xemu/target-xtensa/helper.c
Max Filippov ac8b7db493 target-xtensa: extract core configuration from overlay
Introduce overlay_tool.h that defines core configuration blocks from
data available in the linux architecture variant overlay.

Overlay data is automatically generated in the core configuration
process by Tensilica tools and can be directly converted to qemu xtensa
core description by overlay_tool.h

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2011-10-16 10:39:52 +00:00

543 lines
16 KiB
C

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu.h"
#include "exec-all.h"
#include "gdbstub.h"
#include "qemu-common.h"
#include "host-utils.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
static void reset_mmu(CPUState *env);
void cpu_reset(CPUXtensaState *env)
{
env->exception_taken = 0;
env->pc = env->config->exception_vector[EXC_RESET];
env->sregs[LITBASE] &= ~1;
env->sregs[PS] = xtensa_option_enabled(env->config,
XTENSA_OPTION_INTERRUPT) ? 0x1f : 0x10;
env->sregs[VECBASE] = env->config->vecbase;
env->pending_irq_level = 0;
reset_mmu(env);
}
static struct XtensaConfigList *xtensa_cores;
void xtensa_register_core(XtensaConfigList *node)
{
node->next = xtensa_cores;
xtensa_cores = node;
}
CPUXtensaState *cpu_xtensa_init(const char *cpu_model)
{
static int tcg_inited;
CPUXtensaState *env;
const XtensaConfig *config = NULL;
XtensaConfigList *core = xtensa_cores;
for (; core; core = core->next)
if (strcmp(core->config->name, cpu_model) == 0) {
config = core->config;
break;
}
if (config == NULL) {
return NULL;
}
env = g_malloc0(sizeof(*env));
env->config = config;
cpu_exec_init(env);
if (!tcg_inited) {
tcg_inited = 1;
xtensa_translate_init();
}
xtensa_irq_init(env);
qemu_init_vcpu(env);
return env;
}
void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
XtensaConfigList *core = xtensa_cores;
cpu_fprintf(f, "Available CPUs:\n");
for (; core; core = core->next) {
cpu_fprintf(f, " %s\n", core->config->name);
}
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
if (xtensa_get_physical_addr(env, addr, 0, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
if (xtensa_get_physical_addr(env, addr, 2, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
return ~0;
}
static uint32_t relocated_vector(CPUState *env, uint32_t vector)
{
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_RELOCATABLE_VECTOR)) {
return vector - env->config->vecbase + env->sregs[VECBASE];
} else {
return vector;
}
}
/*!
* Handle penging IRQ.
* For the high priority interrupt jump to the corresponding interrupt vector.
* For the level-1 interrupt convert it to either user, kernel or double
* exception with the 'level-1 interrupt' exception cause.
*/
static void handle_interrupt(CPUState *env)
{
int level = env->pending_irq_level;
if (level > xtensa_get_cintlevel(env) &&
level <= env->config->nlevel &&
(env->config->level_mask[level] &
env->sregs[INTSET] &
env->sregs[INTENABLE])) {
if (level > 1) {
env->sregs[EPC1 + level - 1] = env->pc;
env->sregs[EPS2 + level - 2] = env->sregs[PS];
env->sregs[PS] =
(env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
env->pc = relocated_vector(env,
env->config->interrupt_vector[level]);
} else {
env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
if (env->sregs[PS] & PS_EXCM) {
if (env->config->ndepc) {
env->sregs[DEPC] = env->pc;
} else {
env->sregs[EPC1] = env->pc;
}
env->exception_index = EXC_DOUBLE;
} else {
env->sregs[EPC1] = env->pc;
env->exception_index =
(env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
}
env->sregs[PS] |= PS_EXCM;
}
env->exception_taken = 1;
}
}
void do_interrupt(CPUState *env)
{
if (env->exception_index == EXC_IRQ) {
qemu_log_mask(CPU_LOG_INT,
"%s(EXC_IRQ) level = %d, cintlevel = %d, "
"pc = %08x, a0 = %08x, ps = %08x, "
"intset = %08x, intenable = %08x, "
"ccount = %08x\n",
__func__, env->pending_irq_level, xtensa_get_cintlevel(env),
env->pc, env->regs[0], env->sregs[PS],
env->sregs[INTSET], env->sregs[INTENABLE],
env->sregs[CCOUNT]);
handle_interrupt(env);
}
switch (env->exception_index) {
case EXC_WINDOW_OVERFLOW4:
case EXC_WINDOW_UNDERFLOW4:
case EXC_WINDOW_OVERFLOW8:
case EXC_WINDOW_UNDERFLOW8:
case EXC_WINDOW_OVERFLOW12:
case EXC_WINDOW_UNDERFLOW12:
case EXC_KERNEL:
case EXC_USER:
case EXC_DOUBLE:
qemu_log_mask(CPU_LOG_INT, "%s(%d) "
"pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
__func__, env->exception_index,
env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
if (env->config->exception_vector[env->exception_index]) {
env->pc = relocated_vector(env,
env->config->exception_vector[env->exception_index]);
env->exception_taken = 1;
} else {
qemu_log("%s(pc = %08x) bad exception_index: %d\n",
__func__, env->pc, env->exception_index);
}
break;
case EXC_IRQ:
break;
default:
qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
__func__, env->pc, env->exception_index);
break;
}
check_interrupts(env);
}
static void reset_tlb_mmu_all_ways(CPUState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned wi, ei;
for (wi = 0; wi < tlb->nways; ++wi) {
for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
entry[wi][ei].asid = 0;
entry[wi][ei].variable = true;
}
}
}
static void reset_tlb_mmu_ways56(CPUState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
if (!tlb->varway56) {
static const xtensa_tlb_entry way5[] = {
{
.vaddr = 0xd0000000,
.paddr = 0,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xd8000000,
.paddr = 0,
.asid = 1,
.attr = 3,
.variable = false,
}
};
static const xtensa_tlb_entry way6[] = {
{
.vaddr = 0xe0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xf0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 3,
.variable = false,
}
};
memcpy(entry[5], way5, sizeof(way5));
memcpy(entry[6], way6, sizeof(way6));
} else {
uint32_t ei;
for (ei = 0; ei < 8; ++ei) {
entry[6][ei].vaddr = ei << 29;
entry[6][ei].paddr = ei << 29;
entry[6][ei].asid = 1;
entry[6][ei].attr = 2;
}
}
}
static void reset_tlb_region_way0(CPUState *env,
xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned ei;
for (ei = 0; ei < 8; ++ei) {
entry[0][ei].vaddr = ei << 29;
entry[0][ei].paddr = ei << 29;
entry[0][ei].asid = 1;
entry[0][ei].attr = 2;
entry[0][ei].variable = true;
}
}
static void reset_mmu(CPUState *env)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
env->sregs[RASID] = 0x04030201;
env->sregs[ITLBCFG] = 0;
env->sregs[DTLBCFG] = 0;
env->autorefill_idx = 0;
reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
} else {
reset_tlb_region_way0(env, env->itlb);
reset_tlb_region_way0(env, env->dtlb);
}
}
static unsigned get_ring(const CPUState *env, uint8_t asid)
{
unsigned i;
for (i = 0; i < 4; ++i) {
if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
return i;
}
}
return 0xff;
}
/*!
* Lookup xtensa TLB for the given virtual address.
* See ISA, 4.6.2.2
*
* \param pwi: [out] way index
* \param pei: [out] entry index
* \param pring: [out] access ring
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_tlb_lookup(const CPUState *env, uint32_t addr, bool dtlb,
uint32_t *pwi, uint32_t *pei, uint8_t *pring)
{
const xtensa_tlb *tlb = dtlb ?
&env->config->dtlb : &env->config->itlb;
const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
env->dtlb : env->itlb;
int nhits = 0;
unsigned wi;
for (wi = 0; wi < tlb->nways; ++wi) {
uint32_t vpn;
uint32_t ei;
split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
unsigned ring = get_ring(env, entry[wi][ei].asid);
if (ring < 4) {
if (++nhits > 1) {
return dtlb ?
LOAD_STORE_TLB_MULTI_HIT_CAUSE :
INST_TLB_MULTI_HIT_CAUSE;
}
*pwi = wi;
*pei = ei;
*pring = ring;
}
}
}
return nhits ? 0 :
(dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
}
/*!
* Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.5.10
*/
static unsigned mmu_attr_to_access(uint32_t attr)
{
unsigned access = 0;
if (attr < 12) {
access |= PAGE_READ;
if (attr & 0x1) {
access |= PAGE_EXEC;
}
if (attr & 0x2) {
access |= PAGE_WRITE;
}
} else if (attr == 13) {
access |= PAGE_READ | PAGE_WRITE;
}
return access;
}
/*!
* Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.3.3
*/
static unsigned region_attr_to_access(uint32_t attr)
{
unsigned access = 0;
if ((attr < 6 && attr != 3) || attr == 14) {
access |= PAGE_READ | PAGE_WRITE;
}
if (attr > 0 && attr < 6) {
access |= PAGE_EXEC;
}
return access;
}
static bool is_access_granted(unsigned access, int is_write)
{
switch (is_write) {
case 0:
return access & PAGE_READ;
case 1:
return access & PAGE_WRITE;
case 2:
return access & PAGE_EXEC;
default:
return 0;
}
}
static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
uint32_t *wi, uint32_t *ei, uint8_t *ring);
static int get_physical_addr_mmu(CPUState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
bool dtlb = is_write != 2;
uint32_t wi;
uint32_t ei;
uint8_t ring;
int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
(mmu_idx != 0 || ((vaddr ^ env->sregs[PTEVADDR]) & 0xffc00000)) &&
autorefill_mmu(env, vaddr, dtlb, &wi, &ei, &ring) == 0) {
ret = 0;
}
if (ret != 0) {
return ret;
}
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (ring < mmu_idx) {
return dtlb ?
LOAD_STORE_PRIVILEGE_CAUSE :
INST_FETCH_PRIVILEGE_CAUSE;
}
*access = mmu_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
*page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
return 0;
}
static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
uint32_t *wi, uint32_t *ei, uint8_t *ring)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
uint32_t pt_vaddr =
(env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
int ret = get_physical_addr_mmu(env, pt_vaddr, 0, 0,
&paddr, &page_size, &access);
qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
vaddr, ret ? ~0 : paddr);
if (ret == 0) {
uint32_t vpn;
uint32_t pte = ldl_phys(paddr);
*ring = (pte >> 4) & 0x3;
*wi = (++env->autorefill_idx) & 0x3;
split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, *wi, ei);
xtensa_tlb_set_entry(env, dtlb, *wi, *ei, vpn, pte);
qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
__func__, vaddr, vpn, pte);
}
return ret;
}
static int get_physical_addr_region(CPUState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
bool dtlb = is_write != 2;
uint32_t wi = 0;
uint32_t ei = (vaddr >> 29) & 0x7;
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
*access = region_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
*page_size = ~REGION_PAGE_MASK + 1;
return 0;
}
/*!
* Convert virtual address to physical addr.
* MMU may issue pagewalk and change xtensa autorefill TLB way entry.
*
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_get_physical_addr(CPUState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
return get_physical_addr_mmu(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else {
*paddr = vaddr;
*page_size = TARGET_PAGE_SIZE;
*access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return 0;
}
}