xemu/hw/etraxfs_timer.c
Edgar E. Iglesias 7a3161bafb ETRAX: Simplify interrupt signaling.
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
2009-05-05 12:25:35 +02:00

338 lines
7.3 KiB
C

/*
* QEMU ETRAX Timers
*
* Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <sys/time.h>
#include "hw.h"
#include "sysemu.h"
#include "qemu-timer.h"
#include "etraxfs.h"
#define D(x)
#define RW_TMR0_DIV 0x00
#define R_TMR0_DATA 0x04
#define RW_TMR0_CTRL 0x08
#define RW_TMR1_DIV 0x10
#define R_TMR1_DATA 0x14
#define RW_TMR1_CTRL 0x18
#define R_TIME 0x38
#define RW_WD_CTRL 0x40
#define R_WD_STAT 0x44
#define RW_INTR_MASK 0x48
#define RW_ACK_INTR 0x4c
#define R_INTR 0x50
#define R_MASKED_INTR 0x54
struct fs_timer_t {
CPUState *env;
qemu_irq *irq;
qemu_irq *nmi;
QEMUBH *bh_t0;
QEMUBH *bh_t1;
QEMUBH *bh_wd;
ptimer_state *ptimer_t0;
ptimer_state *ptimer_t1;
ptimer_state *ptimer_wd;
struct timeval last;
int wd_hits;
/* Control registers. */
uint32_t rw_tmr0_div;
uint32_t r_tmr0_data;
uint32_t rw_tmr0_ctrl;
uint32_t rw_tmr1_div;
uint32_t r_tmr1_data;
uint32_t rw_tmr1_ctrl;
uint32_t rw_wd_ctrl;
uint32_t rw_intr_mask;
uint32_t rw_ack_intr;
uint32_t r_intr;
uint32_t r_masked_intr;
};
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
{
struct fs_timer_t *t = opaque;
uint32_t r = 0;
switch (addr) {
case R_TMR0_DATA:
r = ptimer_get_count(t->ptimer_t0);
break;
case R_TMR1_DATA:
r = ptimer_get_count(t->ptimer_t1);
break;
case R_TIME:
r = qemu_get_clock(vm_clock) / 10;
break;
case RW_INTR_MASK:
r = t->rw_intr_mask;
break;
case R_MASKED_INTR:
r = t->r_intr & t->rw_intr_mask;
break;
default:
D(printf ("%s %x\n", __func__, addr));
break;
}
return r;
}
#define TIMER_SLOWDOWN 1
static void update_ctrl(struct fs_timer_t *t, int tnum)
{
unsigned int op;
unsigned int freq;
unsigned int freq_hz;
unsigned int div;
uint32_t ctrl;
ptimer_state *timer;
if (tnum == 0) {
ctrl = t->rw_tmr0_ctrl;
div = t->rw_tmr0_div;
timer = t->ptimer_t0;
} else {
ctrl = t->rw_tmr1_ctrl;
div = t->rw_tmr1_div;
timer = t->ptimer_t1;
}
op = ctrl & 3;
freq = ctrl >> 2;
freq_hz = 32000000;
switch (freq)
{
case 0:
case 1:
D(printf ("extern or disabled timer clock?\n"));
break;
case 4: freq_hz = 29493000; break;
case 5: freq_hz = 32000000; break;
case 6: freq_hz = 32768000; break;
case 7: freq_hz = 100000000; break;
default:
abort();
break;
}
D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
div = div * TIMER_SLOWDOWN;
div /= 1000;
freq_hz /= 1000;
ptimer_set_freq(timer, freq_hz);
ptimer_set_limit(timer, div, 0);
switch (op)
{
case 0:
/* Load. */
ptimer_set_limit(timer, div, 1);
break;
case 1:
/* Hold. */
ptimer_stop(timer);
break;
case 2:
/* Run. */
ptimer_run(timer, 0);
break;
default:
abort();
break;
}
}
static void timer_update_irq(struct fs_timer_t *t)
{
t->r_intr &= ~(t->rw_ack_intr);
t->r_masked_intr = t->r_intr & t->rw_intr_mask;
D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
qemu_set_irq(t->irq[0], !!t->r_masked_intr);
}
static void timer0_hit(void *opaque)
{
struct fs_timer_t *t = opaque;
t->r_intr |= 1;
timer_update_irq(t);
}
static void timer1_hit(void *opaque)
{
struct fs_timer_t *t = opaque;
t->r_intr |= 2;
timer_update_irq(t);
}
static void watchdog_hit(void *opaque)
{
struct fs_timer_t *t = opaque;
if (t->wd_hits == 0) {
/* real hw gives a single tick before reseting but we are
a bit friendlier to compensate for our slower execution. */
ptimer_set_count(t->ptimer_wd, 10);
ptimer_run(t->ptimer_wd, 1);
qemu_irq_raise(t->nmi[0]);
}
else
qemu_system_reset_request();
t->wd_hits++;
}
static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
{
unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
unsigned int wd_key = t->rw_wd_ctrl >> 9;
unsigned int wd_cnt = t->rw_wd_ctrl & 511;
unsigned int new_key = value >> 9 & ((1 << 7) - 1);
unsigned int new_cmd = (value >> 8) & 1;
/* If the watchdog is enabled, they written key must match the
complement of the previous. */
wd_key = ~wd_key & ((1 << 7) - 1);
if (wd_en && wd_key != new_key)
return;
D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n",
wd_en, new_key, wd_key, new_cmd, wd_cnt));
if (t->wd_hits)
qemu_irq_lower(t->nmi[0]);
t->wd_hits = 0;
ptimer_set_freq(t->ptimer_wd, 760);
if (wd_cnt == 0)
wd_cnt = 256;
ptimer_set_count(t->ptimer_wd, wd_cnt);
if (new_cmd)
ptimer_run(t->ptimer_wd, 1);
else
ptimer_stop(t->ptimer_wd);
t->rw_wd_ctrl = value;
}
static void
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct fs_timer_t *t = opaque;
switch (addr)
{
case RW_TMR0_DIV:
t->rw_tmr0_div = value;
break;
case RW_TMR0_CTRL:
D(printf ("RW_TMR0_CTRL=%x\n", value));
t->rw_tmr0_ctrl = value;
update_ctrl(t, 0);
break;
case RW_TMR1_DIV:
t->rw_tmr1_div = value;
break;
case RW_TMR1_CTRL:
D(printf ("RW_TMR1_CTRL=%x\n", value));
t->rw_tmr1_ctrl = value;
update_ctrl(t, 1);
break;
case RW_INTR_MASK:
D(printf ("RW_INTR_MASK=%x\n", value));
t->rw_intr_mask = value;
timer_update_irq(t);
break;
case RW_WD_CTRL:
timer_watchdog_update(t, value);
break;
case RW_ACK_INTR:
t->rw_ack_intr = value;
timer_update_irq(t);
t->rw_ack_intr = 0;
break;
default:
printf ("%s " TARGET_FMT_plx " %x\n",
__func__, addr, value);
break;
}
}
static CPUReadMemoryFunc *timer_read[] = {
NULL, NULL,
&timer_readl,
};
static CPUWriteMemoryFunc *timer_write[] = {
NULL, NULL,
&timer_writel,
};
static void etraxfs_timer_reset(void *opaque)
{
struct fs_timer_t *t = opaque;
ptimer_stop(t->ptimer_t0);
ptimer_stop(t->ptimer_t1);
ptimer_stop(t->ptimer_wd);
t->rw_wd_ctrl = 0;
t->r_intr = 0;
t->rw_intr_mask = 0;
qemu_irq_lower(t->irq[0]);
}
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
target_phys_addr_t base)
{
static struct fs_timer_t *t;
int timer_regs;
t = qemu_mallocz(sizeof *t);
t->bh_t0 = qemu_bh_new(timer0_hit, t);
t->bh_t1 = qemu_bh_new(timer1_hit, t);
t->bh_wd = qemu_bh_new(watchdog_hit, t);
t->ptimer_t0 = ptimer_init(t->bh_t0);
t->ptimer_t1 = ptimer_init(t->bh_t1);
t->ptimer_wd = ptimer_init(t->bh_wd);
t->irq = irqs;
t->nmi = nmi;
t->env = env;
timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
cpu_register_physical_memory (base, 0x5c, timer_regs);
qemu_register_reset(etraxfs_timer_reset, t);
}