *pci_register_device(PCIBus *bus, const char *name,
int instance_size, int devfn,
PCIConfigReadFunc *config_read,
PCIConfigWriteFunc *config_write)
{
PCIDevice *pci_dev;
pci_dev = qemu_mallocz(instance_size);
pci_dev = do_pci_register_device(pci_dev, bus, name, devfn,
config_read, config_write);
return pci_dev;
}
static target_phys_addr_t pci_to_cpu_addr(target_phys_addr_t addr)
{
return addr + pci_mem_base;
}
static void pci_unregister_io_regions(PCIDevice *pci_dev)
{
PCIIORegion *r;
int i;
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &pci_dev->io_regions[i];
if (!r->size || r->addr == -1)
continue;
if (r->type == PCI_ADDRESS_SPACE_IO) {
isa_unassign_ioport(r->addr, r->size);
} else {
cpu_register_physical_memory(pci_to_cpu_addr(r->addr),
r->size,
IO_MEM_UNASSIGNED);
}
}
}
int pci_unregister_device(PCIDevice *pci_dev)
{
int ret = 0;
if (pci_dev->unregister)
ret = pci_dev->unregister(pci_dev);
if (ret)
return ret;
pci_unregister_io_regions(pci_dev);
qemu_free_irqs(pci_dev->irq);
pci_irq_index--;
pci_dev->bus->devices[pci_dev->devfn] = NULL;
qemu_free(pci_dev);
return 0;
}
void pci_register_io_region(PCIDevice *pci_dev, int region_num,
uint32_t size, int type,
PCIMapIORegionFunc *map_func)
{
PCIIORegion *r;
uint32_t addr;
if ((unsigned int)region_num >= PCI_NUM_REGIONS)
return;
if (size & (size-1)) {
fprintf(stderr, "ERROR: PCI region size must be pow2 "
"type=0x%x, size=0x%x\n", type, size);
exit(1);
}
r = &pci_dev->io_regions[region_num];
r->addr = -1;
r->size = size;
r->type = type;
r->map_func = map_func;
if (region_num == PCI_ROM_SLOT) {
addr = 0x30;
} else {
addr = 0x10 + region_num * 4;
}
*(uint32_t *)(pci_dev->config + addr) = cpu_to_le32(type);
}
static void pci_update_mappings(PCIDevice *d)
{
PCIIORegion *r;
int cmd, i;
uint32_t last_addr, new_addr, config_ofs;
cmd = le16_to_cpu(*(uint16_t *)(d->config + PCI_COMMAND));
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (i == PCI_ROM_SLOT) {
config_ofs = 0x30;
} else {
config_ofs = 0x10 + i * 4;
}
if (r->size != 0) {
if (r->type & PCI_ADDRESS_SPACE_IO) {
if (cmd & PCI_COMMAND_IO) {
new_addr = le32_to_cpu(*(uint32_t *)(d->config +
config_ofs));
new_addr = new_addr & ~(r->size - 1);
last_addr = new_addr + r->size - 1;
/* NOTE: we have only 64K ioports on PC */
if (last_addr <= new_addr || new_addr == 0 ||
last_addr >= 0x10000) {
new_addr = -1;
}
} else {
new_addr = -1;
}
} else {
if (cmd & PCI_COMMAND_MEMORY) {
new_addr = le32_to_cpu(*(uint32_t *)(d->config +
config_ofs));
/* the ROM slot has a specific enable bit */
if (i == PCI_ROM_SLOT && !(new_addr & 1))
goto no_mem_map;
new_addr = new_addr & ~(r->size - 1);
last_addr = new_addr + r->size - 1;
/* NOTE: we do not support wrapping */
/* XXX: as we cannot support really dynamic
mappings, we handle specific values as invalid
mappings. */
if (last_addr <= new_addr || new_addr == 0 ||
last_addr == -1) {
new_addr = -1;
}
} else {
no_mem_map:
new_addr = -1;
}
}
/* now do the real mapping */
if (new_addr != r->addr) {
if (r->addr != -1) {
if (r->type & PCI_ADDRESS_SPACE_IO) {
int class;
/* NOTE: specific hack for IDE in PC case:
only one byte must be mapped. */
class = d->config[0x0a] | (d->config[0x0b] << 8);
if (class == 0x0101 && r->size == 4) {
isa_unassign_ioport(r->addr + 2, 1);
} else {
isa_unassign_ioport(r->addr, r->size);
}
} else {
cpu_register_physical_memory(pci_to_cpu_addr(r->addr),
r->size,
IO_MEM_UNASSIGNED);
qemu_unregister_coalesced_mmio(r->addr, r->size);
}
}
r->addr = new_addr;
if (r->addr != -1) {
r->map_func(d, i, r->addr, r->size, r->type);
}
}
}
}
}
uint32_t pci_default_read_config(PCIDevice *d,
uint32_t address, int len)
{
uint32_t val;
switch(len) {
default:
case 4:
if (address <= 0xfc) {
val = le32_to_cpu(*(uint32_t *)(d->config + address));
break;
}
/* fall through */
case 2:
if (address <= 0xfe) {
val = le16_to_cpu(*(uint16_t *)(d->config + address));
break;
}
/* fall through */
case 1:
val = d->config[address];
break;
}
return val;
}
void pci_default_write_config(PCIDevice *d,
uint32_t address, uint32_t val, int len)
{
int can_write, i;
uint32_t end, addr;
if (len == 4 && ((address >= 0x10 && address < 0x10 + 4 * 6) ||
(address >= 0x30 && address < 0x34))) {
PCIIORegion *r;
int reg;
if ( address >= 0x30 ) {
reg = PCI_ROM_SLOT;
}else{
reg = (address - 0x10) >> 2;
}
r = &d->io_regions[reg];
if (r->size == 0)
goto default_config;
/* compute the stored value */
if (reg == PCI_ROM_SLOT) {
/* keep ROM enable bit */
val &= (~(r->size - 1)) | 1;
} else {
val &= ~(r->size - 1);
val |= r->type;
}
*(uint32_t *)(d->config + address) = cpu_to_le32(val);
pci_update_mappings(d);
return;
}
default_config:
/* not efficient, but simple */
addr = address;
for(i = 0; i < len; i++) {
/* default read/write accesses */
switch(d->config[0x0e]) {
case 0x00:
case 0x80:
switch(addr) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0e:
case 0x10 ... 0x27: /* base */
case 0x2c ... 0x2f: /* read-only subsystem ID & vendor ID */
case 0x30 ... 0x33: /* rom */
case 0x3d:
can_write = 0;
break;
default:
can_write = 1;
break;
}
break;
default:
case 0x01:
switch(addr) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0e:
case 0x2c ... 0x2f: /* read-only subsystem ID & vendor ID */
case 0x38 ... 0x3b: /* rom */
case 0x3d:
can_write = 0;
break;
default:
can_write = 1;
break;
}
break;
}
if (can_write) {
/* Mask out writes to reserved bits in registers */
switch (addr) {
case 0x05:
val &= ~PCI_COMMAND_RESERVED_MASK_HI;
break;
case 0x06:
val &= ~PCI_STATUS_RESERVED_MASK_LO;
break;
case 0x07:
val &= ~PCI_STATUS_RESERVED_MASK_HI;
break;
}
d->config[addr] = val;
}
if (++addr > 0xff)
break;
val >>= 8;
}
end = address + len;
if (end > PCI_COMMAND && address < (PCI_COMMAND + 2)) {
/* if the command register is modified, we must modify the mappings */
pci_update_mappings(d);
}
}
void pci_data_write(void *opaque, uint32_t addr, uint32_t val, int len)
{
PCIBus *s = opaque;
PCIDevice *pci_dev;
int config_addr, bus_num;
#if defined(DEBUG_PCI) && 0
printf("pci_data_write: addr=%08x val=%08x len=%d\n",
addr, val, len);
#endif
bus_num = (addr >> 16) & 0xff;
while (s && s->bus_num != bus_num)
s = s->next;
if (!s)
return;
pci_dev = s->devices[(addr >> 8) & 0xff];
if (!pci_dev)
return;
config_addr = addr & 0xff;
#if defined(DEBUG_PCI)
printf("pci_config_write: %s: addr=%02x val=%08x len=%d\n",
pci_dev->name, config_addr, val, len);
#endif
pci_dev->config_write(pci_dev, config_addr, val, len);
}
uint32_t pci_data_read(void *opaque, uint32_t addr, int len)
{
PCIBus *s = opaque;
PCIDevice *pci_dev;
int config_addr, bus_num;
uint32_t val;
bus_num = (addr >> 16) & 0xff;
while (s && s->bus_num != bus_num)
s= s->next;
if (!s)
goto fail;
pci_dev = s->devices[(addr >> 8) & 0xff];
if (!pci_dev) {
fail:
switch(len) {
case 1:
val = 0xff;
break;
case 2:
val = 0xffff;
break;
default:
case 4:
val = 0xffffffff;
break;
}
goto the_end;
}
config_addr = addr & 0xff;
val = pci_dev->config_read(pci_dev, config_addr, len);
#if defined(DEBUG_PCI)
printf("pci_config_read: %s: addr=%02x val=%08x len=%d\n",
pci_dev->name, config_addr, val, len);
#endif
the_end:
#if defined(DEBUG_PCI) && 0
printf("pci_data_read: addr=%08x val=%08x len=%d\n",
addr, val, len);
#endif
return val;
}
/***********************************************************/
/* generic PCI irq support */
/* 0 <= irq_num <= 3. level must be 0 or 1 */
static void pci_set_irq(void *opaque, int irq_num, int level)
{
PCIDevice *pci_dev = (PCIDevice *)opaque;
PCIBus *bus;
int change;
change = level - pci_dev->irq_state[irq_num];
if (!change)
return;
pci_dev->irq_state[irq_num] = level;
for (;;) {
bus = pci_dev->bus;
irq_num = bus->map_irq(pci_dev, irq_num);
if (bus->set_irq)
break;
pci_dev = bus->parent_dev;
}
bus->irq_count[irq_num] += change;
bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0);
}
/***********************************************************/
/* monitor info on PCI */
typedef struct {
uint16_t class;
const char *desc;
} pci_class_desc;
static const pci_class_desc pci_class_descriptions[] =
{
{ 0x0100, "SCSI controller"},
{ 0x0101, "IDE controller"},
{ 0x0102, "Floppy controller"},
{ 0x0103, "IPI controller"},
{ 0x0104, "RAID controller"},
{ 0x0106, "SATA controller"},
{ 0x0107, "SAS controller"},
{ 0x0180, "Storage controller"},
{ 0x0200, "Ethernet controller"},
{ 0x0201, "Token Ring controller"},
{ 0x0202, "FDDI controller"},
{ 0x0203, "ATM controller"},
{ 0x0280, "Network controller"},
{ 0x0300, "VGA controller"},
{ 0x0301, "XGA controller"},
{ 0x0302, "3D controller"},
{ 0x0380, "Display controller"},
{ 0x0400, "Video controller"},
{ 0x0401, "Audio controller"},
{ 0x0402, "Phone"},
{ 0x0480, "Multimedia controller"},
{ 0x0500, "RAM controller"},
{ 0x0501, "Flash controller"},
{ 0x0580, "Memory controller"},
{ 0x0600, "Host bridge"},
{ 0x0601, "ISA bridge"},
{ 0x0602, "EISA bridge"},
{ 0x0603, "MC bridge"},
{ 0x0604, "PCI bridge"},
{ 0x0605, "PCMCIA bridge"},
{ 0x0606, "NUBUS bridge"},
{ 0x0607, "CARDBUS bridge"},
{ 0x0608, "RACEWAY bridge"},
{ 0x0680, "Bridge"},
{ 0x0c03, "USB controller"},
{ 0, NULL}
};
static void pci_info_device(PCIDevice *d)
{
Monitor *mon = cur_mon;
int i, class;
PCIIORegion *r;
const pci_class_desc *desc;
monitor_printf(mon, " Bus %2d, device %3d, function %d:\n",
d->bus->bus_num, d->devfn >> 3, d->devfn & 7);
class = le16_to_cpu(*((uint16_t *)(d->config + PCI_CLASS_DEVICE)));
monitor_printf(mon, " ");
desc = pci_class_descriptions;
while (desc->desc && class != desc->class)
desc++;
if (desc->desc) {
monitor_printf(mon, "%s", desc->desc);
} else {
monitor_printf(mon, "Class %04x", class);
}
monitor_printf(mon, ": PCI device %04x:%04x\n",
le16_to_cpu(*((uint16_t *)(d->config + PCI_VENDOR_ID))),
le16_to_cpu(*((uint16_t *)(d->config + PCI_DEVICE_ID))));
if (d->config[PCI_INTERRUPT_PIN] != 0) {
monitor_printf(mon, " IRQ %d.\n",
d->config[PCI_INTERRUPT_LINE]);
}
if (class == 0x0604) {
monitor_printf(mon, " BUS %d.\n", d->config[0x19]);
}
for(i = 0;i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (r->size != 0) {
monitor_printf(mon, " BAR%d: ", i);
if (r->type & PCI_ADDRESS_SPACE_IO) {
monitor_printf(mon, "I/O at 0x%04x [0x%04x].\n",
r->addr, r->addr + r->size - 1);
} else {
monitor_printf(mon, "32 bit memory at 0x%08x [0x%08x].\n",
r->addr, r->addr + r->size - 1);
}
}
}
if (class == 0x0604 && d->config[0x19] != 0) {
pci_for_each_device(d->config[0x19], pci_info_device);
}
}
void pci_for_each_device(int bus_num, void (*fn)(PCIDevice *d))
{
PCIBus *bus = first_bus;
PCIDevice *d;
int devfn;
while (bus && bus->bus_num != bus_num)
bus = bus->next;
if (bus) {
for(devfn = 0; devfn < 256; devfn++) {
d = bus->devices[devfn];
if (d)
fn(d);
}
}
}
void pci_info(Monitor *mon)
{
pci_for_each_device(0, pci_info_device);
}
static const char * const pci_nic_models[] = {
"ne2k_pci",
"i82551",
"i82557b",
"i82559er",
"rtl8139",
"e1000",
"pcnet",
"virtio",
NULL
};
static const char * const pci_nic_names[] = {
"ne2k_pci",
"i82551",
"i82557b",
"i82559er",
"rtl8139",
"e1000",
"pcnet",
"virtio-net-pci",
NULL
};
/* Initialize a PCI NIC. */
PCIDevice *pci_nic_init(PCIBus *bus, NICInfo *nd, int devfn,
const char *default_model)
{
DeviceState *dev;
int i;
qemu_check_nic_model_list(nd, pci_nic_models, default_model);
for (i = 0; pci_nic_models[i]; i++) {
if (strcmp(nd->model, pci_nic_models[i]) == 0) {
dev = qdev_create(bus, pci_nic_names[i]);
qdev_set_prop_int(dev, "devfn", devfn);
qdev_set_netdev(dev, nd);
qdev_init(dev);
nd->private = dev;
return (PCIDevice *)dev;
}
}
return NULL;
}
typedef struct {
PCIDevice dev;
PCIBus *bus;
} PCIBridge;
static void pci_bridge_write_config(PCIDevice *d,
uint32_t address, uint32_t val, int len)
{
PCIBridge *s = (PCIBridge *)d;
if (address == 0x19 || (address == 0x18 && len > 1)) {
if (address == 0x19)
s->bus->bus_num = val & 0xff;
else
s->bus->bus_num = (val >> 8) & 0xff;
#if defined(DEBUG_PCI)
printf ("pci-bridge: %s: Assigned bus %d\n", d->name, s->bus->bus_num);
#endif
}
pci_default_write_config(d, address, val, len);
}
PCIBus *pci_find_bus(int bus_num)
{
PCIBus *bus = first_bus;
while (bus && bus->bus_num != bus_num)
bus = bus->next;
return bus;
}
PCIDevice *pci_find_device(int bus_num, int slot, int function)
{
PCIBus *bus = pci_find_bus(bus_num);
if (!bus)
return NULL;
return bus->devices[PCI_DEVFN(slot, function)];
}
PCIBus *pci_bridge_init(PCIBus *bus, int devfn, uint16_t vid, uint16_t did,
pci_map_irq_fn map_irq, const char *name)
{
PCIBridge *s;
s = (PCIBridge *)pci_register_device(bus, name, sizeof(PCIBridge),
devfn, NULL, pci_bridge_write_config);
pci_config_set_vendor_id(s->dev.config, vid);
pci_config_set_device_id(s->dev.config, did);
s->dev.config[0x04] = 0x06; // command = bus master, pci mem
s->dev.config[0x05] = 0x00;
s->dev.config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
s->dev.config[0x07] = 0x00; // status = fast devsel
s->dev.config[0x08] = 0x00; // revision
s->dev.config[0x09] = 0x00; // programming i/f
pci_config_set_class(s->dev.config, PCI_CLASS_BRIDGE_PCI);
s->dev.config[0x0D] = 0x10; // latency_timer
s->dev.config[PCI_HEADER_TYPE] =
PCI_HEADER_TYPE_MULTI_FUNCTION | PCI_HEADER_TYPE_BRIDGE; // header_type
s->dev.config[0x1E] = 0xa0; // secondary status
s->bus = pci_register_secondary_bus(&s->dev, map_irq);
return s->bus;
}
static void pci_qdev_init(DeviceState *qdev, void *opaque)
{
PCIDevice *pci_dev = (PCIDevice *)qdev;
pci_qdev_initfn init;
PCIBus *bus;
int devfn;
init = opaque;
bus = qdev_get_bus(qdev);
devfn = qdev_get_prop_int(qdev, "devfn", -1);
pci_dev = do_pci_register_device(pci_dev, bus, "FIXME", devfn,
NULL, NULL);//FIXME:config_read, config_write);
assert(pci_dev);
init(pci_dev);
}
void pci_qdev_register(const char *name, int size, pci_qdev_initfn init)
{
qdev_register(name, size, pci_qdev_init, init);
}
PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name)
{
DeviceState *dev;
dev = qdev_create(bus, name);
qdev_set_prop_int(dev, "devfn", devfn);
qdev_init(dev);
return (PCIDevice *)dev;
}