mirror of
https://github.com/xemu-project/xemu.git
synced 2024-12-14 23:38:46 +00:00
c8fa6079eb
After setting CP15 bits in arm_set_cpu_on() the cached hflags must
be rebuild to reflect the changed processor state. Without rebuilding,
the cached hflags would be inconsistent until the next call to
arm_rebuild_hflags(). When QEMU is compiled with debugging enabled
(--enable-debug), this problem is captured shortly after the first
call to arm_set_cpu_on() for CPUs running in ARM 32-bit non-secure mode:
qemu-system-arm: target/arm/helper.c:11359: cpu_get_tb_cpu_state:
Assertion `flags == rebuild_hflags_internal(env)' failed.
Aborted (core dumped)
Fixes: 0c7f8c43da
Cc: qemu-stable@nongnu.org
Signed-off-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
369 lines
11 KiB
C
369 lines
11 KiB
C
/*
|
|
* QEMU support -- ARM Power Control specific functions.
|
|
*
|
|
* Copyright (c) 2016 Jean-Christophe Dubois
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "cpu-qom.h"
|
|
#include "internals.h"
|
|
#include "arm-powerctl.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/main-loop.h"
|
|
|
|
#ifndef DEBUG_ARM_POWERCTL
|
|
#define DEBUG_ARM_POWERCTL 0
|
|
#endif
|
|
|
|
#define DPRINTF(fmt, args...) \
|
|
do { \
|
|
if (DEBUG_ARM_POWERCTL) { \
|
|
fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
|
|
} \
|
|
} while (0)
|
|
|
|
CPUState *arm_get_cpu_by_id(uint64_t id)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
DPRINTF("cpu %" PRId64 "\n", id);
|
|
|
|
CPU_FOREACH(cpu) {
|
|
ARMCPU *armcpu = ARM_CPU(cpu);
|
|
|
|
if (armcpu->mp_affinity == id) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
|
|
__func__, id);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct CpuOnInfo {
|
|
uint64_t entry;
|
|
uint64_t context_id;
|
|
uint32_t target_el;
|
|
bool target_aa64;
|
|
};
|
|
|
|
|
|
static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
|
|
run_on_cpu_data data)
|
|
{
|
|
ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
|
|
struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
|
|
|
|
/* Initialize the cpu we are turning on */
|
|
cpu_reset(target_cpu_state);
|
|
target_cpu_state->halted = 0;
|
|
|
|
if (info->target_aa64) {
|
|
if ((info->target_el < 3) && arm_feature(&target_cpu->env,
|
|
ARM_FEATURE_EL3)) {
|
|
/*
|
|
* As target mode is AArch64, we need to set lower
|
|
* exception level (the requested level 2) to AArch64
|
|
*/
|
|
target_cpu->env.cp15.scr_el3 |= SCR_RW;
|
|
}
|
|
|
|
if ((info->target_el < 2) && arm_feature(&target_cpu->env,
|
|
ARM_FEATURE_EL2)) {
|
|
/*
|
|
* As target mode is AArch64, we need to set lower
|
|
* exception level (the requested level 1) to AArch64
|
|
*/
|
|
target_cpu->env.cp15.hcr_el2 |= HCR_RW;
|
|
}
|
|
|
|
target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
|
|
} else {
|
|
/* We are requested to boot in AArch32 mode */
|
|
static const uint32_t mode_for_el[] = { 0,
|
|
ARM_CPU_MODE_SVC,
|
|
ARM_CPU_MODE_HYP,
|
|
ARM_CPU_MODE_SVC };
|
|
|
|
cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
|
|
CPSRWriteRaw);
|
|
}
|
|
|
|
if (info->target_el == 3) {
|
|
/* Processor is in secure mode */
|
|
target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
|
|
} else {
|
|
/* Processor is not in secure mode */
|
|
target_cpu->env.cp15.scr_el3 |= SCR_NS;
|
|
|
|
/* Set NSACR.{CP11,CP10} so NS can access the FPU */
|
|
target_cpu->env.cp15.nsacr |= 3 << 10;
|
|
|
|
/*
|
|
* If QEMU is providing the equivalent of EL3 firmware, then we need
|
|
* to make sure a CPU targeting EL2 comes out of reset with a
|
|
* functional HVC insn.
|
|
*/
|
|
if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
|
|
&& info->target_el == 2) {
|
|
target_cpu->env.cp15.scr_el3 |= SCR_HCE;
|
|
}
|
|
}
|
|
|
|
/* We check if the started CPU is now at the correct level */
|
|
assert(info->target_el == arm_current_el(&target_cpu->env));
|
|
|
|
if (info->target_aa64) {
|
|
target_cpu->env.xregs[0] = info->context_id;
|
|
} else {
|
|
target_cpu->env.regs[0] = info->context_id;
|
|
}
|
|
|
|
/* CP15 update requires rebuilding hflags */
|
|
arm_rebuild_hflags(&target_cpu->env);
|
|
|
|
/* Start the new CPU at the requested address */
|
|
cpu_set_pc(target_cpu_state, info->entry);
|
|
|
|
g_free(info);
|
|
|
|
/* Finally set the power status */
|
|
assert(qemu_mutex_iothread_locked());
|
|
target_cpu->power_state = PSCI_ON;
|
|
}
|
|
|
|
int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
|
|
uint32_t target_el, bool target_aa64)
|
|
{
|
|
CPUState *target_cpu_state;
|
|
ARMCPU *target_cpu;
|
|
struct CpuOnInfo *info;
|
|
|
|
assert(qemu_mutex_iothread_locked());
|
|
|
|
DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
|
|
"\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
|
|
context_id);
|
|
|
|
/* requested EL level need to be in the 1 to 3 range */
|
|
assert((target_el > 0) && (target_el < 4));
|
|
|
|
if (target_aa64 && (entry & 3)) {
|
|
/*
|
|
* if we are booting in AArch64 mode then "entry" needs to be 4 bytes
|
|
* aligned.
|
|
*/
|
|
return QEMU_ARM_POWERCTL_INVALID_PARAM;
|
|
}
|
|
|
|
/* Retrieve the cpu we are powering up */
|
|
target_cpu_state = arm_get_cpu_by_id(cpuid);
|
|
if (!target_cpu_state) {
|
|
/* The cpu was not found */
|
|
return QEMU_ARM_POWERCTL_INVALID_PARAM;
|
|
}
|
|
|
|
target_cpu = ARM_CPU(target_cpu_state);
|
|
if (target_cpu->power_state == PSCI_ON) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"[ARM]%s: CPU %" PRId64 " is already on\n",
|
|
__func__, cpuid);
|
|
return QEMU_ARM_POWERCTL_ALREADY_ON;
|
|
}
|
|
|
|
/*
|
|
* The newly brought CPU is requested to enter the exception level
|
|
* "target_el" and be in the requested mode (AArch64 or AArch32).
|
|
*/
|
|
|
|
if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
|
|
((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
|
|
/*
|
|
* The CPU does not support requested level
|
|
*/
|
|
return QEMU_ARM_POWERCTL_INVALID_PARAM;
|
|
}
|
|
|
|
if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
|
|
/*
|
|
* For now we don't support booting an AArch64 CPU in AArch32 mode
|
|
* TODO: We should add this support later
|
|
*/
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"[ARM]%s: Starting AArch64 CPU %" PRId64
|
|
" in AArch32 mode is not supported yet\n",
|
|
__func__, cpuid);
|
|
return QEMU_ARM_POWERCTL_INVALID_PARAM;
|
|
}
|
|
|
|
/*
|
|
* If another CPU has powered the target on we are in the state
|
|
* ON_PENDING and additional attempts to power on the CPU should
|
|
* fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
|
|
* spec)
|
|
*/
|
|
if (target_cpu->power_state == PSCI_ON_PENDING) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"[ARM]%s: CPU %" PRId64 " is already powering on\n",
|
|
__func__, cpuid);
|
|
return QEMU_ARM_POWERCTL_ON_PENDING;
|
|
}
|
|
|
|
/* To avoid racing with a CPU we are just kicking off we do the
|
|
* final bit of preparation for the work in the target CPUs
|
|
* context.
|
|
*/
|
|
info = g_new(struct CpuOnInfo, 1);
|
|
info->entry = entry;
|
|
info->context_id = context_id;
|
|
info->target_el = target_el;
|
|
info->target_aa64 = target_aa64;
|
|
|
|
async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
|
|
RUN_ON_CPU_HOST_PTR(info));
|
|
|
|
/* We are good to go */
|
|
return QEMU_ARM_POWERCTL_RET_SUCCESS;
|
|
}
|
|
|
|
static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
|
|
run_on_cpu_data data)
|
|
{
|
|
ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
|
|
|
|
/* Initialize the cpu we are turning on */
|
|
cpu_reset(target_cpu_state);
|
|
target_cpu_state->halted = 0;
|
|
|
|
/* Finally set the power status */
|
|
assert(qemu_mutex_iothread_locked());
|
|
target_cpu->power_state = PSCI_ON;
|
|
}
|
|
|
|
int arm_set_cpu_on_and_reset(uint64_t cpuid)
|
|
{
|
|
CPUState *target_cpu_state;
|
|
ARMCPU *target_cpu;
|
|
|
|
assert(qemu_mutex_iothread_locked());
|
|
|
|
/* Retrieve the cpu we are powering up */
|
|
target_cpu_state = arm_get_cpu_by_id(cpuid);
|
|
if (!target_cpu_state) {
|
|
/* The cpu was not found */
|
|
return QEMU_ARM_POWERCTL_INVALID_PARAM;
|
|
}
|
|
|
|
target_cpu = ARM_CPU(target_cpu_state);
|
|
if (target_cpu->power_state == PSCI_ON) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"[ARM]%s: CPU %" PRId64 " is already on\n",
|
|
__func__, cpuid);
|
|
return QEMU_ARM_POWERCTL_ALREADY_ON;
|
|
}
|
|
|
|
/*
|
|
* If another CPU has powered the target on we are in the state
|
|
* ON_PENDING and additional attempts to power on the CPU should
|
|
* fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
|
|
* spec)
|
|
*/
|
|
if (target_cpu->power_state == PSCI_ON_PENDING) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"[ARM]%s: CPU %" PRId64 " is already powering on\n",
|
|
__func__, cpuid);
|
|
return QEMU_ARM_POWERCTL_ON_PENDING;
|
|
}
|
|
|
|
async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
|
|
RUN_ON_CPU_NULL);
|
|
|
|
/* We are good to go */
|
|
return QEMU_ARM_POWERCTL_RET_SUCCESS;
|
|
}
|
|
|
|
static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
|
|
run_on_cpu_data data)
|
|
{
|
|
ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
|
|
|
|
assert(qemu_mutex_iothread_locked());
|
|
target_cpu->power_state = PSCI_OFF;
|
|
target_cpu_state->halted = 1;
|
|
target_cpu_state->exception_index = EXCP_HLT;
|
|
}
|
|
|
|
int arm_set_cpu_off(uint64_t cpuid)
|
|
{
|
|
CPUState *target_cpu_state;
|
|
ARMCPU *target_cpu;
|
|
|
|
assert(qemu_mutex_iothread_locked());
|
|
|
|
DPRINTF("cpu %" PRId64 "\n", cpuid);
|
|
|
|
/* change to the cpu we are powering up */
|
|
target_cpu_state = arm_get_cpu_by_id(cpuid);
|
|
if (!target_cpu_state) {
|
|
return QEMU_ARM_POWERCTL_INVALID_PARAM;
|
|
}
|
|
target_cpu = ARM_CPU(target_cpu_state);
|
|
if (target_cpu->power_state == PSCI_OFF) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"[ARM]%s: CPU %" PRId64 " is already off\n",
|
|
__func__, cpuid);
|
|
return QEMU_ARM_POWERCTL_IS_OFF;
|
|
}
|
|
|
|
/* Queue work to run under the target vCPUs context */
|
|
async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
|
|
RUN_ON_CPU_NULL);
|
|
|
|
return QEMU_ARM_POWERCTL_RET_SUCCESS;
|
|
}
|
|
|
|
static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
|
|
run_on_cpu_data data)
|
|
{
|
|
/* Reset the cpu */
|
|
cpu_reset(target_cpu_state);
|
|
}
|
|
|
|
int arm_reset_cpu(uint64_t cpuid)
|
|
{
|
|
CPUState *target_cpu_state;
|
|
ARMCPU *target_cpu;
|
|
|
|
assert(qemu_mutex_iothread_locked());
|
|
|
|
DPRINTF("cpu %" PRId64 "\n", cpuid);
|
|
|
|
/* change to the cpu we are resetting */
|
|
target_cpu_state = arm_get_cpu_by_id(cpuid);
|
|
if (!target_cpu_state) {
|
|
return QEMU_ARM_POWERCTL_INVALID_PARAM;
|
|
}
|
|
target_cpu = ARM_CPU(target_cpu_state);
|
|
|
|
if (target_cpu->power_state == PSCI_OFF) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"[ARM]%s: CPU %" PRId64 " is off\n",
|
|
__func__, cpuid);
|
|
return QEMU_ARM_POWERCTL_IS_OFF;
|
|
}
|
|
|
|
/* Queue work to run under the target vCPUs context */
|
|
async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
|
|
RUN_ON_CPU_NULL);
|
|
|
|
return QEMU_ARM_POWERCTL_RET_SUCCESS;
|
|
}
|