mirror of
https://github.com/xemu-project/xemu.git
synced 2025-01-22 20:05:15 +00:00
acb0ef5801
Make DumpState and endian conversion routines available for arch-specific dump code by moving into dump.h. DumpState will be needed by arch-specific dump code to access target endian information from DumpState->ArchDumpInfo. Also break the dependency of dump.h from stubs/dump.c by creating a separate dump-arch.h. This patch doesn't change any functionality. Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> [ rebased on top of current master branch, renamed endian helpers to cpu_to_dump{16,32,64}, pass a DumpState * argument to endian helpers, Greg Kurz <gkurz@linux.vnet.ibm.com> ] Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com> [agraf: fix to apply] Signed-off-by: Alexander Graf <agraf@suse.de>
1754 lines
48 KiB
C
1754 lines
48 KiB
C
/*
|
|
* QEMU dump
|
|
*
|
|
* Copyright Fujitsu, Corp. 2011, 2012
|
|
*
|
|
* Authors:
|
|
* Wen Congyang <wency@cn.fujitsu.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu-common.h"
|
|
#include "elf.h"
|
|
#include "cpu.h"
|
|
#include "exec/cpu-all.h"
|
|
#include "exec/hwaddr.h"
|
|
#include "monitor/monitor.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/dump.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/memory_mapping.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "qapi/error.h"
|
|
#include "qmp-commands.h"
|
|
|
|
#include <zlib.h>
|
|
#ifdef CONFIG_LZO
|
|
#include <lzo/lzo1x.h>
|
|
#endif
|
|
#ifdef CONFIG_SNAPPY
|
|
#include <snappy-c.h>
|
|
#endif
|
|
#ifndef ELF_MACHINE_UNAME
|
|
#define ELF_MACHINE_UNAME "Unknown"
|
|
#endif
|
|
|
|
uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
|
|
{
|
|
if (s->dump_info.d_endian == ELFDATA2LSB) {
|
|
val = cpu_to_le16(val);
|
|
} else {
|
|
val = cpu_to_be16(val);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
|
|
{
|
|
if (s->dump_info.d_endian == ELFDATA2LSB) {
|
|
val = cpu_to_le32(val);
|
|
} else {
|
|
val = cpu_to_be32(val);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
|
|
{
|
|
if (s->dump_info.d_endian == ELFDATA2LSB) {
|
|
val = cpu_to_le64(val);
|
|
} else {
|
|
val = cpu_to_be64(val);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static int dump_cleanup(DumpState *s)
|
|
{
|
|
int ret = 0;
|
|
|
|
guest_phys_blocks_free(&s->guest_phys_blocks);
|
|
memory_mapping_list_free(&s->list);
|
|
if (s->fd != -1) {
|
|
close(s->fd);
|
|
}
|
|
if (s->resume) {
|
|
vm_start();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dump_error(DumpState *s, const char *reason)
|
|
{
|
|
dump_cleanup(s);
|
|
}
|
|
|
|
static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
|
|
{
|
|
DumpState *s = opaque;
|
|
size_t written_size;
|
|
|
|
written_size = qemu_write_full(s->fd, buf, size);
|
|
if (written_size != size) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf64_header(DumpState *s)
|
|
{
|
|
Elf64_Ehdr elf_header;
|
|
int ret;
|
|
|
|
memset(&elf_header, 0, sizeof(Elf64_Ehdr));
|
|
memcpy(&elf_header, ELFMAG, SELFMAG);
|
|
elf_header.e_ident[EI_CLASS] = ELFCLASS64;
|
|
elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
|
|
elf_header.e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf_header.e_type = cpu_to_dump16(s, ET_CORE);
|
|
elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
|
|
elf_header.e_version = cpu_to_dump32(s, EV_CURRENT);
|
|
elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
|
|
elf_header.e_phoff = cpu_to_dump64(s, sizeof(Elf64_Ehdr));
|
|
elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
|
|
elf_header.e_phnum = cpu_to_dump16(s, s->phdr_num);
|
|
if (s->have_section) {
|
|
uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
|
|
|
|
elf_header.e_shoff = cpu_to_dump64(s, shoff);
|
|
elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
|
|
elf_header.e_shnum = cpu_to_dump16(s, 1);
|
|
}
|
|
|
|
ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write elf header.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf32_header(DumpState *s)
|
|
{
|
|
Elf32_Ehdr elf_header;
|
|
int ret;
|
|
|
|
memset(&elf_header, 0, sizeof(Elf32_Ehdr));
|
|
memcpy(&elf_header, ELFMAG, SELFMAG);
|
|
elf_header.e_ident[EI_CLASS] = ELFCLASS32;
|
|
elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
|
|
elf_header.e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf_header.e_type = cpu_to_dump16(s, ET_CORE);
|
|
elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
|
|
elf_header.e_version = cpu_to_dump32(s, EV_CURRENT);
|
|
elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
|
|
elf_header.e_phoff = cpu_to_dump32(s, sizeof(Elf32_Ehdr));
|
|
elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
|
|
elf_header.e_phnum = cpu_to_dump16(s, s->phdr_num);
|
|
if (s->have_section) {
|
|
uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
|
|
|
|
elf_header.e_shoff = cpu_to_dump32(s, shoff);
|
|
elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
|
|
elf_header.e_shnum = cpu_to_dump16(s, 1);
|
|
}
|
|
|
|
ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write elf header.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
|
|
int phdr_index, hwaddr offset,
|
|
hwaddr filesz)
|
|
{
|
|
Elf64_Phdr phdr;
|
|
int ret;
|
|
|
|
memset(&phdr, 0, sizeof(Elf64_Phdr));
|
|
phdr.p_type = cpu_to_dump32(s, PT_LOAD);
|
|
phdr.p_offset = cpu_to_dump64(s, offset);
|
|
phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
|
|
phdr.p_filesz = cpu_to_dump64(s, filesz);
|
|
phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
|
|
phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr);
|
|
|
|
assert(memory_mapping->length >= filesz);
|
|
|
|
ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write program header table.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
|
|
int phdr_index, hwaddr offset,
|
|
hwaddr filesz)
|
|
{
|
|
Elf32_Phdr phdr;
|
|
int ret;
|
|
|
|
memset(&phdr, 0, sizeof(Elf32_Phdr));
|
|
phdr.p_type = cpu_to_dump32(s, PT_LOAD);
|
|
phdr.p_offset = cpu_to_dump32(s, offset);
|
|
phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
|
|
phdr.p_filesz = cpu_to_dump32(s, filesz);
|
|
phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
|
|
phdr.p_vaddr = cpu_to_dump32(s, memory_mapping->virt_addr);
|
|
|
|
assert(memory_mapping->length >= filesz);
|
|
|
|
ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write program header table.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf64_note(DumpState *s)
|
|
{
|
|
Elf64_Phdr phdr;
|
|
hwaddr begin = s->memory_offset - s->note_size;
|
|
int ret;
|
|
|
|
memset(&phdr, 0, sizeof(Elf64_Phdr));
|
|
phdr.p_type = cpu_to_dump32(s, PT_NOTE);
|
|
phdr.p_offset = cpu_to_dump64(s, begin);
|
|
phdr.p_paddr = 0;
|
|
phdr.p_filesz = cpu_to_dump64(s, s->note_size);
|
|
phdr.p_memsz = cpu_to_dump64(s, s->note_size);
|
|
phdr.p_vaddr = 0;
|
|
|
|
ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write program header table.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int cpu_index(CPUState *cpu)
|
|
{
|
|
return cpu->cpu_index + 1;
|
|
}
|
|
|
|
static int write_elf64_notes(WriteCoreDumpFunction f, DumpState *s)
|
|
{
|
|
CPUState *cpu;
|
|
int ret;
|
|
int id;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
id = cpu_index(cpu);
|
|
ret = cpu_write_elf64_note(f, cpu, id, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write elf notes.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
ret = cpu_write_elf64_qemunote(f, cpu, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write CPU status.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf32_note(DumpState *s)
|
|
{
|
|
hwaddr begin = s->memory_offset - s->note_size;
|
|
Elf32_Phdr phdr;
|
|
int ret;
|
|
|
|
memset(&phdr, 0, sizeof(Elf32_Phdr));
|
|
phdr.p_type = cpu_to_dump32(s, PT_NOTE);
|
|
phdr.p_offset = cpu_to_dump32(s, begin);
|
|
phdr.p_paddr = 0;
|
|
phdr.p_filesz = cpu_to_dump32(s, s->note_size);
|
|
phdr.p_memsz = cpu_to_dump32(s, s->note_size);
|
|
phdr.p_vaddr = 0;
|
|
|
|
ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write program header table.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf32_notes(WriteCoreDumpFunction f, DumpState *s)
|
|
{
|
|
CPUState *cpu;
|
|
int ret;
|
|
int id;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
id = cpu_index(cpu);
|
|
ret = cpu_write_elf32_note(f, cpu, id, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write elf notes.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
ret = cpu_write_elf32_qemunote(f, cpu, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write CPU status.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_elf_section(DumpState *s, int type)
|
|
{
|
|
Elf32_Shdr shdr32;
|
|
Elf64_Shdr shdr64;
|
|
int shdr_size;
|
|
void *shdr;
|
|
int ret;
|
|
|
|
if (type == 0) {
|
|
shdr_size = sizeof(Elf32_Shdr);
|
|
memset(&shdr32, 0, shdr_size);
|
|
shdr32.sh_info = cpu_to_dump32(s, s->sh_info);
|
|
shdr = &shdr32;
|
|
} else {
|
|
shdr_size = sizeof(Elf64_Shdr);
|
|
memset(&shdr64, 0, shdr_size);
|
|
shdr64.sh_info = cpu_to_dump32(s, s->sh_info);
|
|
shdr = &shdr64;
|
|
}
|
|
|
|
ret = fd_write_vmcore(&shdr, shdr_size, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write section header table.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_data(DumpState *s, void *buf, int length)
|
|
{
|
|
int ret;
|
|
|
|
ret = fd_write_vmcore(buf, length, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to save memory.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* write the memroy to vmcore. 1 page per I/O. */
|
|
static int write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
|
|
int64_t size)
|
|
{
|
|
int64_t i;
|
|
int ret;
|
|
|
|
for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
|
|
ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
|
|
TARGET_PAGE_SIZE);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if ((size % TARGET_PAGE_SIZE) != 0) {
|
|
ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
|
|
size % TARGET_PAGE_SIZE);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* get the memory's offset and size in the vmcore */
|
|
static void get_offset_range(hwaddr phys_addr,
|
|
ram_addr_t mapping_length,
|
|
DumpState *s,
|
|
hwaddr *p_offset,
|
|
hwaddr *p_filesz)
|
|
{
|
|
GuestPhysBlock *block;
|
|
hwaddr offset = s->memory_offset;
|
|
int64_t size_in_block, start;
|
|
|
|
/* When the memory is not stored into vmcore, offset will be -1 */
|
|
*p_offset = -1;
|
|
*p_filesz = 0;
|
|
|
|
if (s->has_filter) {
|
|
if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
|
|
if (s->has_filter) {
|
|
if (block->target_start >= s->begin + s->length ||
|
|
block->target_end <= s->begin) {
|
|
/* This block is out of the range */
|
|
continue;
|
|
}
|
|
|
|
if (s->begin <= block->target_start) {
|
|
start = block->target_start;
|
|
} else {
|
|
start = s->begin;
|
|
}
|
|
|
|
size_in_block = block->target_end - start;
|
|
if (s->begin + s->length < block->target_end) {
|
|
size_in_block -= block->target_end - (s->begin + s->length);
|
|
}
|
|
} else {
|
|
start = block->target_start;
|
|
size_in_block = block->target_end - block->target_start;
|
|
}
|
|
|
|
if (phys_addr >= start && phys_addr < start + size_in_block) {
|
|
*p_offset = phys_addr - start + offset;
|
|
|
|
/* The offset range mapped from the vmcore file must not spill over
|
|
* the GuestPhysBlock, clamp it. The rest of the mapping will be
|
|
* zero-filled in memory at load time; see
|
|
* <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
|
|
*/
|
|
*p_filesz = phys_addr + mapping_length <= start + size_in_block ?
|
|
mapping_length :
|
|
size_in_block - (phys_addr - start);
|
|
return;
|
|
}
|
|
|
|
offset += size_in_block;
|
|
}
|
|
}
|
|
|
|
static int write_elf_loads(DumpState *s)
|
|
{
|
|
hwaddr offset, filesz;
|
|
MemoryMapping *memory_mapping;
|
|
uint32_t phdr_index = 1;
|
|
int ret;
|
|
uint32_t max_index;
|
|
|
|
if (s->have_section) {
|
|
max_index = s->sh_info;
|
|
} else {
|
|
max_index = s->phdr_num;
|
|
}
|
|
|
|
QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
|
|
get_offset_range(memory_mapping->phys_addr,
|
|
memory_mapping->length,
|
|
s, &offset, &filesz);
|
|
if (s->dump_info.d_class == ELFCLASS64) {
|
|
ret = write_elf64_load(s, memory_mapping, phdr_index++, offset,
|
|
filesz);
|
|
} else {
|
|
ret = write_elf32_load(s, memory_mapping, phdr_index++, offset,
|
|
filesz);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (phdr_index >= max_index) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* write elf header, PT_NOTE and elf note to vmcore. */
|
|
static int dump_begin(DumpState *s)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* the vmcore's format is:
|
|
* --------------
|
|
* | elf header |
|
|
* --------------
|
|
* | PT_NOTE |
|
|
* --------------
|
|
* | PT_LOAD |
|
|
* --------------
|
|
* | ...... |
|
|
* --------------
|
|
* | PT_LOAD |
|
|
* --------------
|
|
* | sec_hdr |
|
|
* --------------
|
|
* | elf note |
|
|
* --------------
|
|
* | memory |
|
|
* --------------
|
|
*
|
|
* we only know where the memory is saved after we write elf note into
|
|
* vmcore.
|
|
*/
|
|
|
|
/* write elf header to vmcore */
|
|
if (s->dump_info.d_class == ELFCLASS64) {
|
|
ret = write_elf64_header(s);
|
|
} else {
|
|
ret = write_elf32_header(s);
|
|
}
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (s->dump_info.d_class == ELFCLASS64) {
|
|
/* write PT_NOTE to vmcore */
|
|
if (write_elf64_note(s) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* write all PT_LOAD to vmcore */
|
|
if (write_elf_loads(s) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* write section to vmcore */
|
|
if (s->have_section) {
|
|
if (write_elf_section(s, 1) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* write notes to vmcore */
|
|
if (write_elf64_notes(fd_write_vmcore, s) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
} else {
|
|
/* write PT_NOTE to vmcore */
|
|
if (write_elf32_note(s) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* write all PT_LOAD to vmcore */
|
|
if (write_elf_loads(s) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* write section to vmcore */
|
|
if (s->have_section) {
|
|
if (write_elf_section(s, 0) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* write notes to vmcore */
|
|
if (write_elf32_notes(fd_write_vmcore, s) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* write PT_LOAD to vmcore */
|
|
static int dump_completed(DumpState *s)
|
|
{
|
|
dump_cleanup(s);
|
|
return 0;
|
|
}
|
|
|
|
static int get_next_block(DumpState *s, GuestPhysBlock *block)
|
|
{
|
|
while (1) {
|
|
block = QTAILQ_NEXT(block, next);
|
|
if (!block) {
|
|
/* no more block */
|
|
return 1;
|
|
}
|
|
|
|
s->start = 0;
|
|
s->next_block = block;
|
|
if (s->has_filter) {
|
|
if (block->target_start >= s->begin + s->length ||
|
|
block->target_end <= s->begin) {
|
|
/* This block is out of the range */
|
|
continue;
|
|
}
|
|
|
|
if (s->begin > block->target_start) {
|
|
s->start = s->begin - block->target_start;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* write all memory to vmcore */
|
|
static int dump_iterate(DumpState *s)
|
|
{
|
|
GuestPhysBlock *block;
|
|
int64_t size;
|
|
int ret;
|
|
|
|
while (1) {
|
|
block = s->next_block;
|
|
|
|
size = block->target_end - block->target_start;
|
|
if (s->has_filter) {
|
|
size -= s->start;
|
|
if (s->begin + s->length < block->target_end) {
|
|
size -= block->target_end - (s->begin + s->length);
|
|
}
|
|
}
|
|
ret = write_memory(s, block, s->start, size);
|
|
if (ret == -1) {
|
|
return ret;
|
|
}
|
|
|
|
ret = get_next_block(s, block);
|
|
if (ret == 1) {
|
|
dump_completed(s);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int create_vmcore(DumpState *s)
|
|
{
|
|
int ret;
|
|
|
|
ret = dump_begin(s);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
|
|
ret = dump_iterate(s);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_start_flat_header(int fd)
|
|
{
|
|
MakedumpfileHeader *mh;
|
|
int ret = 0;
|
|
|
|
QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
|
|
mh = g_malloc0(MAX_SIZE_MDF_HEADER);
|
|
|
|
memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
|
|
MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
|
|
|
|
mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
|
|
mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
|
|
|
|
size_t written_size;
|
|
written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
|
|
if (written_size != MAX_SIZE_MDF_HEADER) {
|
|
ret = -1;
|
|
}
|
|
|
|
g_free(mh);
|
|
return ret;
|
|
}
|
|
|
|
static int write_end_flat_header(int fd)
|
|
{
|
|
MakedumpfileDataHeader mdh;
|
|
|
|
mdh.offset = END_FLAG_FLAT_HEADER;
|
|
mdh.buf_size = END_FLAG_FLAT_HEADER;
|
|
|
|
size_t written_size;
|
|
written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
|
|
if (written_size != sizeof(mdh)) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
|
|
{
|
|
size_t written_size;
|
|
MakedumpfileDataHeader mdh;
|
|
|
|
mdh.offset = cpu_to_be64(offset);
|
|
mdh.buf_size = cpu_to_be64(size);
|
|
|
|
written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
|
|
if (written_size != sizeof(mdh)) {
|
|
return -1;
|
|
}
|
|
|
|
written_size = qemu_write_full(fd, buf, size);
|
|
if (written_size != size) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int buf_write_note(const void *buf, size_t size, void *opaque)
|
|
{
|
|
DumpState *s = opaque;
|
|
|
|
/* note_buf is not enough */
|
|
if (s->note_buf_offset + size > s->note_size) {
|
|
return -1;
|
|
}
|
|
|
|
memcpy(s->note_buf + s->note_buf_offset, buf, size);
|
|
|
|
s->note_buf_offset += size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* write common header, sub header and elf note to vmcore */
|
|
static int create_header32(DumpState *s)
|
|
{
|
|
int ret = 0;
|
|
DiskDumpHeader32 *dh = NULL;
|
|
KdumpSubHeader32 *kh = NULL;
|
|
size_t size;
|
|
uint32_t block_size;
|
|
uint32_t sub_hdr_size;
|
|
uint32_t bitmap_blocks;
|
|
uint32_t status = 0;
|
|
uint64_t offset_note;
|
|
|
|
/* write common header, the version of kdump-compressed format is 6th */
|
|
size = sizeof(DiskDumpHeader32);
|
|
dh = g_malloc0(size);
|
|
|
|
strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
|
|
dh->header_version = cpu_to_dump32(s, 6);
|
|
block_size = TARGET_PAGE_SIZE;
|
|
dh->block_size = cpu_to_dump32(s, block_size);
|
|
sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
|
|
sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
|
|
dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
|
|
/* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
|
|
dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
|
|
dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
|
|
bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
|
|
dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
|
|
strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
|
|
|
|
if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
|
|
status |= DUMP_DH_COMPRESSED_ZLIB;
|
|
}
|
|
#ifdef CONFIG_LZO
|
|
if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
|
|
status |= DUMP_DH_COMPRESSED_LZO;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SNAPPY
|
|
if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
|
|
status |= DUMP_DH_COMPRESSED_SNAPPY;
|
|
}
|
|
#endif
|
|
dh->status = cpu_to_dump32(s, status);
|
|
|
|
if (write_buffer(s->fd, 0, dh, size) < 0) {
|
|
dump_error(s, "dump: failed to write disk dump header.\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* write sub header */
|
|
size = sizeof(KdumpSubHeader32);
|
|
kh = g_malloc0(size);
|
|
|
|
/* 64bit max_mapnr_64 */
|
|
kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
|
|
kh->phys_base = cpu_to_dump32(s, PHYS_BASE);
|
|
kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
|
|
|
|
offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
|
|
kh->offset_note = cpu_to_dump64(s, offset_note);
|
|
kh->note_size = cpu_to_dump32(s, s->note_size);
|
|
|
|
if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
|
|
block_size, kh, size) < 0) {
|
|
dump_error(s, "dump: failed to write kdump sub header.\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* write note */
|
|
s->note_buf = g_malloc0(s->note_size);
|
|
s->note_buf_offset = 0;
|
|
|
|
/* use s->note_buf to store notes temporarily */
|
|
if (write_elf32_notes(buf_write_note, s) < 0) {
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (write_buffer(s->fd, offset_note, s->note_buf,
|
|
s->note_size) < 0) {
|
|
dump_error(s, "dump: failed to write notes");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* get offset of dump_bitmap */
|
|
s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
|
|
block_size;
|
|
|
|
/* get offset of page */
|
|
s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
|
|
block_size;
|
|
|
|
out:
|
|
g_free(dh);
|
|
g_free(kh);
|
|
g_free(s->note_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* write common header, sub header and elf note to vmcore */
|
|
static int create_header64(DumpState *s)
|
|
{
|
|
int ret = 0;
|
|
DiskDumpHeader64 *dh = NULL;
|
|
KdumpSubHeader64 *kh = NULL;
|
|
size_t size;
|
|
uint32_t block_size;
|
|
uint32_t sub_hdr_size;
|
|
uint32_t bitmap_blocks;
|
|
uint32_t status = 0;
|
|
uint64_t offset_note;
|
|
|
|
/* write common header, the version of kdump-compressed format is 6th */
|
|
size = sizeof(DiskDumpHeader64);
|
|
dh = g_malloc0(size);
|
|
|
|
strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
|
|
dh->header_version = cpu_to_dump32(s, 6);
|
|
block_size = TARGET_PAGE_SIZE;
|
|
dh->block_size = cpu_to_dump32(s, block_size);
|
|
sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
|
|
sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
|
|
dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
|
|
/* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
|
|
dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
|
|
dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
|
|
bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
|
|
dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
|
|
strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
|
|
|
|
if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
|
|
status |= DUMP_DH_COMPRESSED_ZLIB;
|
|
}
|
|
#ifdef CONFIG_LZO
|
|
if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
|
|
status |= DUMP_DH_COMPRESSED_LZO;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SNAPPY
|
|
if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
|
|
status |= DUMP_DH_COMPRESSED_SNAPPY;
|
|
}
|
|
#endif
|
|
dh->status = cpu_to_dump32(s, status);
|
|
|
|
if (write_buffer(s->fd, 0, dh, size) < 0) {
|
|
dump_error(s, "dump: failed to write disk dump header.\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* write sub header */
|
|
size = sizeof(KdumpSubHeader64);
|
|
kh = g_malloc0(size);
|
|
|
|
/* 64bit max_mapnr_64 */
|
|
kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
|
|
kh->phys_base = cpu_to_dump64(s, PHYS_BASE);
|
|
kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
|
|
|
|
offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
|
|
kh->offset_note = cpu_to_dump64(s, offset_note);
|
|
kh->note_size = cpu_to_dump64(s, s->note_size);
|
|
|
|
if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
|
|
block_size, kh, size) < 0) {
|
|
dump_error(s, "dump: failed to write kdump sub header.\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* write note */
|
|
s->note_buf = g_malloc0(s->note_size);
|
|
s->note_buf_offset = 0;
|
|
|
|
/* use s->note_buf to store notes temporarily */
|
|
if (write_elf64_notes(buf_write_note, s) < 0) {
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (write_buffer(s->fd, offset_note, s->note_buf,
|
|
s->note_size) < 0) {
|
|
dump_error(s, "dump: failed to write notes");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* get offset of dump_bitmap */
|
|
s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
|
|
block_size;
|
|
|
|
/* get offset of page */
|
|
s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
|
|
block_size;
|
|
|
|
out:
|
|
g_free(dh);
|
|
g_free(kh);
|
|
g_free(s->note_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int write_dump_header(DumpState *s)
|
|
{
|
|
if (s->dump_info.d_class == ELFCLASS32) {
|
|
return create_header32(s);
|
|
} else {
|
|
return create_header64(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
|
|
* rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
|
|
* set_dump_bitmap will always leave the recently set bit un-sync. And setting
|
|
* (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
|
|
* vmcore, ie. synchronizing un-sync bit into vmcore.
|
|
*/
|
|
static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
|
|
uint8_t *buf, DumpState *s)
|
|
{
|
|
off_t old_offset, new_offset;
|
|
off_t offset_bitmap1, offset_bitmap2;
|
|
uint32_t byte, bit;
|
|
|
|
/* should not set the previous place */
|
|
assert(last_pfn <= pfn);
|
|
|
|
/*
|
|
* if the bit needed to be set is not cached in buf, flush the data in buf
|
|
* to vmcore firstly.
|
|
* making new_offset be bigger than old_offset can also sync remained data
|
|
* into vmcore.
|
|
*/
|
|
old_offset = BUFSIZE_BITMAP * (last_pfn / PFN_BUFBITMAP);
|
|
new_offset = BUFSIZE_BITMAP * (pfn / PFN_BUFBITMAP);
|
|
|
|
while (old_offset < new_offset) {
|
|
/* calculate the offset and write dump_bitmap */
|
|
offset_bitmap1 = s->offset_dump_bitmap + old_offset;
|
|
if (write_buffer(s->fd, offset_bitmap1, buf,
|
|
BUFSIZE_BITMAP) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* dump level 1 is chosen, so 1st and 2nd bitmap are same */
|
|
offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
|
|
old_offset;
|
|
if (write_buffer(s->fd, offset_bitmap2, buf,
|
|
BUFSIZE_BITMAP) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
memset(buf, 0, BUFSIZE_BITMAP);
|
|
old_offset += BUFSIZE_BITMAP;
|
|
}
|
|
|
|
/* get the exact place of the bit in the buf, and set it */
|
|
byte = (pfn % PFN_BUFBITMAP) / CHAR_BIT;
|
|
bit = (pfn % PFN_BUFBITMAP) % CHAR_BIT;
|
|
if (value) {
|
|
buf[byte] |= 1u << bit;
|
|
} else {
|
|
buf[byte] &= ~(1u << bit);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* exam every page and return the page frame number and the address of the page.
|
|
* bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys
|
|
* blocks, so block->target_start and block->target_end should be interal
|
|
* multiples of the target page size.
|
|
*/
|
|
static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
|
|
uint8_t **bufptr, DumpState *s)
|
|
{
|
|
GuestPhysBlock *block = *blockptr;
|
|
hwaddr addr;
|
|
uint8_t *buf;
|
|
|
|
/* block == NULL means the start of the iteration */
|
|
if (!block) {
|
|
block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
|
|
*blockptr = block;
|
|
assert((block->target_start & ~TARGET_PAGE_MASK) == 0);
|
|
assert((block->target_end & ~TARGET_PAGE_MASK) == 0);
|
|
*pfnptr = paddr_to_pfn(block->target_start);
|
|
if (bufptr) {
|
|
*bufptr = block->host_addr;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
*pfnptr = *pfnptr + 1;
|
|
addr = pfn_to_paddr(*pfnptr);
|
|
|
|
if ((addr >= block->target_start) &&
|
|
(addr + TARGET_PAGE_SIZE <= block->target_end)) {
|
|
buf = block->host_addr + (addr - block->target_start);
|
|
} else {
|
|
/* the next page is in the next block */
|
|
block = QTAILQ_NEXT(block, next);
|
|
*blockptr = block;
|
|
if (!block) {
|
|
return false;
|
|
}
|
|
assert((block->target_start & ~TARGET_PAGE_MASK) == 0);
|
|
assert((block->target_end & ~TARGET_PAGE_MASK) == 0);
|
|
*pfnptr = paddr_to_pfn(block->target_start);
|
|
buf = block->host_addr;
|
|
}
|
|
|
|
if (bufptr) {
|
|
*bufptr = buf;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int write_dump_bitmap(DumpState *s)
|
|
{
|
|
int ret = 0;
|
|
uint64_t last_pfn, pfn;
|
|
void *dump_bitmap_buf;
|
|
size_t num_dumpable;
|
|
GuestPhysBlock *block_iter = NULL;
|
|
|
|
/* dump_bitmap_buf is used to store dump_bitmap temporarily */
|
|
dump_bitmap_buf = g_malloc0(BUFSIZE_BITMAP);
|
|
|
|
num_dumpable = 0;
|
|
last_pfn = 0;
|
|
|
|
/*
|
|
* exam memory page by page, and set the bit in dump_bitmap corresponded
|
|
* to the existing page.
|
|
*/
|
|
while (get_next_page(&block_iter, &pfn, NULL, s)) {
|
|
ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to set dump_bitmap.\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
last_pfn = pfn;
|
|
num_dumpable++;
|
|
}
|
|
|
|
/*
|
|
* set_dump_bitmap will always leave the recently set bit un-sync. Here we
|
|
* set last_pfn + PFN_BUFBITMAP to 0 and those set but un-sync bit will be
|
|
* synchronized into vmcore.
|
|
*/
|
|
if (num_dumpable > 0) {
|
|
ret = set_dump_bitmap(last_pfn, last_pfn + PFN_BUFBITMAP, false,
|
|
dump_bitmap_buf, s);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to sync dump_bitmap.\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* number of dumpable pages that will be dumped later */
|
|
s->num_dumpable = num_dumpable;
|
|
|
|
out:
|
|
g_free(dump_bitmap_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void prepare_data_cache(DataCache *data_cache, DumpState *s,
|
|
off_t offset)
|
|
{
|
|
data_cache->fd = s->fd;
|
|
data_cache->data_size = 0;
|
|
data_cache->buf_size = BUFSIZE_DATA_CACHE;
|
|
data_cache->buf = g_malloc0(BUFSIZE_DATA_CACHE);
|
|
data_cache->offset = offset;
|
|
}
|
|
|
|
static int write_cache(DataCache *dc, const void *buf, size_t size,
|
|
bool flag_sync)
|
|
{
|
|
/*
|
|
* dc->buf_size should not be less than size, otherwise dc will never be
|
|
* enough
|
|
*/
|
|
assert(size <= dc->buf_size);
|
|
|
|
/*
|
|
* if flag_sync is set, synchronize data in dc->buf into vmcore.
|
|
* otherwise check if the space is enough for caching data in buf, if not,
|
|
* write the data in dc->buf to dc->fd and reset dc->buf
|
|
*/
|
|
if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
|
|
(flag_sync && dc->data_size > 0)) {
|
|
if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
dc->offset += dc->data_size;
|
|
dc->data_size = 0;
|
|
}
|
|
|
|
if (!flag_sync) {
|
|
memcpy(dc->buf + dc->data_size, buf, size);
|
|
dc->data_size += size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_data_cache(DataCache *data_cache)
|
|
{
|
|
g_free(data_cache->buf);
|
|
}
|
|
|
|
static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
|
|
{
|
|
switch (flag_compress) {
|
|
case DUMP_DH_COMPRESSED_ZLIB:
|
|
return compressBound(page_size);
|
|
|
|
case DUMP_DH_COMPRESSED_LZO:
|
|
/*
|
|
* LZO will expand incompressible data by a little amount. Please check
|
|
* the following URL to see the expansion calculation:
|
|
* http://www.oberhumer.com/opensource/lzo/lzofaq.php
|
|
*/
|
|
return page_size + page_size / 16 + 64 + 3;
|
|
|
|
#ifdef CONFIG_SNAPPY
|
|
case DUMP_DH_COMPRESSED_SNAPPY:
|
|
return snappy_max_compressed_length(page_size);
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* check if the page is all 0
|
|
*/
|
|
static inline bool is_zero_page(const uint8_t *buf, size_t page_size)
|
|
{
|
|
return buffer_is_zero(buf, page_size);
|
|
}
|
|
|
|
static int write_dump_pages(DumpState *s)
|
|
{
|
|
int ret = 0;
|
|
DataCache page_desc, page_data;
|
|
size_t len_buf_out, size_out;
|
|
#ifdef CONFIG_LZO
|
|
lzo_bytep wrkmem = NULL;
|
|
#endif
|
|
uint8_t *buf_out = NULL;
|
|
off_t offset_desc, offset_data;
|
|
PageDescriptor pd, pd_zero;
|
|
uint8_t *buf;
|
|
GuestPhysBlock *block_iter = NULL;
|
|
uint64_t pfn_iter;
|
|
|
|
/* get offset of page_desc and page_data in dump file */
|
|
offset_desc = s->offset_page;
|
|
offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
|
|
|
|
prepare_data_cache(&page_desc, s, offset_desc);
|
|
prepare_data_cache(&page_data, s, offset_data);
|
|
|
|
/* prepare buffer to store compressed data */
|
|
len_buf_out = get_len_buf_out(TARGET_PAGE_SIZE, s->flag_compress);
|
|
assert(len_buf_out != 0);
|
|
|
|
#ifdef CONFIG_LZO
|
|
wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
|
|
#endif
|
|
|
|
buf_out = g_malloc(len_buf_out);
|
|
|
|
/*
|
|
* init zero page's page_desc and page_data, because every zero page
|
|
* uses the same page_data
|
|
*/
|
|
pd_zero.size = cpu_to_dump32(s, TARGET_PAGE_SIZE);
|
|
pd_zero.flags = cpu_to_dump32(s, 0);
|
|
pd_zero.offset = cpu_to_dump64(s, offset_data);
|
|
pd_zero.page_flags = cpu_to_dump64(s, 0);
|
|
buf = g_malloc0(TARGET_PAGE_SIZE);
|
|
ret = write_cache(&page_data, buf, TARGET_PAGE_SIZE, false);
|
|
g_free(buf);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write page data(zero page).\n");
|
|
goto out;
|
|
}
|
|
|
|
offset_data += TARGET_PAGE_SIZE;
|
|
|
|
/*
|
|
* dump memory to vmcore page by page. zero page will all be resided in the
|
|
* first page of page section
|
|
*/
|
|
while (get_next_page(&block_iter, &pfn_iter, &buf, s)) {
|
|
/* check zero page */
|
|
if (is_zero_page(buf, TARGET_PAGE_SIZE)) {
|
|
ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
|
|
false);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write page desc.\n");
|
|
goto out;
|
|
}
|
|
} else {
|
|
/*
|
|
* not zero page, then:
|
|
* 1. compress the page
|
|
* 2. write the compressed page into the cache of page_data
|
|
* 3. get page desc of the compressed page and write it into the
|
|
* cache of page_desc
|
|
*
|
|
* only one compression format will be used here, for
|
|
* s->flag_compress is set. But when compression fails to work,
|
|
* we fall back to save in plaintext.
|
|
*/
|
|
size_out = len_buf_out;
|
|
if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
|
|
(compress2(buf_out, (uLongf *)&size_out, buf,
|
|
TARGET_PAGE_SIZE, Z_BEST_SPEED) == Z_OK) &&
|
|
(size_out < TARGET_PAGE_SIZE)) {
|
|
pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
|
|
pd.size = cpu_to_dump32(s, size_out);
|
|
|
|
ret = write_cache(&page_data, buf_out, size_out, false);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write page data.\n");
|
|
goto out;
|
|
}
|
|
#ifdef CONFIG_LZO
|
|
} else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
|
|
(lzo1x_1_compress(buf, TARGET_PAGE_SIZE, buf_out,
|
|
(lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
|
|
(size_out < TARGET_PAGE_SIZE)) {
|
|
pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
|
|
pd.size = cpu_to_dump32(s, size_out);
|
|
|
|
ret = write_cache(&page_data, buf_out, size_out, false);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write page data.\n");
|
|
goto out;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SNAPPY
|
|
} else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
|
|
(snappy_compress((char *)buf, TARGET_PAGE_SIZE,
|
|
(char *)buf_out, &size_out) == SNAPPY_OK) &&
|
|
(size_out < TARGET_PAGE_SIZE)) {
|
|
pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
|
|
pd.size = cpu_to_dump32(s, size_out);
|
|
|
|
ret = write_cache(&page_data, buf_out, size_out, false);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write page data.\n");
|
|
goto out;
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* fall back to save in plaintext, size_out should be
|
|
* assigned TARGET_PAGE_SIZE
|
|
*/
|
|
pd.flags = cpu_to_dump32(s, 0);
|
|
size_out = TARGET_PAGE_SIZE;
|
|
pd.size = cpu_to_dump32(s, size_out);
|
|
|
|
ret = write_cache(&page_data, buf, TARGET_PAGE_SIZE, false);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write page data.\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* get and write page desc here */
|
|
pd.page_flags = cpu_to_dump64(s, 0);
|
|
pd.offset = cpu_to_dump64(s, offset_data);
|
|
offset_data += size_out;
|
|
|
|
ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write page desc.\n");
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = write_cache(&page_desc, NULL, 0, true);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to sync cache for page_desc.\n");
|
|
goto out;
|
|
}
|
|
ret = write_cache(&page_data, NULL, 0, true);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to sync cache for page_data.\n");
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
free_data_cache(&page_desc);
|
|
free_data_cache(&page_data);
|
|
|
|
#ifdef CONFIG_LZO
|
|
g_free(wrkmem);
|
|
#endif
|
|
|
|
g_free(buf_out);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_kdump_vmcore(DumpState *s)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* the kdump-compressed format is:
|
|
* File offset
|
|
* +------------------------------------------+ 0x0
|
|
* | main header (struct disk_dump_header) |
|
|
* |------------------------------------------+ block 1
|
|
* | sub header (struct kdump_sub_header) |
|
|
* |------------------------------------------+ block 2
|
|
* | 1st-dump_bitmap |
|
|
* |------------------------------------------+ block 2 + X blocks
|
|
* | 2nd-dump_bitmap | (aligned by block)
|
|
* |------------------------------------------+ block 2 + 2 * X blocks
|
|
* | page desc for pfn 0 (struct page_desc) | (aligned by block)
|
|
* | page desc for pfn 1 (struct page_desc) |
|
|
* | : |
|
|
* |------------------------------------------| (not aligned by block)
|
|
* | page data (pfn 0) |
|
|
* | page data (pfn 1) |
|
|
* | : |
|
|
* +------------------------------------------+
|
|
*/
|
|
|
|
ret = write_start_flat_header(s->fd);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write start flat header.\n");
|
|
return -1;
|
|
}
|
|
|
|
ret = write_dump_header(s);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
|
|
ret = write_dump_bitmap(s);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
|
|
ret = write_dump_pages(s);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
|
|
ret = write_end_flat_header(s->fd);
|
|
if (ret < 0) {
|
|
dump_error(s, "dump: failed to write end flat header.\n");
|
|
return -1;
|
|
}
|
|
|
|
dump_completed(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ram_addr_t get_start_block(DumpState *s)
|
|
{
|
|
GuestPhysBlock *block;
|
|
|
|
if (!s->has_filter) {
|
|
s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
|
|
return 0;
|
|
}
|
|
|
|
QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
|
|
if (block->target_start >= s->begin + s->length ||
|
|
block->target_end <= s->begin) {
|
|
/* This block is out of the range */
|
|
continue;
|
|
}
|
|
|
|
s->next_block = block;
|
|
if (s->begin > block->target_start) {
|
|
s->start = s->begin - block->target_start;
|
|
} else {
|
|
s->start = 0;
|
|
}
|
|
return s->start;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void get_max_mapnr(DumpState *s)
|
|
{
|
|
GuestPhysBlock *last_block;
|
|
|
|
last_block = QTAILQ_LAST(&s->guest_phys_blocks.head, GuestPhysBlockHead);
|
|
s->max_mapnr = paddr_to_pfn(last_block->target_end);
|
|
}
|
|
|
|
static int dump_init(DumpState *s, int fd, bool has_format,
|
|
DumpGuestMemoryFormat format, bool paging, bool has_filter,
|
|
int64_t begin, int64_t length, Error **errp)
|
|
{
|
|
CPUState *cpu;
|
|
int nr_cpus;
|
|
Error *err = NULL;
|
|
int ret;
|
|
|
|
/* kdump-compressed is conflict with paging and filter */
|
|
if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
|
|
assert(!paging && !has_filter);
|
|
}
|
|
|
|
if (runstate_is_running()) {
|
|
vm_stop(RUN_STATE_SAVE_VM);
|
|
s->resume = true;
|
|
} else {
|
|
s->resume = false;
|
|
}
|
|
|
|
/* If we use KVM, we should synchronize the registers before we get dump
|
|
* info or physmap info.
|
|
*/
|
|
cpu_synchronize_all_states();
|
|
nr_cpus = 0;
|
|
CPU_FOREACH(cpu) {
|
|
nr_cpus++;
|
|
}
|
|
|
|
s->fd = fd;
|
|
s->has_filter = has_filter;
|
|
s->begin = begin;
|
|
s->length = length;
|
|
|
|
guest_phys_blocks_init(&s->guest_phys_blocks);
|
|
guest_phys_blocks_append(&s->guest_phys_blocks);
|
|
|
|
s->start = get_start_block(s);
|
|
if (s->start == -1) {
|
|
error_set(errp, QERR_INVALID_PARAMETER, "begin");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* get dump info: endian, class and architecture.
|
|
* If the target architecture is not supported, cpu_get_dump_info() will
|
|
* return -1.
|
|
*/
|
|
ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
|
|
if (ret < 0) {
|
|
error_set(errp, QERR_UNSUPPORTED);
|
|
goto cleanup;
|
|
}
|
|
|
|
s->note_size = cpu_get_note_size(s->dump_info.d_class,
|
|
s->dump_info.d_machine, nr_cpus);
|
|
if (s->note_size < 0) {
|
|
error_set(errp, QERR_UNSUPPORTED);
|
|
goto cleanup;
|
|
}
|
|
|
|
/* get memory mapping */
|
|
memory_mapping_list_init(&s->list);
|
|
if (paging) {
|
|
qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err);
|
|
if (err != NULL) {
|
|
error_propagate(errp, err);
|
|
goto cleanup;
|
|
}
|
|
} else {
|
|
qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
|
|
}
|
|
|
|
s->nr_cpus = nr_cpus;
|
|
|
|
get_max_mapnr(s);
|
|
|
|
uint64_t tmp;
|
|
tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), TARGET_PAGE_SIZE);
|
|
s->len_dump_bitmap = tmp * TARGET_PAGE_SIZE;
|
|
|
|
/* init for kdump-compressed format */
|
|
if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
|
|
switch (format) {
|
|
case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
|
|
s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
|
|
break;
|
|
|
|
case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
|
|
#ifdef CONFIG_LZO
|
|
if (lzo_init() != LZO_E_OK) {
|
|
error_setg(errp, "failed to initialize the LZO library");
|
|
goto cleanup;
|
|
}
|
|
#endif
|
|
s->flag_compress = DUMP_DH_COMPRESSED_LZO;
|
|
break;
|
|
|
|
case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
|
|
s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
|
|
break;
|
|
|
|
default:
|
|
s->flag_compress = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (s->has_filter) {
|
|
memory_mapping_filter(&s->list, s->begin, s->length);
|
|
}
|
|
|
|
/*
|
|
* calculate phdr_num
|
|
*
|
|
* the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
|
|
*/
|
|
s->phdr_num = 1; /* PT_NOTE */
|
|
if (s->list.num < UINT16_MAX - 2) {
|
|
s->phdr_num += s->list.num;
|
|
s->have_section = false;
|
|
} else {
|
|
s->have_section = true;
|
|
s->phdr_num = PN_XNUM;
|
|
s->sh_info = 1; /* PT_NOTE */
|
|
|
|
/* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
|
|
if (s->list.num <= UINT32_MAX - 1) {
|
|
s->sh_info += s->list.num;
|
|
} else {
|
|
s->sh_info = UINT32_MAX;
|
|
}
|
|
}
|
|
|
|
if (s->dump_info.d_class == ELFCLASS64) {
|
|
if (s->have_section) {
|
|
s->memory_offset = sizeof(Elf64_Ehdr) +
|
|
sizeof(Elf64_Phdr) * s->sh_info +
|
|
sizeof(Elf64_Shdr) + s->note_size;
|
|
} else {
|
|
s->memory_offset = sizeof(Elf64_Ehdr) +
|
|
sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
|
|
}
|
|
} else {
|
|
if (s->have_section) {
|
|
s->memory_offset = sizeof(Elf32_Ehdr) +
|
|
sizeof(Elf32_Phdr) * s->sh_info +
|
|
sizeof(Elf32_Shdr) + s->note_size;
|
|
} else {
|
|
s->memory_offset = sizeof(Elf32_Ehdr) +
|
|
sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
guest_phys_blocks_free(&s->guest_phys_blocks);
|
|
|
|
if (s->resume) {
|
|
vm_start();
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
|
|
int64_t begin, bool has_length,
|
|
int64_t length, bool has_format,
|
|
DumpGuestMemoryFormat format, Error **errp)
|
|
{
|
|
const char *p;
|
|
int fd = -1;
|
|
DumpState *s;
|
|
int ret;
|
|
|
|
/*
|
|
* kdump-compressed format need the whole memory dumped, so paging or
|
|
* filter is not supported here.
|
|
*/
|
|
if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
|
|
(paging || has_begin || has_length)) {
|
|
error_setg(errp, "kdump-compressed format doesn't support paging or "
|
|
"filter");
|
|
return;
|
|
}
|
|
if (has_begin && !has_length) {
|
|
error_set(errp, QERR_MISSING_PARAMETER, "length");
|
|
return;
|
|
}
|
|
if (!has_begin && has_length) {
|
|
error_set(errp, QERR_MISSING_PARAMETER, "begin");
|
|
return;
|
|
}
|
|
|
|
/* check whether lzo/snappy is supported */
|
|
#ifndef CONFIG_LZO
|
|
if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
|
|
error_setg(errp, "kdump-lzo is not available now");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_SNAPPY
|
|
if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
|
|
error_setg(errp, "kdump-snappy is not available now");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(WIN32)
|
|
if (strstart(file, "fd:", &p)) {
|
|
fd = monitor_get_fd(cur_mon, p, errp);
|
|
if (fd == -1) {
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (strstart(file, "file:", &p)) {
|
|
fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
|
|
if (fd < 0) {
|
|
error_setg_file_open(errp, errno, p);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (fd == -1) {
|
|
error_set(errp, QERR_INVALID_PARAMETER, "protocol");
|
|
return;
|
|
}
|
|
|
|
s = g_malloc0(sizeof(DumpState));
|
|
|
|
ret = dump_init(s, fd, has_format, format, paging, has_begin,
|
|
begin, length, errp);
|
|
if (ret < 0) {
|
|
g_free(s);
|
|
return;
|
|
}
|
|
|
|
if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
|
|
if (create_kdump_vmcore(s) < 0) {
|
|
error_set(errp, QERR_IO_ERROR);
|
|
}
|
|
} else {
|
|
if (create_vmcore(s) < 0) {
|
|
error_set(errp, QERR_IO_ERROR);
|
|
}
|
|
}
|
|
|
|
g_free(s);
|
|
}
|
|
|
|
DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
|
|
{
|
|
DumpGuestMemoryFormatList *item;
|
|
DumpGuestMemoryCapability *cap =
|
|
g_malloc0(sizeof(DumpGuestMemoryCapability));
|
|
|
|
/* elf is always available */
|
|
item = g_malloc0(sizeof(DumpGuestMemoryFormatList));
|
|
cap->formats = item;
|
|
item->value = DUMP_GUEST_MEMORY_FORMAT_ELF;
|
|
|
|
/* kdump-zlib is always available */
|
|
item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
|
|
item = item->next;
|
|
item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
|
|
|
|
/* add new item if kdump-lzo is available */
|
|
#ifdef CONFIG_LZO
|
|
item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
|
|
item = item->next;
|
|
item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
|
|
#endif
|
|
|
|
/* add new item if kdump-snappy is available */
|
|
#ifdef CONFIG_SNAPPY
|
|
item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
|
|
item = item->next;
|
|
item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
|
|
#endif
|
|
|
|
return cap;
|
|
}
|