mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-30 15:00:34 +00:00
680c1c6fd7
This introduces the alternative APIC device which makes use of KVM's in-kernel device model. External NMI injection via LINT1 is emulated by checking the current state of the in-kernel APIC, only injecting a NMI into the VCPU if LINT1 is unmasked and configured to DM_NMI. MSI is not yet supported, so we disable this when the in-kernel model is in use. CC: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
1991 lines
56 KiB
C
1991 lines
56 KiB
C
/*
|
|
* QEMU KVM support
|
|
*
|
|
* Copyright (C) 2006-2008 Qumranet Technologies
|
|
* Copyright IBM, Corp. 2008
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/utsname.h>
|
|
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_para.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "sysemu.h"
|
|
#include "kvm.h"
|
|
#include "cpu.h"
|
|
#include "gdbstub.h"
|
|
#include "host-utils.h"
|
|
#include "hw/pc.h"
|
|
#include "hw/apic.h"
|
|
#include "ioport.h"
|
|
#include "hyperv.h"
|
|
|
|
//#define DEBUG_KVM
|
|
|
|
#ifdef DEBUG_KVM
|
|
#define DPRINTF(fmt, ...) \
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
#define MSR_KVM_WALL_CLOCK 0x11
|
|
#define MSR_KVM_SYSTEM_TIME 0x12
|
|
|
|
#ifndef BUS_MCEERR_AR
|
|
#define BUS_MCEERR_AR 4
|
|
#endif
|
|
#ifndef BUS_MCEERR_AO
|
|
#define BUS_MCEERR_AO 5
|
|
#endif
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
KVM_CAP_INFO(SET_TSS_ADDR),
|
|
KVM_CAP_INFO(EXT_CPUID),
|
|
KVM_CAP_INFO(MP_STATE),
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static bool has_msr_star;
|
|
static bool has_msr_hsave_pa;
|
|
static bool has_msr_tsc_deadline;
|
|
static bool has_msr_async_pf_en;
|
|
static bool has_msr_misc_enable;
|
|
static int lm_capable_kernel;
|
|
|
|
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
int r, size;
|
|
|
|
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
|
|
cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
|
|
cpuid->nent = max;
|
|
r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
|
|
if (r == 0 && cpuid->nent >= max) {
|
|
r = -E2BIG;
|
|
}
|
|
if (r < 0) {
|
|
if (r == -E2BIG) {
|
|
g_free(cpuid);
|
|
return NULL;
|
|
} else {
|
|
fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
|
|
strerror(-r));
|
|
exit(1);
|
|
}
|
|
}
|
|
return cpuid;
|
|
}
|
|
|
|
struct kvm_para_features {
|
|
int cap;
|
|
int feature;
|
|
} para_features[] = {
|
|
{ KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
|
|
{ KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
|
|
{ KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
|
|
{ KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
|
|
{ -1, -1 }
|
|
};
|
|
|
|
static int get_para_features(KVMState *s)
|
|
{
|
|
int i, features = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
|
|
if (kvm_check_extension(s, para_features[i].cap)) {
|
|
features |= (1 << para_features[i].feature);
|
|
}
|
|
}
|
|
|
|
return features;
|
|
}
|
|
|
|
|
|
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
|
|
uint32_t index, int reg)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
int i, max;
|
|
uint32_t ret = 0;
|
|
uint32_t cpuid_1_edx;
|
|
int has_kvm_features = 0;
|
|
|
|
max = 1;
|
|
while ((cpuid = try_get_cpuid(s, max)) == NULL) {
|
|
max *= 2;
|
|
}
|
|
|
|
for (i = 0; i < cpuid->nent; ++i) {
|
|
if (cpuid->entries[i].function == function &&
|
|
cpuid->entries[i].index == index) {
|
|
if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
|
|
has_kvm_features = 1;
|
|
}
|
|
switch (reg) {
|
|
case R_EAX:
|
|
ret = cpuid->entries[i].eax;
|
|
break;
|
|
case R_EBX:
|
|
ret = cpuid->entries[i].ebx;
|
|
break;
|
|
case R_ECX:
|
|
ret = cpuid->entries[i].ecx;
|
|
break;
|
|
case R_EDX:
|
|
ret = cpuid->entries[i].edx;
|
|
switch (function) {
|
|
case 1:
|
|
/* KVM before 2.6.30 misreports the following features */
|
|
ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
|
|
break;
|
|
case 0x80000001:
|
|
/* On Intel, kvm returns cpuid according to the Intel spec,
|
|
* so add missing bits according to the AMD spec:
|
|
*/
|
|
cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
|
|
ret |= cpuid_1_edx & 0x183f7ff;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
g_free(cpuid);
|
|
|
|
/* fallback for older kernels */
|
|
if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
|
|
ret = get_para_features(s);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
typedef struct HWPoisonPage {
|
|
ram_addr_t ram_addr;
|
|
QLIST_ENTRY(HWPoisonPage) list;
|
|
} HWPoisonPage;
|
|
|
|
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
|
|
QLIST_HEAD_INITIALIZER(hwpoison_page_list);
|
|
|
|
static void kvm_unpoison_all(void *param)
|
|
{
|
|
HWPoisonPage *page, *next_page;
|
|
|
|
QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
|
|
QLIST_REMOVE(page, list);
|
|
qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
|
|
g_free(page);
|
|
}
|
|
}
|
|
|
|
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
|
|
{
|
|
HWPoisonPage *page;
|
|
|
|
QLIST_FOREACH(page, &hwpoison_page_list, list) {
|
|
if (page->ram_addr == ram_addr) {
|
|
return;
|
|
}
|
|
}
|
|
page = g_malloc(sizeof(HWPoisonPage));
|
|
page->ram_addr = ram_addr;
|
|
QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
|
|
}
|
|
|
|
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
|
|
int *max_banks)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_check_extension(s, KVM_CAP_MCE);
|
|
if (r > 0) {
|
|
*max_banks = r;
|
|
return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
|
|
}
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
|
|
{
|
|
uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
|
|
MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
|
|
uint64_t mcg_status = MCG_STATUS_MCIP;
|
|
|
|
if (code == BUS_MCEERR_AR) {
|
|
status |= MCI_STATUS_AR | 0x134;
|
|
mcg_status |= MCG_STATUS_EIPV;
|
|
} else {
|
|
status |= 0xc0;
|
|
mcg_status |= MCG_STATUS_RIPV;
|
|
}
|
|
cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
|
|
(MCM_ADDR_PHYS << 6) | 0xc,
|
|
cpu_x86_support_mca_broadcast(env) ?
|
|
MCE_INJECT_BROADCAST : 0);
|
|
}
|
|
|
|
static void hardware_memory_error(void)
|
|
{
|
|
fprintf(stderr, "Hardware memory error!\n");
|
|
exit(1);
|
|
}
|
|
|
|
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
target_phys_addr_t paddr;
|
|
|
|
if ((env->mcg_cap & MCG_SER_P) && addr
|
|
&& (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
|
|
if (qemu_ram_addr_from_host(addr, &ram_addr) ||
|
|
!kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
|
|
fprintf(stderr, "Hardware memory error for memory used by "
|
|
"QEMU itself instead of guest system!\n");
|
|
/* Hope we are lucky for AO MCE */
|
|
if (code == BUS_MCEERR_AO) {
|
|
return 0;
|
|
} else {
|
|
hardware_memory_error();
|
|
}
|
|
}
|
|
kvm_hwpoison_page_add(ram_addr);
|
|
kvm_mce_inject(env, paddr, code);
|
|
} else {
|
|
if (code == BUS_MCEERR_AO) {
|
|
return 0;
|
|
} else if (code == BUS_MCEERR_AR) {
|
|
hardware_memory_error();
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus(int code, void *addr)
|
|
{
|
|
if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
|
|
ram_addr_t ram_addr;
|
|
target_phys_addr_t paddr;
|
|
|
|
/* Hope we are lucky for AO MCE */
|
|
if (qemu_ram_addr_from_host(addr, &ram_addr) ||
|
|
!kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
|
|
&paddr)) {
|
|
fprintf(stderr, "Hardware memory error for memory used by "
|
|
"QEMU itself instead of guest system!: %p\n", addr);
|
|
return 0;
|
|
}
|
|
kvm_hwpoison_page_add(ram_addr);
|
|
kvm_mce_inject(first_cpu, paddr, code);
|
|
} else {
|
|
if (code == BUS_MCEERR_AO) {
|
|
return 0;
|
|
} else if (code == BUS_MCEERR_AR) {
|
|
hardware_memory_error();
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_inject_mce_oldstyle(CPUState *env)
|
|
{
|
|
if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
|
|
unsigned int bank, bank_num = env->mcg_cap & 0xff;
|
|
struct kvm_x86_mce mce;
|
|
|
|
env->exception_injected = -1;
|
|
|
|
/*
|
|
* There must be at least one bank in use if an MCE is pending.
|
|
* Find it and use its values for the event injection.
|
|
*/
|
|
for (bank = 0; bank < bank_num; bank++) {
|
|
if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
|
|
break;
|
|
}
|
|
}
|
|
assert(bank < bank_num);
|
|
|
|
mce.bank = bank;
|
|
mce.status = env->mce_banks[bank * 4 + 1];
|
|
mce.mcg_status = env->mcg_status;
|
|
mce.addr = env->mce_banks[bank * 4 + 2];
|
|
mce.misc = env->mce_banks[bank * 4 + 3];
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_update_state(void *opaque, int running, RunState state)
|
|
{
|
|
CPUState *env = opaque;
|
|
|
|
if (running) {
|
|
env->tsc_valid = false;
|
|
}
|
|
}
|
|
|
|
int kvm_arch_init_vcpu(CPUState *env)
|
|
{
|
|
struct {
|
|
struct kvm_cpuid2 cpuid;
|
|
struct kvm_cpuid_entry2 entries[100];
|
|
} QEMU_PACKED cpuid_data;
|
|
KVMState *s = env->kvm_state;
|
|
uint32_t limit, i, j, cpuid_i;
|
|
uint32_t unused;
|
|
struct kvm_cpuid_entry2 *c;
|
|
uint32_t signature[3];
|
|
int r;
|
|
|
|
env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
|
|
|
|
i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
|
|
env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
|
|
env->cpuid_ext_features |= i;
|
|
|
|
env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
|
|
0, R_EDX);
|
|
env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
|
|
0, R_ECX);
|
|
env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
|
|
0, R_EDX);
|
|
|
|
cpuid_i = 0;
|
|
|
|
/* Paravirtualization CPUIDs */
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
memset(c, 0, sizeof(*c));
|
|
c->function = KVM_CPUID_SIGNATURE;
|
|
if (!hyperv_enabled()) {
|
|
memcpy(signature, "KVMKVMKVM\0\0\0", 12);
|
|
c->eax = 0;
|
|
} else {
|
|
memcpy(signature, "Microsoft Hv", 12);
|
|
c->eax = HYPERV_CPUID_MIN;
|
|
}
|
|
c->ebx = signature[0];
|
|
c->ecx = signature[1];
|
|
c->edx = signature[2];
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
memset(c, 0, sizeof(*c));
|
|
c->function = KVM_CPUID_FEATURES;
|
|
c->eax = env->cpuid_kvm_features &
|
|
kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
|
|
|
|
if (hyperv_enabled()) {
|
|
memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
|
|
c->eax = signature[0];
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
memset(c, 0, sizeof(*c));
|
|
c->function = HYPERV_CPUID_VERSION;
|
|
c->eax = 0x00001bbc;
|
|
c->ebx = 0x00060001;
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
memset(c, 0, sizeof(*c));
|
|
c->function = HYPERV_CPUID_FEATURES;
|
|
if (hyperv_relaxed_timing_enabled()) {
|
|
c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
|
|
}
|
|
if (hyperv_vapic_recommended()) {
|
|
c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
|
|
c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
|
|
}
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
memset(c, 0, sizeof(*c));
|
|
c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
|
|
if (hyperv_relaxed_timing_enabled()) {
|
|
c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
|
|
}
|
|
if (hyperv_vapic_recommended()) {
|
|
c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
|
|
}
|
|
c->ebx = hyperv_get_spinlock_retries();
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
memset(c, 0, sizeof(*c));
|
|
c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
|
|
c->eax = 0x40;
|
|
c->ebx = 0x40;
|
|
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
memset(c, 0, sizeof(*c));
|
|
c->function = KVM_CPUID_SIGNATURE_NEXT;
|
|
memcpy(signature, "KVMKVMKVM\0\0\0", 12);
|
|
c->eax = 0;
|
|
c->ebx = signature[0];
|
|
c->ecx = signature[1];
|
|
c->edx = signature[2];
|
|
}
|
|
|
|
has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
|
|
|
|
cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
|
|
|
|
for (i = 0; i <= limit; i++) {
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
|
|
switch (i) {
|
|
case 2: {
|
|
/* Keep reading function 2 till all the input is received */
|
|
int times;
|
|
|
|
c->function = i;
|
|
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
|
|
KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
times = c->eax & 0xff;
|
|
|
|
for (j = 1; j < times; ++j) {
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
c->function = i;
|
|
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
}
|
|
break;
|
|
}
|
|
case 4:
|
|
case 0xb:
|
|
case 0xd:
|
|
for (j = 0; ; j++) {
|
|
if (i == 0xd && j == 64) {
|
|
break;
|
|
}
|
|
c->function = i;
|
|
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
c->index = j;
|
|
cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
|
|
if (i == 4 && c->eax == 0) {
|
|
break;
|
|
}
|
|
if (i == 0xb && !(c->ecx & 0xff00)) {
|
|
break;
|
|
}
|
|
if (i == 0xd && c->eax == 0) {
|
|
continue;
|
|
}
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
}
|
|
break;
|
|
default:
|
|
c->function = i;
|
|
c->flags = 0;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
break;
|
|
}
|
|
}
|
|
cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
|
|
|
|
for (i = 0x80000000; i <= limit; i++) {
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
|
|
c->function = i;
|
|
c->flags = 0;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
}
|
|
|
|
/* Call Centaur's CPUID instructions they are supported. */
|
|
if (env->cpuid_xlevel2 > 0) {
|
|
env->cpuid_ext4_features &=
|
|
kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
|
|
cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
|
|
|
|
for (i = 0xC0000000; i <= limit; i++) {
|
|
c = &cpuid_data.entries[cpuid_i++];
|
|
|
|
c->function = i;
|
|
c->flags = 0;
|
|
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
|
}
|
|
}
|
|
|
|
cpuid_data.cpuid.nent = cpuid_i;
|
|
|
|
if (((env->cpuid_version >> 8)&0xF) >= 6
|
|
&& (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
|
|
&& kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
|
|
uint64_t mcg_cap;
|
|
int banks;
|
|
int ret;
|
|
|
|
ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
if (banks > MCE_BANKS_DEF) {
|
|
banks = MCE_BANKS_DEF;
|
|
}
|
|
mcg_cap &= MCE_CAP_DEF;
|
|
mcg_cap |= banks;
|
|
ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
env->mcg_cap = mcg_cap;
|
|
}
|
|
|
|
qemu_add_vm_change_state_handler(cpu_update_state, env);
|
|
|
|
r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
|
|
if (r && env->tsc_khz) {
|
|
r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
|
|
if (r < 0) {
|
|
fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
|
|
return r;
|
|
}
|
|
}
|
|
|
|
if (kvm_has_xsave()) {
|
|
env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_reset_vcpu(CPUState *env)
|
|
{
|
|
env->exception_injected = -1;
|
|
env->interrupt_injected = -1;
|
|
env->xcr0 = 1;
|
|
if (kvm_irqchip_in_kernel()) {
|
|
env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
|
|
KVM_MP_STATE_UNINITIALIZED;
|
|
} else {
|
|
env->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
}
|
|
}
|
|
|
|
static int kvm_get_supported_msrs(KVMState *s)
|
|
{
|
|
static int kvm_supported_msrs;
|
|
int ret = 0;
|
|
|
|
/* first time */
|
|
if (kvm_supported_msrs == 0) {
|
|
struct kvm_msr_list msr_list, *kvm_msr_list;
|
|
|
|
kvm_supported_msrs = -1;
|
|
|
|
/* Obtain MSR list from KVM. These are the MSRs that we must
|
|
* save/restore */
|
|
msr_list.nmsrs = 0;
|
|
ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
|
|
if (ret < 0 && ret != -E2BIG) {
|
|
return ret;
|
|
}
|
|
/* Old kernel modules had a bug and could write beyond the provided
|
|
memory. Allocate at least a safe amount of 1K. */
|
|
kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
|
|
msr_list.nmsrs *
|
|
sizeof(msr_list.indices[0])));
|
|
|
|
kvm_msr_list->nmsrs = msr_list.nmsrs;
|
|
ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
|
|
if (ret >= 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < kvm_msr_list->nmsrs; i++) {
|
|
if (kvm_msr_list->indices[i] == MSR_STAR) {
|
|
has_msr_star = true;
|
|
continue;
|
|
}
|
|
if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
|
|
has_msr_hsave_pa = true;
|
|
continue;
|
|
}
|
|
if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
|
|
has_msr_tsc_deadline = true;
|
|
continue;
|
|
}
|
|
if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
|
|
has_msr_misc_enable = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
g_free(kvm_msr_list);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_init(KVMState *s)
|
|
{
|
|
uint64_t identity_base = 0xfffbc000;
|
|
int ret;
|
|
struct utsname utsname;
|
|
|
|
ret = kvm_get_supported_msrs(s);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
uname(&utsname);
|
|
lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
|
|
|
|
/*
|
|
* On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
|
|
* In order to use vm86 mode, an EPT identity map and a TSS are needed.
|
|
* Since these must be part of guest physical memory, we need to allocate
|
|
* them, both by setting their start addresses in the kernel and by
|
|
* creating a corresponding e820 entry. We need 4 pages before the BIOS.
|
|
*
|
|
* Older KVM versions may not support setting the identity map base. In
|
|
* that case we need to stick with the default, i.e. a 256K maximum BIOS
|
|
* size.
|
|
*/
|
|
if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
|
|
/* Allows up to 16M BIOSes. */
|
|
identity_base = 0xfeffc000;
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Set TSS base one page after EPT identity map. */
|
|
ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Tell fw_cfg to notify the BIOS to reserve the range. */
|
|
ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "e820_add_entry() table is full\n");
|
|
return ret;
|
|
}
|
|
qemu_register_reset(kvm_unpoison_all, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
|
|
{
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->type = 3;
|
|
lhs->present = 1;
|
|
lhs->dpl = 3;
|
|
lhs->db = 0;
|
|
lhs->s = 1;
|
|
lhs->l = 0;
|
|
lhs->g = 0;
|
|
lhs->avl = 0;
|
|
lhs->unusable = 0;
|
|
}
|
|
|
|
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
|
|
{
|
|
unsigned flags = rhs->flags;
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
|
|
lhs->present = (flags & DESC_P_MASK) != 0;
|
|
lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
|
|
lhs->db = (flags >> DESC_B_SHIFT) & 1;
|
|
lhs->s = (flags & DESC_S_MASK) != 0;
|
|
lhs->l = (flags >> DESC_L_SHIFT) & 1;
|
|
lhs->g = (flags & DESC_G_MASK) != 0;
|
|
lhs->avl = (flags & DESC_AVL_MASK) != 0;
|
|
lhs->unusable = 0;
|
|
}
|
|
|
|
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
|
|
{
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
|
|
(rhs->present * DESC_P_MASK) |
|
|
(rhs->dpl << DESC_DPL_SHIFT) |
|
|
(rhs->db << DESC_B_SHIFT) |
|
|
(rhs->s * DESC_S_MASK) |
|
|
(rhs->l << DESC_L_SHIFT) |
|
|
(rhs->g * DESC_G_MASK) |
|
|
(rhs->avl * DESC_AVL_MASK);
|
|
}
|
|
|
|
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
|
|
{
|
|
if (set) {
|
|
*kvm_reg = *qemu_reg;
|
|
} else {
|
|
*qemu_reg = *kvm_reg;
|
|
}
|
|
}
|
|
|
|
static int kvm_getput_regs(CPUState *env, int set)
|
|
{
|
|
struct kvm_regs regs;
|
|
int ret = 0;
|
|
|
|
if (!set) {
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
|
|
kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
|
|
kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
|
|
kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
|
|
kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
|
|
kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
|
|
kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
|
|
kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
|
|
#ifdef TARGET_X86_64
|
|
kvm_getput_reg(®s.r8, &env->regs[8], set);
|
|
kvm_getput_reg(®s.r9, &env->regs[9], set);
|
|
kvm_getput_reg(®s.r10, &env->regs[10], set);
|
|
kvm_getput_reg(®s.r11, &env->regs[11], set);
|
|
kvm_getput_reg(®s.r12, &env->regs[12], set);
|
|
kvm_getput_reg(®s.r13, &env->regs[13], set);
|
|
kvm_getput_reg(®s.r14, &env->regs[14], set);
|
|
kvm_getput_reg(®s.r15, &env->regs[15], set);
|
|
#endif
|
|
|
|
kvm_getput_reg(®s.rflags, &env->eflags, set);
|
|
kvm_getput_reg(®s.rip, &env->eip, set);
|
|
|
|
if (set) {
|
|
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_put_fpu(CPUState *env)
|
|
{
|
|
struct kvm_fpu fpu;
|
|
int i;
|
|
|
|
memset(&fpu, 0, sizeof fpu);
|
|
fpu.fsw = env->fpus & ~(7 << 11);
|
|
fpu.fsw |= (env->fpstt & 7) << 11;
|
|
fpu.fcw = env->fpuc;
|
|
fpu.last_opcode = env->fpop;
|
|
fpu.last_ip = env->fpip;
|
|
fpu.last_dp = env->fpdp;
|
|
for (i = 0; i < 8; ++i) {
|
|
fpu.ftwx |= (!env->fptags[i]) << i;
|
|
}
|
|
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
|
|
memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
|
|
fpu.mxcsr = env->mxcsr;
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
|
|
}
|
|
|
|
#define XSAVE_FCW_FSW 0
|
|
#define XSAVE_FTW_FOP 1
|
|
#define XSAVE_CWD_RIP 2
|
|
#define XSAVE_CWD_RDP 4
|
|
#define XSAVE_MXCSR 6
|
|
#define XSAVE_ST_SPACE 8
|
|
#define XSAVE_XMM_SPACE 40
|
|
#define XSAVE_XSTATE_BV 128
|
|
#define XSAVE_YMMH_SPACE 144
|
|
|
|
static int kvm_put_xsave(CPUState *env)
|
|
{
|
|
struct kvm_xsave* xsave = env->kvm_xsave_buf;
|
|
uint16_t cwd, swd, twd;
|
|
int i, r;
|
|
|
|
if (!kvm_has_xsave()) {
|
|
return kvm_put_fpu(env);
|
|
}
|
|
|
|
memset(xsave, 0, sizeof(struct kvm_xsave));
|
|
twd = 0;
|
|
swd = env->fpus & ~(7 << 11);
|
|
swd |= (env->fpstt & 7) << 11;
|
|
cwd = env->fpuc;
|
|
for (i = 0; i < 8; ++i) {
|
|
twd |= (!env->fptags[i]) << i;
|
|
}
|
|
xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
|
|
xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
|
|
memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
|
|
memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
|
|
memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
|
|
sizeof env->fpregs);
|
|
memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
|
|
sizeof env->xmm_regs);
|
|
xsave->region[XSAVE_MXCSR] = env->mxcsr;
|
|
*(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
|
|
memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
|
|
sizeof env->ymmh_regs);
|
|
r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_put_xcrs(CPUState *env)
|
|
{
|
|
struct kvm_xcrs xcrs;
|
|
|
|
if (!kvm_has_xcrs()) {
|
|
return 0;
|
|
}
|
|
|
|
xcrs.nr_xcrs = 1;
|
|
xcrs.flags = 0;
|
|
xcrs.xcrs[0].xcr = 0;
|
|
xcrs.xcrs[0].value = env->xcr0;
|
|
return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
|
|
}
|
|
|
|
static int kvm_put_sregs(CPUState *env)
|
|
{
|
|
struct kvm_sregs sregs;
|
|
|
|
memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
|
|
if (env->interrupt_injected >= 0) {
|
|
sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
|
|
(uint64_t)1 << (env->interrupt_injected % 64);
|
|
}
|
|
|
|
if ((env->eflags & VM_MASK)) {
|
|
set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
|
|
set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
|
|
set_v8086_seg(&sregs.es, &env->segs[R_ES]);
|
|
set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
|
|
set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
|
|
set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
|
|
} else {
|
|
set_seg(&sregs.cs, &env->segs[R_CS]);
|
|
set_seg(&sregs.ds, &env->segs[R_DS]);
|
|
set_seg(&sregs.es, &env->segs[R_ES]);
|
|
set_seg(&sregs.fs, &env->segs[R_FS]);
|
|
set_seg(&sregs.gs, &env->segs[R_GS]);
|
|
set_seg(&sregs.ss, &env->segs[R_SS]);
|
|
}
|
|
|
|
set_seg(&sregs.tr, &env->tr);
|
|
set_seg(&sregs.ldt, &env->ldt);
|
|
|
|
sregs.idt.limit = env->idt.limit;
|
|
sregs.idt.base = env->idt.base;
|
|
sregs.gdt.limit = env->gdt.limit;
|
|
sregs.gdt.base = env->gdt.base;
|
|
|
|
sregs.cr0 = env->cr[0];
|
|
sregs.cr2 = env->cr[2];
|
|
sregs.cr3 = env->cr[3];
|
|
sregs.cr4 = env->cr[4];
|
|
|
|
sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
|
|
sregs.apic_base = cpu_get_apic_base(env->apic_state);
|
|
|
|
sregs.efer = env->efer;
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
|
|
}
|
|
|
|
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
|
|
uint32_t index, uint64_t value)
|
|
{
|
|
entry->index = index;
|
|
entry->data = value;
|
|
}
|
|
|
|
static int kvm_put_msrs(CPUState *env, int level)
|
|
{
|
|
struct {
|
|
struct kvm_msrs info;
|
|
struct kvm_msr_entry entries[100];
|
|
} msr_data;
|
|
struct kvm_msr_entry *msrs = msr_data.entries;
|
|
int n = 0;
|
|
|
|
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
|
|
if (has_msr_star) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
|
|
}
|
|
if (has_msr_hsave_pa) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
|
|
}
|
|
if (has_msr_tsc_deadline) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
|
|
}
|
|
if (has_msr_misc_enable) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
|
|
env->msr_ia32_misc_enable);
|
|
}
|
|
#ifdef TARGET_X86_64
|
|
if (lm_capable_kernel) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
|
|
}
|
|
#endif
|
|
if (level == KVM_PUT_FULL_STATE) {
|
|
/*
|
|
* KVM is yet unable to synchronize TSC values of multiple VCPUs on
|
|
* writeback. Until this is fixed, we only write the offset to SMP
|
|
* guests after migration, desynchronizing the VCPUs, but avoiding
|
|
* huge jump-backs that would occur without any writeback at all.
|
|
*/
|
|
if (smp_cpus == 1 || env->tsc != 0) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
|
|
}
|
|
}
|
|
/*
|
|
* The following paravirtual MSRs have side effects on the guest or are
|
|
* too heavy for normal writeback. Limit them to reset or full state
|
|
* updates.
|
|
*/
|
|
if (level >= KVM_PUT_RESET_STATE) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
|
|
env->system_time_msr);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
|
|
if (has_msr_async_pf_en) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
|
|
env->async_pf_en_msr);
|
|
}
|
|
if (hyperv_hypercall_available()) {
|
|
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
|
|
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
|
|
}
|
|
if (hyperv_vapic_recommended()) {
|
|
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
|
|
}
|
|
}
|
|
if (env->mcg_cap) {
|
|
int i;
|
|
|
|
kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
|
|
kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
|
|
for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
|
|
kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
|
|
}
|
|
}
|
|
|
|
msr_data.info.nmsrs = n;
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
|
|
|
|
}
|
|
|
|
|
|
static int kvm_get_fpu(CPUState *env)
|
|
{
|
|
struct kvm_fpu fpu;
|
|
int i, ret;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
env->fpstt = (fpu.fsw >> 11) & 7;
|
|
env->fpus = fpu.fsw;
|
|
env->fpuc = fpu.fcw;
|
|
env->fpop = fpu.last_opcode;
|
|
env->fpip = fpu.last_ip;
|
|
env->fpdp = fpu.last_dp;
|
|
for (i = 0; i < 8; ++i) {
|
|
env->fptags[i] = !((fpu.ftwx >> i) & 1);
|
|
}
|
|
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
|
|
memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
|
|
env->mxcsr = fpu.mxcsr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_xsave(CPUState *env)
|
|
{
|
|
struct kvm_xsave* xsave = env->kvm_xsave_buf;
|
|
int ret, i;
|
|
uint16_t cwd, swd, twd;
|
|
|
|
if (!kvm_has_xsave()) {
|
|
return kvm_get_fpu(env);
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
|
|
swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
|
|
twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
|
|
env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
|
|
env->fpstt = (swd >> 11) & 7;
|
|
env->fpus = swd;
|
|
env->fpuc = cwd;
|
|
for (i = 0; i < 8; ++i) {
|
|
env->fptags[i] = !((twd >> i) & 1);
|
|
}
|
|
memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
|
|
memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
|
|
env->mxcsr = xsave->region[XSAVE_MXCSR];
|
|
memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
|
|
sizeof env->fpregs);
|
|
memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
|
|
sizeof env->xmm_regs);
|
|
env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
|
|
memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
|
|
sizeof env->ymmh_regs);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_xcrs(CPUState *env)
|
|
{
|
|
int i, ret;
|
|
struct kvm_xcrs xcrs;
|
|
|
|
if (!kvm_has_xcrs()) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < xcrs.nr_xcrs; i++) {
|
|
/* Only support xcr0 now */
|
|
if (xcrs.xcrs[0].xcr == 0) {
|
|
env->xcr0 = xcrs.xcrs[0].value;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_sregs(CPUState *env)
|
|
{
|
|
struct kvm_sregs sregs;
|
|
uint32_t hflags;
|
|
int bit, i, ret;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* There can only be one pending IRQ set in the bitmap at a time, so try
|
|
to find it and save its number instead (-1 for none). */
|
|
env->interrupt_injected = -1;
|
|
for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
|
|
if (sregs.interrupt_bitmap[i]) {
|
|
bit = ctz64(sregs.interrupt_bitmap[i]);
|
|
env->interrupt_injected = i * 64 + bit;
|
|
break;
|
|
}
|
|
}
|
|
|
|
get_seg(&env->segs[R_CS], &sregs.cs);
|
|
get_seg(&env->segs[R_DS], &sregs.ds);
|
|
get_seg(&env->segs[R_ES], &sregs.es);
|
|
get_seg(&env->segs[R_FS], &sregs.fs);
|
|
get_seg(&env->segs[R_GS], &sregs.gs);
|
|
get_seg(&env->segs[R_SS], &sregs.ss);
|
|
|
|
get_seg(&env->tr, &sregs.tr);
|
|
get_seg(&env->ldt, &sregs.ldt);
|
|
|
|
env->idt.limit = sregs.idt.limit;
|
|
env->idt.base = sregs.idt.base;
|
|
env->gdt.limit = sregs.gdt.limit;
|
|
env->gdt.base = sregs.gdt.base;
|
|
|
|
env->cr[0] = sregs.cr0;
|
|
env->cr[2] = sregs.cr2;
|
|
env->cr[3] = sregs.cr3;
|
|
env->cr[4] = sregs.cr4;
|
|
|
|
env->efer = sregs.efer;
|
|
|
|
/* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
|
|
|
|
#define HFLAG_COPY_MASK \
|
|
~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
|
|
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
|
|
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
|
|
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
|
|
|
|
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
|
|
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
|
|
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
|
|
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
|
|
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
|
|
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
|
|
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
|
|
|
|
if (env->efer & MSR_EFER_LMA) {
|
|
hflags |= HF_LMA_MASK;
|
|
}
|
|
|
|
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
|
|
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
|
|
} else {
|
|
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
|
|
(DESC_B_SHIFT - HF_CS32_SHIFT);
|
|
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
|
|
(DESC_B_SHIFT - HF_SS32_SHIFT);
|
|
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
|
|
!(hflags & HF_CS32_MASK)) {
|
|
hflags |= HF_ADDSEG_MASK;
|
|
} else {
|
|
hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
|
|
env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
|
|
}
|
|
}
|
|
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_msrs(CPUState *env)
|
|
{
|
|
struct {
|
|
struct kvm_msrs info;
|
|
struct kvm_msr_entry entries[100];
|
|
} msr_data;
|
|
struct kvm_msr_entry *msrs = msr_data.entries;
|
|
int ret, i, n;
|
|
|
|
n = 0;
|
|
msrs[n++].index = MSR_IA32_SYSENTER_CS;
|
|
msrs[n++].index = MSR_IA32_SYSENTER_ESP;
|
|
msrs[n++].index = MSR_IA32_SYSENTER_EIP;
|
|
msrs[n++].index = MSR_PAT;
|
|
if (has_msr_star) {
|
|
msrs[n++].index = MSR_STAR;
|
|
}
|
|
if (has_msr_hsave_pa) {
|
|
msrs[n++].index = MSR_VM_HSAVE_PA;
|
|
}
|
|
if (has_msr_tsc_deadline) {
|
|
msrs[n++].index = MSR_IA32_TSCDEADLINE;
|
|
}
|
|
if (has_msr_misc_enable) {
|
|
msrs[n++].index = MSR_IA32_MISC_ENABLE;
|
|
}
|
|
|
|
if (!env->tsc_valid) {
|
|
msrs[n++].index = MSR_IA32_TSC;
|
|
env->tsc_valid = !runstate_is_running();
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
if (lm_capable_kernel) {
|
|
msrs[n++].index = MSR_CSTAR;
|
|
msrs[n++].index = MSR_KERNELGSBASE;
|
|
msrs[n++].index = MSR_FMASK;
|
|
msrs[n++].index = MSR_LSTAR;
|
|
}
|
|
#endif
|
|
msrs[n++].index = MSR_KVM_SYSTEM_TIME;
|
|
msrs[n++].index = MSR_KVM_WALL_CLOCK;
|
|
if (has_msr_async_pf_en) {
|
|
msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
|
|
}
|
|
|
|
if (env->mcg_cap) {
|
|
msrs[n++].index = MSR_MCG_STATUS;
|
|
msrs[n++].index = MSR_MCG_CTL;
|
|
for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
|
|
msrs[n++].index = MSR_MC0_CTL + i;
|
|
}
|
|
}
|
|
|
|
msr_data.info.nmsrs = n;
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
switch (msrs[i].index) {
|
|
case MSR_IA32_SYSENTER_CS:
|
|
env->sysenter_cs = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
env->sysenter_esp = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
env->sysenter_eip = msrs[i].data;
|
|
break;
|
|
case MSR_PAT:
|
|
env->pat = msrs[i].data;
|
|
break;
|
|
case MSR_STAR:
|
|
env->star = msrs[i].data;
|
|
break;
|
|
#ifdef TARGET_X86_64
|
|
case MSR_CSTAR:
|
|
env->cstar = msrs[i].data;
|
|
break;
|
|
case MSR_KERNELGSBASE:
|
|
env->kernelgsbase = msrs[i].data;
|
|
break;
|
|
case MSR_FMASK:
|
|
env->fmask = msrs[i].data;
|
|
break;
|
|
case MSR_LSTAR:
|
|
env->lstar = msrs[i].data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_TSC:
|
|
env->tsc = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_TSCDEADLINE:
|
|
env->tsc_deadline = msrs[i].data;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
env->vm_hsave = msrs[i].data;
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME:
|
|
env->system_time_msr = msrs[i].data;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK:
|
|
env->wall_clock_msr = msrs[i].data;
|
|
break;
|
|
case MSR_MCG_STATUS:
|
|
env->mcg_status = msrs[i].data;
|
|
break;
|
|
case MSR_MCG_CTL:
|
|
env->mcg_ctl = msrs[i].data;
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
env->msr_ia32_misc_enable = msrs[i].data;
|
|
break;
|
|
default:
|
|
if (msrs[i].index >= MSR_MC0_CTL &&
|
|
msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
|
|
env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
|
|
}
|
|
break;
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
env->async_pf_en_msr = msrs[i].data;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_put_mp_state(CPUState *env)
|
|
{
|
|
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
|
|
}
|
|
|
|
static int kvm_get_mp_state(CPUState *env)
|
|
{
|
|
struct kvm_mp_state mp_state;
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
env->mp_state = mp_state.mp_state;
|
|
if (kvm_irqchip_in_kernel()) {
|
|
env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_apic(CPUState *env)
|
|
{
|
|
DeviceState *apic = env->apic_state;
|
|
struct kvm_lapic_state kapic;
|
|
int ret;
|
|
|
|
if (apic && kvm_enabled() && kvm_irqchip_in_kernel()) {
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
kvm_get_apic_state(apic, &kapic);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_put_apic(CPUState *env)
|
|
{
|
|
DeviceState *apic = env->apic_state;
|
|
struct kvm_lapic_state kapic;
|
|
|
|
if (apic && kvm_enabled() && kvm_irqchip_in_kernel()) {
|
|
kvm_put_apic_state(apic, &kapic);
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_put_vcpu_events(CPUState *env, int level)
|
|
{
|
|
struct kvm_vcpu_events events;
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
return 0;
|
|
}
|
|
|
|
events.exception.injected = (env->exception_injected >= 0);
|
|
events.exception.nr = env->exception_injected;
|
|
events.exception.has_error_code = env->has_error_code;
|
|
events.exception.error_code = env->error_code;
|
|
|
|
events.interrupt.injected = (env->interrupt_injected >= 0);
|
|
events.interrupt.nr = env->interrupt_injected;
|
|
events.interrupt.soft = env->soft_interrupt;
|
|
|
|
events.nmi.injected = env->nmi_injected;
|
|
events.nmi.pending = env->nmi_pending;
|
|
events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
|
|
|
|
events.sipi_vector = env->sipi_vector;
|
|
|
|
events.flags = 0;
|
|
if (level >= KVM_PUT_RESET_STATE) {
|
|
events.flags |=
|
|
KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
|
|
}
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
|
|
}
|
|
|
|
static int kvm_get_vcpu_events(CPUState *env)
|
|
{
|
|
struct kvm_vcpu_events events;
|
|
int ret;
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
env->exception_injected =
|
|
events.exception.injected ? events.exception.nr : -1;
|
|
env->has_error_code = events.exception.has_error_code;
|
|
env->error_code = events.exception.error_code;
|
|
|
|
env->interrupt_injected =
|
|
events.interrupt.injected ? events.interrupt.nr : -1;
|
|
env->soft_interrupt = events.interrupt.soft;
|
|
|
|
env->nmi_injected = events.nmi.injected;
|
|
env->nmi_pending = events.nmi.pending;
|
|
if (events.nmi.masked) {
|
|
env->hflags2 |= HF2_NMI_MASK;
|
|
} else {
|
|
env->hflags2 &= ~HF2_NMI_MASK;
|
|
}
|
|
|
|
env->sipi_vector = events.sipi_vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_guest_debug_workarounds(CPUState *env)
|
|
{
|
|
int ret = 0;
|
|
unsigned long reinject_trap = 0;
|
|
|
|
if (!kvm_has_vcpu_events()) {
|
|
if (env->exception_injected == 1) {
|
|
reinject_trap = KVM_GUESTDBG_INJECT_DB;
|
|
} else if (env->exception_injected == 3) {
|
|
reinject_trap = KVM_GUESTDBG_INJECT_BP;
|
|
}
|
|
env->exception_injected = -1;
|
|
}
|
|
|
|
/*
|
|
* Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
|
|
* injected via SET_GUEST_DEBUG while updating GP regs. Work around this
|
|
* by updating the debug state once again if single-stepping is on.
|
|
* Another reason to call kvm_update_guest_debug here is a pending debug
|
|
* trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
|
|
* reinject them via SET_GUEST_DEBUG.
|
|
*/
|
|
if (reinject_trap ||
|
|
(!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
|
|
ret = kvm_update_guest_debug(env, reinject_trap);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_put_debugregs(CPUState *env)
|
|
{
|
|
struct kvm_debugregs dbgregs;
|
|
int i;
|
|
|
|
if (!kvm_has_debugregs()) {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
dbgregs.db[i] = env->dr[i];
|
|
}
|
|
dbgregs.dr6 = env->dr[6];
|
|
dbgregs.dr7 = env->dr[7];
|
|
dbgregs.flags = 0;
|
|
|
|
return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
|
|
}
|
|
|
|
static int kvm_get_debugregs(CPUState *env)
|
|
{
|
|
struct kvm_debugregs dbgregs;
|
|
int i, ret;
|
|
|
|
if (!kvm_has_debugregs()) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
env->dr[i] = dbgregs.db[i];
|
|
}
|
|
env->dr[4] = env->dr[6] = dbgregs.dr6;
|
|
env->dr[5] = env->dr[7] = dbgregs.dr7;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_put_registers(CPUState *env, int level)
|
|
{
|
|
int ret;
|
|
|
|
assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
|
|
|
|
ret = kvm_getput_regs(env, 1);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_xsave(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_xcrs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_sregs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
/* must be before kvm_put_msrs */
|
|
ret = kvm_inject_mce_oldstyle(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_msrs(env, level);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
if (level >= KVM_PUT_RESET_STATE) {
|
|
ret = kvm_put_mp_state(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_apic(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
ret = kvm_put_vcpu_events(env, level);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_put_debugregs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
/* must be last */
|
|
ret = kvm_guest_debug_workarounds(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *env)
|
|
{
|
|
int ret;
|
|
|
|
assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
|
|
|
|
ret = kvm_getput_regs(env, 0);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_xsave(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_xcrs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_sregs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_msrs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_mp_state(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_apic(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_vcpu_events(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = kvm_get_debugregs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
|
|
{
|
|
int ret;
|
|
|
|
/* Inject NMI */
|
|
if (env->interrupt_request & CPU_INTERRUPT_NMI) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
|
DPRINTF("injected NMI\n");
|
|
ret = kvm_vcpu_ioctl(env, KVM_NMI);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
|
|
strerror(-ret));
|
|
}
|
|
}
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
/* Force the VCPU out of its inner loop to process the INIT request */
|
|
if (env->interrupt_request & CPU_INTERRUPT_INIT) {
|
|
env->exit_request = 1;
|
|
}
|
|
|
|
/* Try to inject an interrupt if the guest can accept it */
|
|
if (run->ready_for_interrupt_injection &&
|
|
(env->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK)) {
|
|
int irq;
|
|
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
|
irq = cpu_get_pic_interrupt(env);
|
|
if (irq >= 0) {
|
|
struct kvm_interrupt intr;
|
|
|
|
intr.irq = irq;
|
|
DPRINTF("injected interrupt %d\n", irq);
|
|
ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
|
|
if (ret < 0) {
|
|
fprintf(stderr,
|
|
"KVM: injection failed, interrupt lost (%s)\n",
|
|
strerror(-ret));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we have an interrupt but the guest is not ready to receive an
|
|
* interrupt, request an interrupt window exit. This will
|
|
* cause a return to userspace as soon as the guest is ready to
|
|
* receive interrupts. */
|
|
if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
|
|
run->request_interrupt_window = 1;
|
|
} else {
|
|
run->request_interrupt_window = 0;
|
|
}
|
|
|
|
DPRINTF("setting tpr\n");
|
|
run->cr8 = cpu_get_apic_tpr(env->apic_state);
|
|
}
|
|
}
|
|
|
|
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
|
|
{
|
|
if (run->if_flag) {
|
|
env->eflags |= IF_MASK;
|
|
} else {
|
|
env->eflags &= ~IF_MASK;
|
|
}
|
|
cpu_set_apic_tpr(env->apic_state, run->cr8);
|
|
cpu_set_apic_base(env->apic_state, run->apic_base);
|
|
}
|
|
|
|
int kvm_arch_process_async_events(CPUState *env)
|
|
{
|
|
if (env->interrupt_request & CPU_INTERRUPT_MCE) {
|
|
/* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
|
|
assert(env->mcg_cap);
|
|
|
|
env->interrupt_request &= ~CPU_INTERRUPT_MCE;
|
|
|
|
kvm_cpu_synchronize_state(env);
|
|
|
|
if (env->exception_injected == EXCP08_DBLE) {
|
|
/* this means triple fault */
|
|
qemu_system_reset_request();
|
|
env->exit_request = 1;
|
|
return 0;
|
|
}
|
|
env->exception_injected = EXCP12_MCHK;
|
|
env->has_error_code = 0;
|
|
|
|
env->halted = 0;
|
|
if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
|
|
env->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
}
|
|
}
|
|
|
|
if (kvm_irqchip_in_kernel()) {
|
|
return 0;
|
|
}
|
|
|
|
if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK)) ||
|
|
(env->interrupt_request & CPU_INTERRUPT_NMI)) {
|
|
env->halted = 0;
|
|
}
|
|
if (env->interrupt_request & CPU_INTERRUPT_INIT) {
|
|
kvm_cpu_synchronize_state(env);
|
|
do_cpu_init(env);
|
|
}
|
|
if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
|
|
kvm_cpu_synchronize_state(env);
|
|
do_cpu_sipi(env);
|
|
}
|
|
|
|
return env->halted;
|
|
}
|
|
|
|
static int kvm_handle_halt(CPUState *env)
|
|
{
|
|
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK)) &&
|
|
!(env->interrupt_request & CPU_INTERRUPT_NMI)) {
|
|
env->halted = 1;
|
|
return EXCP_HLT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
static const uint8_t int3 = 0xcc;
|
|
|
|
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
|
|
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
uint8_t int3;
|
|
|
|
if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
|
|
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct {
|
|
target_ulong addr;
|
|
int len;
|
|
int type;
|
|
} hw_breakpoint[4];
|
|
|
|
static int nb_hw_breakpoint;
|
|
|
|
static int find_hw_breakpoint(target_ulong addr, int len, int type)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < nb_hw_breakpoint; n++) {
|
|
if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
|
|
(hw_breakpoint[n].len == len || len == -1)) {
|
|
return n;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_HW:
|
|
len = 1;
|
|
break;
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
switch (len) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
if (addr & (len - 1)) {
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (nb_hw_breakpoint == 4) {
|
|
return -ENOBUFS;
|
|
}
|
|
if (find_hw_breakpoint(addr, len, type) >= 0) {
|
|
return -EEXIST;
|
|
}
|
|
hw_breakpoint[nb_hw_breakpoint].addr = addr;
|
|
hw_breakpoint[nb_hw_breakpoint].len = len;
|
|
hw_breakpoint[nb_hw_breakpoint].type = type;
|
|
nb_hw_breakpoint++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
int n;
|
|
|
|
n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
|
|
if (n < 0) {
|
|
return -ENOENT;
|
|
}
|
|
nb_hw_breakpoint--;
|
|
hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
nb_hw_breakpoint = 0;
|
|
}
|
|
|
|
static CPUWatchpoint hw_watchpoint;
|
|
|
|
static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
|
|
{
|
|
int ret = 0;
|
|
int n;
|
|
|
|
if (arch_info->exception == 1) {
|
|
if (arch_info->dr6 & (1 << 14)) {
|
|
if (cpu_single_env->singlestep_enabled) {
|
|
ret = EXCP_DEBUG;
|
|
}
|
|
} else {
|
|
for (n = 0; n < 4; n++) {
|
|
if (arch_info->dr6 & (1 << n)) {
|
|
switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
|
|
case 0x0:
|
|
ret = EXCP_DEBUG;
|
|
break;
|
|
case 0x1:
|
|
ret = EXCP_DEBUG;
|
|
cpu_single_env->watchpoint_hit = &hw_watchpoint;
|
|
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
|
|
hw_watchpoint.flags = BP_MEM_WRITE;
|
|
break;
|
|
case 0x3:
|
|
ret = EXCP_DEBUG;
|
|
cpu_single_env->watchpoint_hit = &hw_watchpoint;
|
|
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
|
|
hw_watchpoint.flags = BP_MEM_ACCESS;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
|
|
ret = EXCP_DEBUG;
|
|
}
|
|
if (ret == 0) {
|
|
cpu_synchronize_state(cpu_single_env);
|
|
assert(cpu_single_env->exception_injected == -1);
|
|
|
|
/* pass to guest */
|
|
cpu_single_env->exception_injected = arch_info->exception;
|
|
cpu_single_env->has_error_code = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
|
|
{
|
|
const uint8_t type_code[] = {
|
|
[GDB_BREAKPOINT_HW] = 0x0,
|
|
[GDB_WATCHPOINT_WRITE] = 0x1,
|
|
[GDB_WATCHPOINT_ACCESS] = 0x3
|
|
};
|
|
const uint8_t len_code[] = {
|
|
[1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
|
|
};
|
|
int n;
|
|
|
|
if (kvm_sw_breakpoints_active(env)) {
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
|
|
}
|
|
if (nb_hw_breakpoint > 0) {
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
|
|
dbg->arch.debugreg[7] = 0x0600;
|
|
for (n = 0; n < nb_hw_breakpoint; n++) {
|
|
dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
|
|
dbg->arch.debugreg[7] |= (2 << (n * 2)) |
|
|
(type_code[hw_breakpoint[n].type] << (16 + n*4)) |
|
|
((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool host_supports_vmx(void)
|
|
{
|
|
uint32_t ecx, unused;
|
|
|
|
host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
|
|
return ecx & CPUID_EXT_VMX;
|
|
}
|
|
|
|
#define VMX_INVALID_GUEST_STATE 0x80000021
|
|
|
|
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
|
|
{
|
|
uint64_t code;
|
|
int ret;
|
|
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_HLT:
|
|
DPRINTF("handle_hlt\n");
|
|
ret = kvm_handle_halt(env);
|
|
break;
|
|
case KVM_EXIT_SET_TPR:
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_FAIL_ENTRY:
|
|
code = run->fail_entry.hardware_entry_failure_reason;
|
|
fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
|
|
code);
|
|
if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
|
|
fprintf(stderr,
|
|
"\nIf you're running a guest on an Intel machine without "
|
|
"unrestricted mode\n"
|
|
"support, the failure can be most likely due to the guest "
|
|
"entering an invalid\n"
|
|
"state for Intel VT. For example, the guest maybe running "
|
|
"in big real mode\n"
|
|
"which is not supported on less recent Intel processors."
|
|
"\n\n");
|
|
}
|
|
ret = -1;
|
|
break;
|
|
case KVM_EXIT_EXCEPTION:
|
|
fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
|
|
run->ex.exception, run->ex.error_code);
|
|
ret = -1;
|
|
break;
|
|
case KVM_EXIT_DEBUG:
|
|
DPRINTF("kvm_exit_debug\n");
|
|
ret = kvm_handle_debug(&run->debug.arch);
|
|
break;
|
|
default:
|
|
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *env)
|
|
{
|
|
return !(env->cr[0] & CR0_PE_MASK) ||
|
|
((env->segs[R_CS].selector & 3) != 3);
|
|
}
|
|
|
|
void kvm_arch_init_irq_routing(KVMState *s)
|
|
{
|
|
if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
|
|
/* If kernel can't do irq routing, interrupt source
|
|
* override 0->2 cannot be set up as required by HPET.
|
|
* So we have to disable it.
|
|
*/
|
|
no_hpet = 1;
|
|
}
|
|
}
|