mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-25 12:40:08 +00:00
d537cf6c86
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2635 c046a42c-6fe2-441c-8c8c-71466251a162
653 lines
18 KiB
C
653 lines
18 KiB
C
/*
|
|
* QEMU CUDA support
|
|
*
|
|
* Copyright (c) 2004 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "vl.h"
|
|
|
|
/* XXX: implement all timer modes */
|
|
|
|
//#define DEBUG_CUDA
|
|
//#define DEBUG_CUDA_PACKET
|
|
|
|
/* Bits in B data register: all active low */
|
|
#define TREQ 0x08 /* Transfer request (input) */
|
|
#define TACK 0x10 /* Transfer acknowledge (output) */
|
|
#define TIP 0x20 /* Transfer in progress (output) */
|
|
|
|
/* Bits in ACR */
|
|
#define SR_CTRL 0x1c /* Shift register control bits */
|
|
#define SR_EXT 0x0c /* Shift on external clock */
|
|
#define SR_OUT 0x10 /* Shift out if 1 */
|
|
|
|
/* Bits in IFR and IER */
|
|
#define IER_SET 0x80 /* set bits in IER */
|
|
#define IER_CLR 0 /* clear bits in IER */
|
|
#define SR_INT 0x04 /* Shift register full/empty */
|
|
#define T1_INT 0x40 /* Timer 1 interrupt */
|
|
#define T2_INT 0x20 /* Timer 2 interrupt */
|
|
|
|
/* Bits in ACR */
|
|
#define T1MODE 0xc0 /* Timer 1 mode */
|
|
#define T1MODE_CONT 0x40 /* continuous interrupts */
|
|
|
|
/* commands (1st byte) */
|
|
#define ADB_PACKET 0
|
|
#define CUDA_PACKET 1
|
|
#define ERROR_PACKET 2
|
|
#define TIMER_PACKET 3
|
|
#define POWER_PACKET 4
|
|
#define MACIIC_PACKET 5
|
|
#define PMU_PACKET 6
|
|
|
|
|
|
/* CUDA commands (2nd byte) */
|
|
#define CUDA_WARM_START 0x0
|
|
#define CUDA_AUTOPOLL 0x1
|
|
#define CUDA_GET_6805_ADDR 0x2
|
|
#define CUDA_GET_TIME 0x3
|
|
#define CUDA_GET_PRAM 0x7
|
|
#define CUDA_SET_6805_ADDR 0x8
|
|
#define CUDA_SET_TIME 0x9
|
|
#define CUDA_POWERDOWN 0xa
|
|
#define CUDA_POWERUP_TIME 0xb
|
|
#define CUDA_SET_PRAM 0xc
|
|
#define CUDA_MS_RESET 0xd
|
|
#define CUDA_SEND_DFAC 0xe
|
|
#define CUDA_BATTERY_SWAP_SENSE 0x10
|
|
#define CUDA_RESET_SYSTEM 0x11
|
|
#define CUDA_SET_IPL 0x12
|
|
#define CUDA_FILE_SERVER_FLAG 0x13
|
|
#define CUDA_SET_AUTO_RATE 0x14
|
|
#define CUDA_GET_AUTO_RATE 0x16
|
|
#define CUDA_SET_DEVICE_LIST 0x19
|
|
#define CUDA_GET_DEVICE_LIST 0x1a
|
|
#define CUDA_SET_ONE_SECOND_MODE 0x1b
|
|
#define CUDA_SET_POWER_MESSAGES 0x21
|
|
#define CUDA_GET_SET_IIC 0x22
|
|
#define CUDA_WAKEUP 0x23
|
|
#define CUDA_TIMER_TICKLE 0x24
|
|
#define CUDA_COMBINED_FORMAT_IIC 0x25
|
|
|
|
#define CUDA_TIMER_FREQ (4700000 / 6)
|
|
#define CUDA_ADB_POLL_FREQ 50
|
|
|
|
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
|
|
#define RTC_OFFSET 2082844800
|
|
|
|
typedef struct CUDATimer {
|
|
int index;
|
|
uint16_t latch;
|
|
uint16_t counter_value; /* counter value at load time */
|
|
int64_t load_time;
|
|
int64_t next_irq_time;
|
|
QEMUTimer *timer;
|
|
} CUDATimer;
|
|
|
|
typedef struct CUDAState {
|
|
/* cuda registers */
|
|
uint8_t b; /* B-side data */
|
|
uint8_t a; /* A-side data */
|
|
uint8_t dirb; /* B-side direction (1=output) */
|
|
uint8_t dira; /* A-side direction (1=output) */
|
|
uint8_t sr; /* Shift register */
|
|
uint8_t acr; /* Auxiliary control register */
|
|
uint8_t pcr; /* Peripheral control register */
|
|
uint8_t ifr; /* Interrupt flag register */
|
|
uint8_t ier; /* Interrupt enable register */
|
|
uint8_t anh; /* A-side data, no handshake */
|
|
|
|
CUDATimer timers[2];
|
|
|
|
uint8_t last_b; /* last value of B register */
|
|
uint8_t last_acr; /* last value of B register */
|
|
|
|
int data_in_size;
|
|
int data_in_index;
|
|
int data_out_index;
|
|
|
|
qemu_irq irq;
|
|
uint8_t autopoll;
|
|
uint8_t data_in[128];
|
|
uint8_t data_out[16];
|
|
QEMUTimer *adb_poll_timer;
|
|
} CUDAState;
|
|
|
|
static CUDAState cuda_state;
|
|
ADBBusState adb_bus;
|
|
|
|
static void cuda_update(CUDAState *s);
|
|
static void cuda_receive_packet_from_host(CUDAState *s,
|
|
const uint8_t *data, int len);
|
|
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
|
|
int64_t current_time);
|
|
|
|
static void cuda_update_irq(CUDAState *s)
|
|
{
|
|
if (s->ifr & s->ier & (SR_INT | T1_INT)) {
|
|
qemu_irq_raise(s->irq);
|
|
} else {
|
|
qemu_irq_lower(s->irq);
|
|
}
|
|
}
|
|
|
|
static unsigned int get_counter(CUDATimer *s)
|
|
{
|
|
int64_t d;
|
|
unsigned int counter;
|
|
|
|
d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
|
|
CUDA_TIMER_FREQ, ticks_per_sec);
|
|
if (s->index == 0) {
|
|
/* the timer goes down from latch to -1 (period of latch + 2) */
|
|
if (d <= (s->counter_value + 1)) {
|
|
counter = (s->counter_value - d) & 0xffff;
|
|
} else {
|
|
counter = (d - (s->counter_value + 1)) % (s->latch + 2);
|
|
counter = (s->latch - counter) & 0xffff;
|
|
}
|
|
} else {
|
|
counter = (s->counter_value - d) & 0xffff;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
|
|
{
|
|
#ifdef DEBUG_CUDA
|
|
printf("cuda: T%d.counter=%d\n",
|
|
1 + (ti->timer == NULL), val);
|
|
#endif
|
|
ti->load_time = qemu_get_clock(vm_clock);
|
|
ti->counter_value = val;
|
|
cuda_timer_update(s, ti, ti->load_time);
|
|
}
|
|
|
|
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
|
|
{
|
|
int64_t d, next_time;
|
|
unsigned int counter;
|
|
|
|
/* current counter value */
|
|
d = muldiv64(current_time - s->load_time,
|
|
CUDA_TIMER_FREQ, ticks_per_sec);
|
|
/* the timer goes down from latch to -1 (period of latch + 2) */
|
|
if (d <= (s->counter_value + 1)) {
|
|
counter = (s->counter_value - d) & 0xffff;
|
|
} else {
|
|
counter = (d - (s->counter_value + 1)) % (s->latch + 2);
|
|
counter = (s->latch - counter) & 0xffff;
|
|
}
|
|
|
|
/* Note: we consider the irq is raised on 0 */
|
|
if (counter == 0xffff) {
|
|
next_time = d + s->latch + 1;
|
|
} else if (counter == 0) {
|
|
next_time = d + s->latch + 2;
|
|
} else {
|
|
next_time = d + counter;
|
|
}
|
|
#if 0
|
|
#ifdef DEBUG_CUDA
|
|
printf("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
|
|
s->latch, d, next_time - d);
|
|
#endif
|
|
#endif
|
|
next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
|
|
s->load_time;
|
|
if (next_time <= current_time)
|
|
next_time = current_time + 1;
|
|
return next_time;
|
|
}
|
|
|
|
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
|
|
int64_t current_time)
|
|
{
|
|
if (!ti->timer)
|
|
return;
|
|
if ((s->acr & T1MODE) != T1MODE_CONT) {
|
|
qemu_del_timer(ti->timer);
|
|
} else {
|
|
ti->next_irq_time = get_next_irq_time(ti, current_time);
|
|
qemu_mod_timer(ti->timer, ti->next_irq_time);
|
|
}
|
|
}
|
|
|
|
static void cuda_timer1(void *opaque)
|
|
{
|
|
CUDAState *s = opaque;
|
|
CUDATimer *ti = &s->timers[0];
|
|
|
|
cuda_timer_update(s, ti, ti->next_irq_time);
|
|
s->ifr |= T1_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
|
|
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
CUDAState *s = opaque;
|
|
uint32_t val;
|
|
|
|
addr = (addr >> 9) & 0xf;
|
|
switch(addr) {
|
|
case 0:
|
|
val = s->b;
|
|
break;
|
|
case 1:
|
|
val = s->a;
|
|
break;
|
|
case 2:
|
|
val = s->dirb;
|
|
break;
|
|
case 3:
|
|
val = s->dira;
|
|
break;
|
|
case 4:
|
|
val = get_counter(&s->timers[0]) & 0xff;
|
|
s->ifr &= ~T1_INT;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case 5:
|
|
val = get_counter(&s->timers[0]) >> 8;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case 6:
|
|
val = s->timers[0].latch & 0xff;
|
|
break;
|
|
case 7:
|
|
/* XXX: check this */
|
|
val = (s->timers[0].latch >> 8) & 0xff;
|
|
break;
|
|
case 8:
|
|
val = get_counter(&s->timers[1]) & 0xff;
|
|
s->ifr &= ~T2_INT;
|
|
break;
|
|
case 9:
|
|
val = get_counter(&s->timers[1]) >> 8;
|
|
break;
|
|
case 10:
|
|
val = s->sr;
|
|
s->ifr &= ~SR_INT;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case 11:
|
|
val = s->acr;
|
|
break;
|
|
case 12:
|
|
val = s->pcr;
|
|
break;
|
|
case 13:
|
|
val = s->ifr;
|
|
if (s->ifr & s->ier)
|
|
val |= 0x80;
|
|
break;
|
|
case 14:
|
|
val = s->ier | 0x80;
|
|
break;
|
|
default:
|
|
case 15:
|
|
val = s->anh;
|
|
break;
|
|
}
|
|
#ifdef DEBUG_CUDA
|
|
if (addr != 13 || val != 0)
|
|
printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
CUDAState *s = opaque;
|
|
|
|
addr = (addr >> 9) & 0xf;
|
|
#ifdef DEBUG_CUDA
|
|
printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
|
|
#endif
|
|
|
|
switch(addr) {
|
|
case 0:
|
|
s->b = val;
|
|
cuda_update(s);
|
|
break;
|
|
case 1:
|
|
s->a = val;
|
|
break;
|
|
case 2:
|
|
s->dirb = val;
|
|
break;
|
|
case 3:
|
|
s->dira = val;
|
|
break;
|
|
case 4:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
|
|
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
|
break;
|
|
case 5:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
|
|
s->ifr &= ~T1_INT;
|
|
set_counter(s, &s->timers[0], s->timers[0].latch);
|
|
break;
|
|
case 6:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
|
|
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
|
break;
|
|
case 7:
|
|
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
|
|
s->ifr &= ~T1_INT;
|
|
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
|
break;
|
|
case 8:
|
|
s->timers[1].latch = val;
|
|
set_counter(s, &s->timers[1], val);
|
|
break;
|
|
case 9:
|
|
set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
|
|
break;
|
|
case 10:
|
|
s->sr = val;
|
|
break;
|
|
case 11:
|
|
s->acr = val;
|
|
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
|
cuda_update(s);
|
|
break;
|
|
case 12:
|
|
s->pcr = val;
|
|
break;
|
|
case 13:
|
|
/* reset bits */
|
|
s->ifr &= ~val;
|
|
cuda_update_irq(s);
|
|
break;
|
|
case 14:
|
|
if (val & IER_SET) {
|
|
/* set bits */
|
|
s->ier |= val & 0x7f;
|
|
} else {
|
|
/* reset bits */
|
|
s->ier &= ~val;
|
|
}
|
|
cuda_update_irq(s);
|
|
break;
|
|
default:
|
|
case 15:
|
|
s->anh = val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* NOTE: TIP and TREQ are negated */
|
|
static void cuda_update(CUDAState *s)
|
|
{
|
|
int packet_received, len;
|
|
|
|
packet_received = 0;
|
|
if (!(s->b & TIP)) {
|
|
/* transfer requested from host */
|
|
|
|
if (s->acr & SR_OUT) {
|
|
/* data output */
|
|
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
|
|
if (s->data_out_index < sizeof(s->data_out)) {
|
|
#ifdef DEBUG_CUDA
|
|
printf("cuda: send: %02x\n", s->sr);
|
|
#endif
|
|
s->data_out[s->data_out_index++] = s->sr;
|
|
s->ifr |= SR_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
}
|
|
} else {
|
|
if (s->data_in_index < s->data_in_size) {
|
|
/* data input */
|
|
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
|
|
s->sr = s->data_in[s->data_in_index++];
|
|
#ifdef DEBUG_CUDA
|
|
printf("cuda: recv: %02x\n", s->sr);
|
|
#endif
|
|
/* indicate end of transfer */
|
|
if (s->data_in_index >= s->data_in_size) {
|
|
s->b = (s->b | TREQ);
|
|
}
|
|
s->ifr |= SR_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* no transfer requested: handle sync case */
|
|
if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
|
|
/* update TREQ state each time TACK change state */
|
|
if (s->b & TACK)
|
|
s->b = (s->b | TREQ);
|
|
else
|
|
s->b = (s->b & ~TREQ);
|
|
s->ifr |= SR_INT;
|
|
cuda_update_irq(s);
|
|
} else {
|
|
if (!(s->last_b & TIP)) {
|
|
/* handle end of host to cuda transfert */
|
|
packet_received = (s->data_out_index > 0);
|
|
/* always an IRQ at the end of transfert */
|
|
s->ifr |= SR_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
/* signal if there is data to read */
|
|
if (s->data_in_index < s->data_in_size) {
|
|
s->b = (s->b & ~TREQ);
|
|
}
|
|
}
|
|
}
|
|
|
|
s->last_acr = s->acr;
|
|
s->last_b = s->b;
|
|
|
|
/* NOTE: cuda_receive_packet_from_host() can call cuda_update()
|
|
recursively */
|
|
if (packet_received) {
|
|
len = s->data_out_index;
|
|
s->data_out_index = 0;
|
|
cuda_receive_packet_from_host(s, s->data_out, len);
|
|
}
|
|
}
|
|
|
|
static void cuda_send_packet_to_host(CUDAState *s,
|
|
const uint8_t *data, int len)
|
|
{
|
|
#ifdef DEBUG_CUDA_PACKET
|
|
{
|
|
int i;
|
|
printf("cuda_send_packet_to_host:\n");
|
|
for(i = 0; i < len; i++)
|
|
printf(" %02x", data[i]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
memcpy(s->data_in, data, len);
|
|
s->data_in_size = len;
|
|
s->data_in_index = 0;
|
|
cuda_update(s);
|
|
s->ifr |= SR_INT;
|
|
cuda_update_irq(s);
|
|
}
|
|
|
|
static void cuda_adb_poll(void *opaque)
|
|
{
|
|
CUDAState *s = opaque;
|
|
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
|
|
int olen;
|
|
|
|
olen = adb_poll(&adb_bus, obuf + 2);
|
|
if (olen > 0) {
|
|
obuf[0] = ADB_PACKET;
|
|
obuf[1] = 0x40; /* polled data */
|
|
cuda_send_packet_to_host(s, obuf, olen + 2);
|
|
}
|
|
qemu_mod_timer(s->adb_poll_timer,
|
|
qemu_get_clock(vm_clock) +
|
|
(ticks_per_sec / CUDA_ADB_POLL_FREQ));
|
|
}
|
|
|
|
static void cuda_receive_packet(CUDAState *s,
|
|
const uint8_t *data, int len)
|
|
{
|
|
uint8_t obuf[16];
|
|
int ti, autopoll;
|
|
|
|
switch(data[0]) {
|
|
case CUDA_AUTOPOLL:
|
|
autopoll = (data[1] != 0);
|
|
if (autopoll != s->autopoll) {
|
|
s->autopoll = autopoll;
|
|
if (autopoll) {
|
|
qemu_mod_timer(s->adb_poll_timer,
|
|
qemu_get_clock(vm_clock) +
|
|
(ticks_per_sec / CUDA_ADB_POLL_FREQ));
|
|
} else {
|
|
qemu_del_timer(s->adb_poll_timer);
|
|
}
|
|
}
|
|
obuf[0] = CUDA_PACKET;
|
|
obuf[1] = data[1];
|
|
cuda_send_packet_to_host(s, obuf, 2);
|
|
break;
|
|
case CUDA_GET_TIME:
|
|
case CUDA_SET_TIME:
|
|
/* XXX: add time support ? */
|
|
ti = time(NULL) + RTC_OFFSET;
|
|
obuf[0] = CUDA_PACKET;
|
|
obuf[1] = 0;
|
|
obuf[2] = 0;
|
|
obuf[3] = ti >> 24;
|
|
obuf[4] = ti >> 16;
|
|
obuf[5] = ti >> 8;
|
|
obuf[6] = ti;
|
|
cuda_send_packet_to_host(s, obuf, 7);
|
|
break;
|
|
case CUDA_FILE_SERVER_FLAG:
|
|
case CUDA_SET_DEVICE_LIST:
|
|
case CUDA_SET_AUTO_RATE:
|
|
case CUDA_SET_POWER_MESSAGES:
|
|
obuf[0] = CUDA_PACKET;
|
|
obuf[1] = 0;
|
|
cuda_send_packet_to_host(s, obuf, 2);
|
|
break;
|
|
case CUDA_POWERDOWN:
|
|
obuf[0] = CUDA_PACKET;
|
|
obuf[1] = 0;
|
|
cuda_send_packet_to_host(s, obuf, 2);
|
|
qemu_system_shutdown_request();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void cuda_receive_packet_from_host(CUDAState *s,
|
|
const uint8_t *data, int len)
|
|
{
|
|
#ifdef DEBUG_CUDA_PACKET
|
|
{
|
|
int i;
|
|
printf("cuda_receive_packet_from_host:\n");
|
|
for(i = 0; i < len; i++)
|
|
printf(" %02x", data[i]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
switch(data[0]) {
|
|
case ADB_PACKET:
|
|
{
|
|
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
|
|
int olen;
|
|
olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
|
|
if (olen > 0) {
|
|
obuf[0] = ADB_PACKET;
|
|
obuf[1] = 0x00;
|
|
} else {
|
|
/* error */
|
|
obuf[0] = ADB_PACKET;
|
|
obuf[1] = -olen;
|
|
olen = 0;
|
|
}
|
|
cuda_send_packet_to_host(s, obuf, olen + 2);
|
|
}
|
|
break;
|
|
case CUDA_PACKET:
|
|
cuda_receive_packet(s, data + 1, len - 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
|
|
{
|
|
}
|
|
|
|
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
|
|
{
|
|
}
|
|
|
|
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static CPUWriteMemoryFunc *cuda_write[] = {
|
|
&cuda_writeb,
|
|
&cuda_writew,
|
|
&cuda_writel,
|
|
};
|
|
|
|
static CPUReadMemoryFunc *cuda_read[] = {
|
|
&cuda_readb,
|
|
&cuda_readw,
|
|
&cuda_readl,
|
|
};
|
|
|
|
int cuda_init(qemu_irq irq)
|
|
{
|
|
CUDAState *s = &cuda_state;
|
|
int cuda_mem_index;
|
|
|
|
s->irq = irq;
|
|
|
|
s->timers[0].index = 0;
|
|
s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
|
|
s->timers[0].latch = 0xffff;
|
|
set_counter(s, &s->timers[0], 0xffff);
|
|
|
|
s->timers[1].index = 1;
|
|
s->timers[1].latch = 0;
|
|
// s->ier = T1_INT | SR_INT;
|
|
s->ier = 0;
|
|
set_counter(s, &s->timers[1], 0xffff);
|
|
|
|
s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
|
|
cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
|
|
return cuda_mem_index;
|
|
}
|