mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 12:09:58 +00:00
005b69fdcc
The PowerPC 601 processor is the first generation of processors to implement the PowerPC architecture. It was designed as a bridge processor and also could execute most of the instructions of the previous POWER architecture. It was found on the first Macs and IBM RS/6000 workstations. There is not much interest in keeping the CPU model of this POWER-PowerPC bridge processor. We have the 603 and 604 CPU models of the 60x family which implement the complete PowerPC instruction set. Cc: "Hervé Poussineau" <hpoussin@reactos.org> Cc: Laurent Vivier <laurent@vivier.eu> Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com> Message-Id: <20220203142756.1302515-1-clg@kaod.org> Signed-off-by: Cédric Le Goater <clg@kaod.org>
3074 lines
92 KiB
C
3074 lines
92 KiB
C
/*
|
|
* PowerPC integer and vector emulation helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "internal.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/log.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "crypto/aes.h"
|
|
#include "fpu/softfloat.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/guest-random.h"
|
|
|
|
#include "helper_regs.h"
|
|
/*****************************************************************************/
|
|
/* Fixed point operations helpers */
|
|
|
|
static inline void helper_update_ov_legacy(CPUPPCState *env, int ov)
|
|
{
|
|
if (unlikely(ov)) {
|
|
env->so = env->ov = 1;
|
|
} else {
|
|
env->ov = 0;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
|
|
uint32_t oe)
|
|
{
|
|
uint64_t rt = 0;
|
|
int overflow = 0;
|
|
|
|
uint64_t dividend = (uint64_t)ra << 32;
|
|
uint64_t divisor = (uint32_t)rb;
|
|
|
|
if (unlikely(divisor == 0)) {
|
|
overflow = 1;
|
|
} else {
|
|
rt = dividend / divisor;
|
|
overflow = rt > UINT32_MAX;
|
|
}
|
|
|
|
if (unlikely(overflow)) {
|
|
rt = 0; /* Undefined */
|
|
}
|
|
|
|
if (oe) {
|
|
helper_update_ov_legacy(env, overflow);
|
|
}
|
|
|
|
return (target_ulong)rt;
|
|
}
|
|
|
|
target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
|
|
uint32_t oe)
|
|
{
|
|
int64_t rt = 0;
|
|
int overflow = 0;
|
|
|
|
int64_t dividend = (int64_t)ra << 32;
|
|
int64_t divisor = (int64_t)((int32_t)rb);
|
|
|
|
if (unlikely((divisor == 0) ||
|
|
((divisor == -1ull) && (dividend == INT64_MIN)))) {
|
|
overflow = 1;
|
|
} else {
|
|
rt = dividend / divisor;
|
|
overflow = rt != (int32_t)rt;
|
|
}
|
|
|
|
if (unlikely(overflow)) {
|
|
rt = 0; /* Undefined */
|
|
}
|
|
|
|
if (oe) {
|
|
helper_update_ov_legacy(env, overflow);
|
|
}
|
|
|
|
return (target_ulong)rt;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
|
|
uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
|
|
{
|
|
uint64_t rt = 0;
|
|
int overflow = 0;
|
|
|
|
if (unlikely(rb == 0 || ra >= rb)) {
|
|
overflow = 1;
|
|
rt = 0; /* Undefined */
|
|
} else {
|
|
divu128(&rt, &ra, rb);
|
|
}
|
|
|
|
if (oe) {
|
|
helper_update_ov_legacy(env, overflow);
|
|
}
|
|
|
|
return rt;
|
|
}
|
|
|
|
uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
|
|
{
|
|
uint64_t rt = 0;
|
|
int64_t ra = (int64_t)rau;
|
|
int64_t rb = (int64_t)rbu;
|
|
int overflow = 0;
|
|
|
|
if (unlikely(rb == 0 || uabs64(ra) >= uabs64(rb))) {
|
|
overflow = 1;
|
|
rt = 0; /* Undefined */
|
|
} else {
|
|
divs128(&rt, &ra, rb);
|
|
}
|
|
|
|
if (oe) {
|
|
helper_update_ov_legacy(env, overflow);
|
|
}
|
|
|
|
return rt;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#if defined(TARGET_PPC64)
|
|
/* if x = 0xab, returns 0xababababababababa */
|
|
#define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
|
|
|
|
/*
|
|
* subtract 1 from each byte, and with inverse, check if MSB is set at each
|
|
* byte.
|
|
* i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
|
|
* (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
|
|
*/
|
|
#define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
|
|
|
|
/* When you XOR the pattern and there is a match, that byte will be zero */
|
|
#define hasvalue(x, n) (haszero((x) ^ pattern(n)))
|
|
|
|
uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
|
|
{
|
|
return hasvalue(rb, ra) ? CRF_GT : 0;
|
|
}
|
|
|
|
#undef pattern
|
|
#undef haszero
|
|
#undef hasvalue
|
|
|
|
/*
|
|
* Return a random number.
|
|
*/
|
|
uint64_t helper_darn32(void)
|
|
{
|
|
Error *err = NULL;
|
|
uint32_t ret;
|
|
|
|
if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
|
|
qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
|
|
error_get_pretty(err));
|
|
error_free(err);
|
|
return -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t helper_darn64(void)
|
|
{
|
|
Error *err = NULL;
|
|
uint64_t ret;
|
|
|
|
if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
|
|
qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
|
|
error_get_pretty(err));
|
|
error_free(err);
|
|
return -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
|
|
{
|
|
int i;
|
|
uint64_t ra = 0;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
int index = (rs >> (i * 8)) & 0xFF;
|
|
if (index < 64) {
|
|
if (rb & PPC_BIT(index)) {
|
|
ra |= 1 << i;
|
|
}
|
|
}
|
|
}
|
|
return ra;
|
|
}
|
|
|
|
#endif
|
|
|
|
target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
|
|
{
|
|
target_ulong mask = 0xff;
|
|
target_ulong ra = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(target_ulong); i++) {
|
|
if ((rs & mask) == (rb & mask)) {
|
|
ra |= mask;
|
|
}
|
|
mask <<= 8;
|
|
}
|
|
return ra;
|
|
}
|
|
|
|
/* shift right arithmetic helper */
|
|
target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
|
|
target_ulong shift)
|
|
{
|
|
int32_t ret;
|
|
|
|
if (likely(!(shift & 0x20))) {
|
|
if (likely((uint32_t)shift != 0)) {
|
|
shift &= 0x1f;
|
|
ret = (int32_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
|
|
env->ca32 = env->ca = 0;
|
|
} else {
|
|
env->ca32 = env->ca = 1;
|
|
}
|
|
} else {
|
|
ret = (int32_t)value;
|
|
env->ca32 = env->ca = 0;
|
|
}
|
|
} else {
|
|
ret = (int32_t)value >> 31;
|
|
env->ca32 = env->ca = (ret != 0);
|
|
}
|
|
return (target_long)ret;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_srad(CPUPPCState *env, target_ulong value,
|
|
target_ulong shift)
|
|
{
|
|
int64_t ret;
|
|
|
|
if (likely(!(shift & 0x40))) {
|
|
if (likely((uint64_t)shift != 0)) {
|
|
shift &= 0x3f;
|
|
ret = (int64_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
|
|
env->ca32 = env->ca = 0;
|
|
} else {
|
|
env->ca32 = env->ca = 1;
|
|
}
|
|
} else {
|
|
ret = (int64_t)value;
|
|
env->ca32 = env->ca = 0;
|
|
}
|
|
} else {
|
|
ret = (int64_t)value >> 63;
|
|
env->ca32 = env->ca = (ret != 0);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_popcntb(target_ulong val)
|
|
{
|
|
/* Note that we don't fold past bytes */
|
|
val = (val & 0x5555555555555555ULL) + ((val >> 1) &
|
|
0x5555555555555555ULL);
|
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) &
|
|
0x3333333333333333ULL);
|
|
val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
|
|
0x0f0f0f0f0f0f0f0fULL);
|
|
return val;
|
|
}
|
|
|
|
target_ulong helper_popcntw(target_ulong val)
|
|
{
|
|
/* Note that we don't fold past words. */
|
|
val = (val & 0x5555555555555555ULL) + ((val >> 1) &
|
|
0x5555555555555555ULL);
|
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) &
|
|
0x3333333333333333ULL);
|
|
val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
|
|
0x0f0f0f0f0f0f0f0fULL);
|
|
val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
|
|
0x00ff00ff00ff00ffULL);
|
|
val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
|
|
0x0000ffff0000ffffULL);
|
|
return val;
|
|
}
|
|
#else
|
|
target_ulong helper_popcntb(target_ulong val)
|
|
{
|
|
/* Note that we don't fold past bytes */
|
|
val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
|
|
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
|
|
val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
uint64_t helper_CFUGED(uint64_t src, uint64_t mask)
|
|
{
|
|
/*
|
|
* Instead of processing the mask bit-by-bit from the most significant to
|
|
* the least significant bit, as described in PowerISA, we'll handle it in
|
|
* blocks of 'n' zeros/ones from LSB to MSB. To avoid the decision to use
|
|
* ctz or cto, we negate the mask at the end of the loop.
|
|
*/
|
|
target_ulong m, left = 0, right = 0;
|
|
unsigned int n, i = 64;
|
|
bool bit = false; /* tracks if we are processing zeros or ones */
|
|
|
|
if (mask == 0 || mask == -1) {
|
|
return src;
|
|
}
|
|
|
|
/* Processes the mask in blocks, from LSB to MSB */
|
|
while (i) {
|
|
/* Find how many bits we should take */
|
|
n = ctz64(mask);
|
|
if (n > i) {
|
|
n = i;
|
|
}
|
|
|
|
/*
|
|
* Extracts 'n' trailing bits of src and put them on the leading 'n'
|
|
* bits of 'right' or 'left', pushing down the previously extracted
|
|
* values.
|
|
*/
|
|
m = (1ll << n) - 1;
|
|
if (bit) {
|
|
right = ror64(right | (src & m), n);
|
|
} else {
|
|
left = ror64(left | (src & m), n);
|
|
}
|
|
|
|
/*
|
|
* Discards the processed bits from 'src' and 'mask'. Note that we are
|
|
* removing 'n' trailing zeros from 'mask', but the logical shift will
|
|
* add 'n' leading zeros back, so the population count of 'mask' is kept
|
|
* the same.
|
|
*/
|
|
src >>= n;
|
|
mask >>= n;
|
|
i -= n;
|
|
bit = !bit;
|
|
mask = ~mask;
|
|
}
|
|
|
|
/*
|
|
* At the end, right was ror'ed ctpop(mask) times. To put it back in place,
|
|
* we'll shift it more 64-ctpop(mask) times.
|
|
*/
|
|
if (bit) {
|
|
n = ctpop64(mask);
|
|
} else {
|
|
n = 64 - ctpop64(mask);
|
|
}
|
|
|
|
return left | (right >> n);
|
|
}
|
|
|
|
uint64_t helper_PDEPD(uint64_t src, uint64_t mask)
|
|
{
|
|
int i, o;
|
|
uint64_t result = 0;
|
|
|
|
if (mask == -1) {
|
|
return src;
|
|
}
|
|
|
|
for (i = 0; mask != 0; i++) {
|
|
o = ctz64(mask);
|
|
mask &= mask - 1;
|
|
result |= ((src >> i) & 1) << o;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
uint64_t helper_PEXTD(uint64_t src, uint64_t mask)
|
|
{
|
|
int i, o;
|
|
uint64_t result = 0;
|
|
|
|
if (mask == -1) {
|
|
return src;
|
|
}
|
|
|
|
for (o = 0; mask != 0; o++) {
|
|
i = ctz64(mask);
|
|
mask &= mask - 1;
|
|
result |= ((src >> i) & 1) << o;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Altivec extension helpers */
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = 0; index < ARRAY_SIZE(r->element); index++)
|
|
#else
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
|
|
#endif
|
|
|
|
/* Saturating arithmetic helpers. */
|
|
#define SATCVT(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
\
|
|
if (x < (from_type)min) { \
|
|
r = min; \
|
|
*sat = 1; \
|
|
} else if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
#define SATCVTU(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
\
|
|
if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
|
|
SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
|
|
SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
|
|
|
|
SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
|
|
SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
|
|
#undef SATCVT
|
|
#undef SATCVTU
|
|
|
|
void helper_mtvscr(CPUPPCState *env, uint32_t vscr)
|
|
{
|
|
ppc_store_vscr(env, vscr);
|
|
}
|
|
|
|
uint32_t helper_mfvscr(CPUPPCState *env)
|
|
{
|
|
return ppc_get_vscr(env);
|
|
}
|
|
|
|
static inline void set_vscr_sat(CPUPPCState *env)
|
|
{
|
|
/* The choice of non-zero value is arbitrary. */
|
|
env->vscr_sat.u32[0] = 1;
|
|
}
|
|
|
|
void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = ~a->u32[i] < b->u32[i];
|
|
}
|
|
}
|
|
|
|
/* vprtybw */
|
|
void helper_vprtybw(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
uint64_t res = b->u32[i] ^ (b->u32[i] >> 16);
|
|
res ^= res >> 8;
|
|
r->u32[i] = res & 1;
|
|
}
|
|
}
|
|
|
|
/* vprtybd */
|
|
void helper_vprtybd(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
|
|
uint64_t res = b->u64[i] ^ (b->u64[i] >> 32);
|
|
res ^= res >> 16;
|
|
res ^= res >> 8;
|
|
r->u64[i] = res & 1;
|
|
}
|
|
}
|
|
|
|
/* vprtybq */
|
|
void helper_vprtybq(ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
uint64_t res = b->u64[0] ^ b->u64[1];
|
|
res ^= res >> 32;
|
|
res ^= res >> 16;
|
|
res ^= res >> 8;
|
|
r->VsrD(1) = res & 1;
|
|
r->VsrD(0) = 0;
|
|
}
|
|
|
|
#define VARITHFP(suffix, func) \
|
|
void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
|
|
ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
|
|
r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
|
|
} \
|
|
}
|
|
VARITHFP(addfp, float32_add)
|
|
VARITHFP(subfp, float32_sub)
|
|
VARITHFP(minfp, float32_min)
|
|
VARITHFP(maxfp, float32_max)
|
|
#undef VARITHFP
|
|
|
|
#define VARITHFPFMA(suffix, type) \
|
|
void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
|
|
ppc_avr_t *b, ppc_avr_t *c) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
|
|
r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
|
|
type, &env->vec_status); \
|
|
} \
|
|
}
|
|
VARITHFPFMA(maddfp, 0);
|
|
VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
|
|
#undef VARITHFPFMA
|
|
|
|
#define VARITHSAT_CASE(type, op, cvt, element) \
|
|
{ \
|
|
type result = (type)a->element[i] op (type)b->element[i]; \
|
|
r->element[i] = cvt(result, &sat); \
|
|
}
|
|
|
|
#define VARITHSAT_DO(name, op, optype, cvt, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
|
|
ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
|
|
{ \
|
|
int sat = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
VARITHSAT_CASE(optype, op, cvt, element); \
|
|
} \
|
|
if (sat) { \
|
|
vscr_sat->u32[0] = 1; \
|
|
} \
|
|
}
|
|
#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
|
|
#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
|
|
VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
|
|
VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
|
|
VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
|
|
VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
|
|
VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
|
|
VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
|
|
#undef VARITHSAT_CASE
|
|
#undef VARITHSAT_DO
|
|
#undef VARITHSAT_SIGNED
|
|
#undef VARITHSAT_UNSIGNED
|
|
|
|
#define VAVG_DO(name, element, etype) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
|
|
r->element[i] = x >> 1; \
|
|
} \
|
|
}
|
|
|
|
#define VAVG(type, signed_element, signed_type, unsigned_element, \
|
|
unsigned_type) \
|
|
VAVG_DO(avgs##type, signed_element, signed_type) \
|
|
VAVG_DO(avgu##type, unsigned_element, unsigned_type)
|
|
VAVG(b, s8, int16_t, u8, uint16_t)
|
|
VAVG(h, s16, int32_t, u16, uint32_t)
|
|
VAVG(w, s32, int64_t, u32, uint64_t)
|
|
#undef VAVG_DO
|
|
#undef VAVG
|
|
|
|
#define VABSDU_DO(name, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = (a->element[i] > b->element[i]) ? \
|
|
(a->element[i] - b->element[i]) : \
|
|
(b->element[i] - a->element[i]); \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* VABSDU - Vector absolute difference unsigned
|
|
* name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
|
|
* element - element type to access from vector
|
|
*/
|
|
#define VABSDU(type, element) \
|
|
VABSDU_DO(absdu##type, element)
|
|
VABSDU(b, u8)
|
|
VABSDU(h, u16)
|
|
VABSDU(w, u32)
|
|
#undef VABSDU_DO
|
|
#undef VABSDU
|
|
|
|
#define VCF(suffix, cvt, element) \
|
|
void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
|
|
float32 t = cvt(b->element[i], &env->vec_status); \
|
|
r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
|
|
} \
|
|
}
|
|
VCF(ux, uint32_to_float32, u32)
|
|
VCF(sx, int32_to_float32, s32)
|
|
#undef VCF
|
|
|
|
#define VCMP_DO(suffix, compare, element, record) \
|
|
void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint64_t ones = (uint64_t)-1; \
|
|
uint64_t all = ones; \
|
|
uint64_t none = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
uint64_t result = (a->element[i] compare b->element[i] ? \
|
|
ones : 0x0); \
|
|
switch (sizeof(a->element[0])) { \
|
|
case 8: \
|
|
r->u64[i] = result; \
|
|
break; \
|
|
case 4: \
|
|
r->u32[i] = result; \
|
|
break; \
|
|
case 2: \
|
|
r->u16[i] = result; \
|
|
break; \
|
|
case 1: \
|
|
r->u8[i] = result; \
|
|
break; \
|
|
} \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMP(suffix, compare, element) \
|
|
VCMP_DO(suffix, compare, element, 0) \
|
|
VCMP_DO(suffix##_dot, compare, element, 1)
|
|
VCMP(equb, ==, u8)
|
|
VCMP(equh, ==, u16)
|
|
VCMP(equw, ==, u32)
|
|
VCMP(equd, ==, u64)
|
|
VCMP(gtub, >, u8)
|
|
VCMP(gtuh, >, u16)
|
|
VCMP(gtuw, >, u32)
|
|
VCMP(gtud, >, u64)
|
|
VCMP(gtsb, >, s8)
|
|
VCMP(gtsh, >, s16)
|
|
VCMP(gtsw, >, s32)
|
|
VCMP(gtsd, >, s64)
|
|
#undef VCMP_DO
|
|
#undef VCMP
|
|
|
|
#define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
|
|
void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
etype ones = (etype)-1; \
|
|
etype all = ones; \
|
|
etype result, none = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
if (cmpzero) { \
|
|
result = ((a->element[i] == 0) \
|
|
|| (b->element[i] == 0) \
|
|
|| (a->element[i] != b->element[i]) ? \
|
|
ones : 0x0); \
|
|
} else { \
|
|
result = (a->element[i] != b->element[i]) ? ones : 0x0; \
|
|
} \
|
|
r->element[i] = result; \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* VCMPNEZ - Vector compare not equal to zero
|
|
* suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
|
|
* element - element type to access from vector
|
|
*/
|
|
#define VCMPNE(suffix, element, etype, cmpzero) \
|
|
VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
|
|
VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
|
|
VCMPNE(zb, u8, uint8_t, 1)
|
|
VCMPNE(zh, u16, uint16_t, 1)
|
|
VCMPNE(zw, u32, uint32_t, 1)
|
|
VCMPNE(b, u8, uint8_t, 0)
|
|
VCMPNE(h, u16, uint16_t, 0)
|
|
VCMPNE(w, u32, uint32_t, 0)
|
|
#undef VCMPNE_DO
|
|
#undef VCMPNE
|
|
|
|
#define VCMPFP_DO(suffix, compare, order, record) \
|
|
void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint32_t ones = (uint32_t)-1; \
|
|
uint32_t all = ones; \
|
|
uint32_t none = 0; \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
|
|
uint32_t result; \
|
|
FloatRelation rel = \
|
|
float32_compare_quiet(a->f32[i], b->f32[i], \
|
|
&env->vec_status); \
|
|
if (rel == float_relation_unordered) { \
|
|
result = 0; \
|
|
} else if (rel compare order) { \
|
|
result = ones; \
|
|
} else { \
|
|
result = 0; \
|
|
} \
|
|
r->u32[i] = result; \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMPFP(suffix, compare, order) \
|
|
VCMPFP_DO(suffix, compare, order, 0) \
|
|
VCMPFP_DO(suffix##_dot, compare, order, 1)
|
|
VCMPFP(eqfp, ==, float_relation_equal)
|
|
VCMPFP(gefp, !=, float_relation_less)
|
|
VCMPFP(gtfp, ==, float_relation_greater)
|
|
#undef VCMPFP_DO
|
|
#undef VCMPFP
|
|
|
|
static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
|
|
ppc_avr_t *a, ppc_avr_t *b, int record)
|
|
{
|
|
int i;
|
|
int all_in = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
|
|
FloatRelation le_rel = float32_compare_quiet(a->f32[i], b->f32[i],
|
|
&env->vec_status);
|
|
if (le_rel == float_relation_unordered) {
|
|
r->u32[i] = 0xc0000000;
|
|
all_in = 1;
|
|
} else {
|
|
float32 bneg = float32_chs(b->f32[i]);
|
|
FloatRelation ge_rel = float32_compare_quiet(a->f32[i], bneg,
|
|
&env->vec_status);
|
|
int le = le_rel != float_relation_greater;
|
|
int ge = ge_rel != float_relation_less;
|
|
|
|
r->u32[i] = ((!le) << 31) | ((!ge) << 30);
|
|
all_in |= (!le | !ge);
|
|
}
|
|
}
|
|
if (record) {
|
|
env->crf[6] = (all_in == 0) << 1;
|
|
}
|
|
}
|
|
|
|
void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(env, r, a, b, 0);
|
|
}
|
|
|
|
void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(env, r, a, b, 1);
|
|
}
|
|
|
|
#define VCT(suffix, satcvt, element) \
|
|
void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
float_status s = env->vec_status; \
|
|
\
|
|
set_float_rounding_mode(float_round_to_zero, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
|
|
if (float32_is_any_nan(b->f32[i])) { \
|
|
r->element[i] = 0; \
|
|
} else { \
|
|
float64 t = float32_to_float64(b->f32[i], &s); \
|
|
int64_t j; \
|
|
\
|
|
t = float64_scalbn(t, uim, &s); \
|
|
j = float64_to_int64(t, &s); \
|
|
r->element[i] = satcvt(j, &sat); \
|
|
} \
|
|
} \
|
|
if (sat) { \
|
|
set_vscr_sat(env); \
|
|
} \
|
|
}
|
|
VCT(uxs, cvtsduw, u32)
|
|
VCT(sxs, cvtsdsw, s32)
|
|
#undef VCT
|
|
|
|
target_ulong helper_vclzlsbb(ppc_avr_t *r)
|
|
{
|
|
target_ulong count = 0;
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
if (r->VsrB(i) & 0x01) {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
target_ulong helper_vctzlsbb(ppc_avr_t *r)
|
|
{
|
|
target_ulong count = 0;
|
|
int i;
|
|
for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
|
|
if (r->VsrB(i) & 0x01) {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
|
|
r->s16[i] = cvtswsh(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
r->s16[i] = cvtswsh(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
r->s16[i] = (int16_t) (prod + c->s16[i]);
|
|
}
|
|
}
|
|
|
|
#define VMRG_DO(name, element, access, ofs) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
ppc_avr_t result; \
|
|
int i, half = ARRAY_SIZE(r->element) / 2; \
|
|
\
|
|
for (i = 0; i < half; i++) { \
|
|
result.access(i * 2 + 0) = a->access(i + ofs); \
|
|
result.access(i * 2 + 1) = b->access(i + ofs); \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
|
|
#define VMRG(suffix, element, access) \
|
|
VMRG_DO(mrgl##suffix, element, access, half) \
|
|
VMRG_DO(mrgh##suffix, element, access, 0)
|
|
VMRG(b, u8, VsrB)
|
|
VMRG(h, u16, VsrH)
|
|
VMRG(w, u32, VsrW)
|
|
#undef VMRG_DO
|
|
#undef VMRG
|
|
|
|
void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
|
|
prod[i] = (int32_t)a->s8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
|
|
prod[4 * i + 2] + prod[4 * i + 3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = (int32_t)a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
|
|
r->u32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint16_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
prod[i] = a->u8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
|
|
prod[4 * i + 2] + prod[4 * i + 3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
|
|
ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
|
|
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
#define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
|
|
r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
|
|
(cast)b->mul_access(i); \
|
|
} \
|
|
}
|
|
|
|
#define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
|
|
r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
|
|
(cast)b->mul_access(i + 1); \
|
|
} \
|
|
}
|
|
|
|
#define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
|
|
VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \
|
|
VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
|
|
VMUL(sb, s8, VsrSB, VsrSH, int16_t)
|
|
VMUL(sh, s16, VsrSH, VsrSW, int32_t)
|
|
VMUL(sw, s32, VsrSW, VsrSD, int64_t)
|
|
VMUL(ub, u8, VsrB, VsrH, uint16_t)
|
|
VMUL(uh, u16, VsrH, VsrW, uint32_t)
|
|
VMUL(uw, u32, VsrW, VsrD, uint64_t)
|
|
#undef VMUL_DO_EVN
|
|
#undef VMUL_DO_ODD
|
|
#undef VMUL
|
|
|
|
void helper_vmulhsw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
r->s32[i] = (int32_t)(((int64_t)a->s32[i] * (int64_t)b->s32[i]) >> 32);
|
|
}
|
|
}
|
|
|
|
void helper_vmulhuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
r->u32[i] = (uint32_t)(((uint64_t)a->u32[i] *
|
|
(uint64_t)b->u32[i]) >> 32);
|
|
}
|
|
}
|
|
|
|
void helper_vmulhsd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
uint64_t discard;
|
|
|
|
muls64(&discard, &r->u64[0], a->s64[0], b->s64[0]);
|
|
muls64(&discard, &r->u64[1], a->s64[1], b->s64[1]);
|
|
}
|
|
|
|
void helper_vmulhud(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
uint64_t discard;
|
|
|
|
mulu64(&discard, &r->u64[0], a->u64[0], b->u64[0]);
|
|
mulu64(&discard, &r->u64[1], a->u64[1], b->u64[1]);
|
|
}
|
|
|
|
void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
|
|
ppc_avr_t *c)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int s = c->VsrB(i) & 0x1f;
|
|
int index = s & 0xf;
|
|
|
|
if (s & 0x10) {
|
|
result.VsrB(i) = b->VsrB(index);
|
|
} else {
|
|
result.VsrB(i) = a->VsrB(index);
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
|
|
ppc_avr_t *c)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int s = c->VsrB(i) & 0x1f;
|
|
int index = 15 - (s & 0xf);
|
|
|
|
if (s & 0x10) {
|
|
result.VsrB(i) = a->VsrB(index);
|
|
} else {
|
|
result.VsrB(i) = b->VsrB(index);
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
|
|
#define VBPERMD_INDEX(i) (i)
|
|
#define VBPERMQ_DW(index) (((index) & 0x40) != 0)
|
|
#define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
|
|
#else
|
|
#define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
|
|
#define VBPERMD_INDEX(i) (1 - i)
|
|
#define VBPERMQ_DW(index) (((index) & 0x40) == 0)
|
|
#define EXTRACT_BIT(avr, i, index) \
|
|
(extract64((avr)->u64[1 - i], 63 - index, 1))
|
|
#endif
|
|
|
|
void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
ppc_avr_t result = { .u64 = { 0, 0 } };
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
for (j = 0; j < 8; j++) {
|
|
int index = VBPERMQ_INDEX(b, (i * 8) + j);
|
|
if (index < 64 && EXTRACT_BIT(a, i, index)) {
|
|
result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j);
|
|
}
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
uint64_t perm = 0;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
int index = VBPERMQ_INDEX(b, i);
|
|
|
|
if (index < 128) {
|
|
uint64_t mask = (1ull << (63 - (index & 0x3F)));
|
|
if (a->u64[VBPERMQ_DW(index)] & mask) {
|
|
perm |= (0x8000 >> i);
|
|
}
|
|
}
|
|
}
|
|
|
|
r->VsrD(0) = perm;
|
|
r->VsrD(1) = 0;
|
|
}
|
|
|
|
#undef VBPERMQ_INDEX
|
|
#undef VBPERMQ_DW
|
|
|
|
#define PMSUM(name, srcfld, trgfld, trgtyp) \
|
|
void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i, j; \
|
|
trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, srcfld) { \
|
|
prod[i] = 0; \
|
|
for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
|
|
if (a->srcfld[i] & (1ull << j)) { \
|
|
prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, trgfld) { \
|
|
r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
|
|
} \
|
|
}
|
|
|
|
PMSUM(vpmsumb, u8, u16, uint16_t)
|
|
PMSUM(vpmsumh, u16, u32, uint32_t)
|
|
PMSUM(vpmsumw, u32, u64, uint64_t)
|
|
|
|
void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
|
|
#ifdef CONFIG_INT128
|
|
int i, j;
|
|
__uint128_t prod[2];
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
prod[i] = 0;
|
|
for (j = 0; j < 64; j++) {
|
|
if (a->u64[i] & (1ull << j)) {
|
|
prod[i] ^= (((__uint128_t)b->u64[i]) << j);
|
|
}
|
|
}
|
|
}
|
|
|
|
r->u128 = prod[0] ^ prod[1];
|
|
|
|
#else
|
|
int i, j;
|
|
ppc_avr_t prod[2];
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
prod[i].VsrD(1) = prod[i].VsrD(0) = 0;
|
|
for (j = 0; j < 64; j++) {
|
|
if (a->u64[i] & (1ull << j)) {
|
|
ppc_avr_t bshift;
|
|
if (j == 0) {
|
|
bshift.VsrD(0) = 0;
|
|
bshift.VsrD(1) = b->u64[i];
|
|
} else {
|
|
bshift.VsrD(0) = b->u64[i] >> (64 - j);
|
|
bshift.VsrD(1) = b->u64[i] << j;
|
|
}
|
|
prod[i].VsrD(1) ^= bshift.VsrD(1);
|
|
prod[i].VsrD(0) ^= bshift.VsrD(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
r->VsrD(1) = prod[0].VsrD(1) ^ prod[1].VsrD(1);
|
|
r->VsrD(0) = prod[0].VsrD(0) ^ prod[1].VsrD(0);
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define PKBIG 1
|
|
#else
|
|
#define PKBIG 0
|
|
#endif
|
|
void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
ppc_avr_t result;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
const ppc_avr_t *x[2] = { a, b };
|
|
#else
|
|
const ppc_avr_t *x[2] = { b, a };
|
|
#endif
|
|
|
|
VECTOR_FOR_INORDER_I(i, u64) {
|
|
VECTOR_FOR_INORDER_I(j, u32) {
|
|
uint32_t e = x[i]->u32[j];
|
|
|
|
result.u16[4 * i + j] = (((e >> 9) & 0xfc00) |
|
|
((e >> 6) & 0x3e0) |
|
|
((e >> 3) & 0x1f));
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#define VPK(suffix, from, to, cvt, dosat) \
|
|
void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
ppc_avr_t result; \
|
|
ppc_avr_t *a0 = PKBIG ? a : b; \
|
|
ppc_avr_t *a1 = PKBIG ? b : a; \
|
|
\
|
|
VECTOR_FOR_INORDER_I(i, from) { \
|
|
result.to[i] = cvt(a0->from[i], &sat); \
|
|
result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
|
|
} \
|
|
*r = result; \
|
|
if (dosat && sat) { \
|
|
set_vscr_sat(env); \
|
|
} \
|
|
}
|
|
#define I(x, y) (x)
|
|
VPK(shss, s16, s8, cvtshsb, 1)
|
|
VPK(shus, s16, u8, cvtshub, 1)
|
|
VPK(swss, s32, s16, cvtswsh, 1)
|
|
VPK(swus, s32, u16, cvtswuh, 1)
|
|
VPK(sdss, s64, s32, cvtsdsw, 1)
|
|
VPK(sdus, s64, u32, cvtsduw, 1)
|
|
VPK(uhus, u16, u8, cvtuhub, 1)
|
|
VPK(uwus, u32, u16, cvtuwuh, 1)
|
|
VPK(udus, u64, u32, cvtuduw, 1)
|
|
VPK(uhum, u16, u8, I, 0)
|
|
VPK(uwum, u32, u16, I, 0)
|
|
VPK(udum, u64, u32, I, 0)
|
|
#undef I
|
|
#undef VPK
|
|
#undef PKBIG
|
|
|
|
void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
|
|
r->f32[i] = float32_div(float32_one, b->f32[i], &env->vec_status);
|
|
}
|
|
}
|
|
|
|
#define VRFI(suffix, rounding) \
|
|
void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
|
|
ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
float_status s = env->vec_status; \
|
|
\
|
|
set_float_rounding_mode(rounding, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
|
|
r->f32[i] = float32_round_to_int (b->f32[i], &s); \
|
|
} \
|
|
}
|
|
VRFI(n, float_round_nearest_even)
|
|
VRFI(m, float_round_down)
|
|
VRFI(p, float_round_up)
|
|
VRFI(z, float_round_to_zero)
|
|
#undef VRFI
|
|
|
|
void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
|
|
float32 t = float32_sqrt(b->f32[i], &env->vec_status);
|
|
|
|
r->f32[i] = float32_div(float32_one, t, &env->vec_status);
|
|
}
|
|
}
|
|
|
|
#define VRLMI(name, size, element, insert) \
|
|
void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
uint##size##_t src1 = a->element[i]; \
|
|
uint##size##_t src2 = b->element[i]; \
|
|
uint##size##_t src3 = r->element[i]; \
|
|
uint##size##_t begin, end, shift, mask, rot_val; \
|
|
\
|
|
shift = extract##size(src2, 0, 6); \
|
|
end = extract##size(src2, 8, 6); \
|
|
begin = extract##size(src2, 16, 6); \
|
|
rot_val = rol##size(src1, shift); \
|
|
mask = mask_u##size(begin, end); \
|
|
if (insert) { \
|
|
r->element[i] = (rot_val & mask) | (src3 & ~mask); \
|
|
} else { \
|
|
r->element[i] = (rot_val & mask); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
VRLMI(vrldmi, 64, u64, 1);
|
|
VRLMI(vrlwmi, 32, u32, 1);
|
|
VRLMI(vrldnm, 64, u64, 0);
|
|
VRLMI(vrlwnm, 32, u32, 0);
|
|
|
|
void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
|
|
ppc_avr_t *c)
|
|
{
|
|
r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
|
|
r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
|
|
}
|
|
|
|
void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
|
|
r->f32[i] = float32_exp2(b->f32[i], &env->vec_status);
|
|
}
|
|
}
|
|
|
|
void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
|
|
r->f32[i] = float32_log2(b->f32[i], &env->vec_status);
|
|
}
|
|
}
|
|
|
|
#define VEXTU_X_DO(name, size, left) \
|
|
target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
|
|
{ \
|
|
int index = (a & 0xf) * 8; \
|
|
if (left) { \
|
|
index = 128 - index - size; \
|
|
} \
|
|
return int128_getlo(int128_rshift(b->s128, index)) & \
|
|
MAKE_64BIT_MASK(0, size); \
|
|
}
|
|
VEXTU_X_DO(vextublx, 8, 1)
|
|
VEXTU_X_DO(vextuhlx, 16, 1)
|
|
VEXTU_X_DO(vextuwlx, 32, 1)
|
|
VEXTU_X_DO(vextubrx, 8, 0)
|
|
VEXTU_X_DO(vextuhrx, 16, 0)
|
|
VEXTU_X_DO(vextuwrx, 32, 0)
|
|
#undef VEXTU_X_DO
|
|
|
|
void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
unsigned int shift, bytes, size;
|
|
|
|
size = ARRAY_SIZE(r->u8);
|
|
for (i = 0; i < size; i++) {
|
|
shift = b->VsrB(i) & 0x7; /* extract shift value */
|
|
bytes = (a->VsrB(i) << 8) + /* extract adjacent bytes */
|
|
(((i + 1) < size) ? a->VsrB(i + 1) : 0);
|
|
r->VsrB(i) = (bytes << shift) >> 8; /* shift and store result */
|
|
}
|
|
}
|
|
|
|
void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
unsigned int shift, bytes;
|
|
|
|
/*
|
|
* Use reverse order, as destination and source register can be
|
|
* same. Its being modified in place saving temporary, reverse
|
|
* order will guarantee that computed result is not fed back.
|
|
*/
|
|
for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
|
|
shift = b->VsrB(i) & 0x7; /* extract shift value */
|
|
bytes = ((i ? a->VsrB(i - 1) : 0) << 8) + a->VsrB(i);
|
|
/* extract adjacent bytes */
|
|
r->VsrB(i) = (bytes >> shift) & 0xFF; /* shift and store result */
|
|
}
|
|
}
|
|
|
|
void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
|
|
{
|
|
int sh = shift & 0xf;
|
|
int i;
|
|
ppc_avr_t result;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int index = sh + i;
|
|
if (index > 0xf) {
|
|
result.VsrB(i) = b->VsrB(index - 0x10);
|
|
} else {
|
|
result.VsrB(i) = a->VsrB(index);
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->VsrB(0xf) >> 3) & 0xf;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
memmove(&r->u8[0], &a->u8[sh], 16 - sh);
|
|
memset(&r->u8[16 - sh], 0, sh);
|
|
#else
|
|
memmove(&r->u8[sh], &a->u8[0], 16 - sh);
|
|
memset(&r->u8[0], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[IDX])
|
|
#else
|
|
#define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[15 - (IDX)] - (SIZE) + 1)
|
|
#endif
|
|
|
|
#define VINSX(SUFFIX, TYPE) \
|
|
void glue(glue(helper_VINS, SUFFIX), LX)(CPUPPCState *env, ppc_avr_t *t, \
|
|
uint64_t val, target_ulong index) \
|
|
{ \
|
|
const int maxidx = ARRAY_SIZE(t->u8) - sizeof(TYPE); \
|
|
target_long idx = index; \
|
|
\
|
|
if (idx < 0 || idx > maxidx) { \
|
|
idx = idx < 0 ? sizeof(TYPE) - idx : idx; \
|
|
qemu_log_mask(LOG_GUEST_ERROR, \
|
|
"Invalid index for Vector Insert Element after 0x" TARGET_FMT_lx \
|
|
", RA = " TARGET_FMT_ld " > %d\n", env->nip, idx, maxidx); \
|
|
} else { \
|
|
TYPE src = val; \
|
|
memcpy(ELEM_ADDR(t, idx, sizeof(TYPE)), &src, sizeof(TYPE)); \
|
|
} \
|
|
}
|
|
VINSX(B, uint8_t)
|
|
VINSX(H, uint16_t)
|
|
VINSX(W, uint32_t)
|
|
VINSX(D, uint64_t)
|
|
#undef ELEM_ADDR
|
|
#undef VINSX
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VEXTDVLX(NAME, SIZE) \
|
|
void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
|
|
target_ulong index) \
|
|
{ \
|
|
const target_long idx = index; \
|
|
ppc_avr_t tmp[2] = { *a, *b }; \
|
|
memset(t, 0, sizeof(*t)); \
|
|
if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
|
|
memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2 - SIZE], (void *)tmp + idx, SIZE); \
|
|
} else { \
|
|
qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
|
|
TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
|
|
env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
|
|
} \
|
|
}
|
|
#else
|
|
#define VEXTDVLX(NAME, SIZE) \
|
|
void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
|
|
target_ulong index) \
|
|
{ \
|
|
const target_long idx = index; \
|
|
ppc_avr_t tmp[2] = { *b, *a }; \
|
|
memset(t, 0, sizeof(*t)); \
|
|
if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
|
|
memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2], \
|
|
(void *)tmp + sizeof(tmp) - SIZE - idx, SIZE); \
|
|
} else { \
|
|
qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
|
|
TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
|
|
env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
|
|
} \
|
|
}
|
|
#endif
|
|
VEXTDVLX(VEXTDUBVLX, 1)
|
|
VEXTDVLX(VEXTDUHVLX, 2)
|
|
VEXTDVLX(VEXTDUWVLX, 4)
|
|
VEXTDVLX(VEXTDDVLX, 8)
|
|
#undef VEXTDVLX
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VEXTRACT(suffix, element) \
|
|
void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
|
|
{ \
|
|
uint32_t es = sizeof(r->element[0]); \
|
|
memmove(&r->u8[8 - es], &b->u8[index], es); \
|
|
memset(&r->u8[8], 0, 8); \
|
|
memset(&r->u8[0], 0, 8 - es); \
|
|
}
|
|
#else
|
|
#define VEXTRACT(suffix, element) \
|
|
void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
|
|
{ \
|
|
uint32_t es = sizeof(r->element[0]); \
|
|
uint32_t s = (16 - index) - es; \
|
|
memmove(&r->u8[8], &b->u8[s], es); \
|
|
memset(&r->u8[0], 0, 8); \
|
|
memset(&r->u8[8 + es], 0, 8 - es); \
|
|
}
|
|
#endif
|
|
VEXTRACT(ub, u8)
|
|
VEXTRACT(uh, u16)
|
|
VEXTRACT(uw, u32)
|
|
VEXTRACT(d, u64)
|
|
#undef VEXTRACT
|
|
|
|
void helper_xxextractuw(CPUPPCState *env, ppc_vsr_t *xt,
|
|
ppc_vsr_t *xb, uint32_t index)
|
|
{
|
|
ppc_vsr_t t = { };
|
|
size_t es = sizeof(uint32_t);
|
|
uint32_t ext_index;
|
|
int i;
|
|
|
|
ext_index = index;
|
|
for (i = 0; i < es; i++, ext_index++) {
|
|
t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16);
|
|
}
|
|
|
|
*xt = t;
|
|
}
|
|
|
|
void helper_xxinsertw(CPUPPCState *env, ppc_vsr_t *xt,
|
|
ppc_vsr_t *xb, uint32_t index)
|
|
{
|
|
ppc_vsr_t t = *xt;
|
|
size_t es = sizeof(uint32_t);
|
|
int ins_index, i = 0;
|
|
|
|
ins_index = index;
|
|
for (i = 0; i < es && ins_index < 16; i++, ins_index++) {
|
|
t.VsrB(ins_index) = xb->VsrB(8 - es + i);
|
|
}
|
|
|
|
*xt = t;
|
|
}
|
|
|
|
#define XXBLEND(name, sz) \
|
|
void glue(helper_XXBLENDV, name)(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
|
|
ppc_avr_t *c, uint32_t desc) \
|
|
{ \
|
|
for (int i = 0; i < ARRAY_SIZE(t->glue(u, sz)); i++) { \
|
|
t->glue(u, sz)[i] = (c->glue(s, sz)[i] >> (sz - 1)) ? \
|
|
b->glue(u, sz)[i] : a->glue(u, sz)[i]; \
|
|
} \
|
|
}
|
|
XXBLEND(B, 8)
|
|
XXBLEND(H, 16)
|
|
XXBLEND(W, 32)
|
|
XXBLEND(D, 64)
|
|
#undef XXBLEND
|
|
|
|
#define VEXT_SIGNED(name, element, cast) \
|
|
void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = (cast)b->element[i]; \
|
|
} \
|
|
}
|
|
VEXT_SIGNED(vextsb2w, s32, int8_t)
|
|
VEXT_SIGNED(vextsb2d, s64, int8_t)
|
|
VEXT_SIGNED(vextsh2w, s32, int16_t)
|
|
VEXT_SIGNED(vextsh2d, s64, int16_t)
|
|
VEXT_SIGNED(vextsw2d, s64, int32_t)
|
|
#undef VEXT_SIGNED
|
|
|
|
#define VNEG(name, element) \
|
|
void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = -b->element[i]; \
|
|
} \
|
|
}
|
|
VNEG(vnegw, s32)
|
|
VNEG(vnegd, s64)
|
|
#undef VNEG
|
|
|
|
void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->VsrB(0xf) >> 3) & 0xf;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
memmove(&r->u8[sh], &a->u8[0], 16 - sh);
|
|
memset(&r->u8[0], 0, sh);
|
|
#else
|
|
memmove(&r->u8[0], &a->u8[sh], 16 - sh);
|
|
memset(&r->u8[16 - sh], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = a->u32[i] >= b->u32[i];
|
|
}
|
|
}
|
|
|
|
void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int64_t t;
|
|
int i, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
upper = ARRAY_SIZE(r->s32) - 1;
|
|
t = (int64_t)b->VsrSW(upper);
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
t += a->VsrSW(i);
|
|
result.VsrSW(i) = 0;
|
|
}
|
|
result.VsrSW(upper) = cvtsdsw(t, &sat);
|
|
*r = result;
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
upper = 1;
|
|
for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
|
|
int64_t t = (int64_t)b->VsrSW(upper + i * 2);
|
|
|
|
result.VsrD(i) = 0;
|
|
for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
|
|
t += a->VsrSW(2 * i + j);
|
|
}
|
|
result.VsrSW(upper + i * 2) = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
*r = result;
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
|
|
t += a->s8[4 * i + j];
|
|
}
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
|
|
t += a->s16[2 * i] + a->s16[2 * i + 1];
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
uint64_t t = (uint64_t)b->u32[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
|
|
t += a->u8[4 * i + j];
|
|
}
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
set_vscr_sat(env);
|
|
}
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define UPKHI 1
|
|
#define UPKLO 0
|
|
#else
|
|
#define UPKHI 0
|
|
#define UPKLO 1
|
|
#endif
|
|
#define VUPKPX(suffix, hi) \
|
|
void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
|
|
uint16_t e = b->u16[hi ? i : i + 4]; \
|
|
uint8_t a = (e >> 15) ? 0xff : 0; \
|
|
uint8_t r = (e >> 10) & 0x1f; \
|
|
uint8_t g = (e >> 5) & 0x1f; \
|
|
uint8_t b = e & 0x1f; \
|
|
\
|
|
result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPKPX(lpx, UPKLO)
|
|
VUPKPX(hpx, UPKHI)
|
|
#undef VUPKPX
|
|
|
|
#define VUPK(suffix, unpacked, packee, hi) \
|
|
void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
\
|
|
if (hi) { \
|
|
for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
|
|
result.unpacked[i] = b->packee[i]; \
|
|
} \
|
|
} else { \
|
|
for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
|
|
i++) { \
|
|
result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
|
|
} \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPK(hsb, s16, s8, UPKHI)
|
|
VUPK(hsh, s32, s16, UPKHI)
|
|
VUPK(hsw, s64, s32, UPKHI)
|
|
VUPK(lsb, s16, s8, UPKLO)
|
|
VUPK(lsh, s32, s16, UPKLO)
|
|
VUPK(lsw, s64, s32, UPKLO)
|
|
#undef VUPK
|
|
#undef UPKHI
|
|
#undef UPKLO
|
|
|
|
#define VGENERIC_DO(name, element) \
|
|
void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
\
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = name(b->element[i]); \
|
|
} \
|
|
}
|
|
|
|
#define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
|
|
#define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
|
|
|
|
VGENERIC_DO(clzb, u8)
|
|
VGENERIC_DO(clzh, u16)
|
|
|
|
#undef clzb
|
|
#undef clzh
|
|
|
|
#define ctzb(v) ((v) ? ctz32(v) : 8)
|
|
#define ctzh(v) ((v) ? ctz32(v) : 16)
|
|
#define ctzw(v) ctz32((v))
|
|
#define ctzd(v) ctz64((v))
|
|
|
|
VGENERIC_DO(ctzb, u8)
|
|
VGENERIC_DO(ctzh, u16)
|
|
VGENERIC_DO(ctzw, u32)
|
|
VGENERIC_DO(ctzd, u64)
|
|
|
|
#undef ctzb
|
|
#undef ctzh
|
|
#undef ctzw
|
|
#undef ctzd
|
|
|
|
#define popcntb(v) ctpop8(v)
|
|
#define popcnth(v) ctpop16(v)
|
|
#define popcntw(v) ctpop32(v)
|
|
#define popcntd(v) ctpop64(v)
|
|
|
|
VGENERIC_DO(popcntb, u8)
|
|
VGENERIC_DO(popcnth, u16)
|
|
VGENERIC_DO(popcntw, u32)
|
|
VGENERIC_DO(popcntd, u64)
|
|
|
|
#undef popcntb
|
|
#undef popcnth
|
|
#undef popcntw
|
|
#undef popcntd
|
|
|
|
#undef VGENERIC_DO
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define QW_ONE { .u64 = { 0, 1 } }
|
|
#else
|
|
#define QW_ONE { .u64 = { 1, 0 } }
|
|
#endif
|
|
|
|
#ifndef CONFIG_INT128
|
|
|
|
static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
|
|
{
|
|
t->u64[0] = ~a.u64[0];
|
|
t->u64[1] = ~a.u64[1];
|
|
}
|
|
|
|
static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
|
|
{
|
|
if (a.VsrD(0) < b.VsrD(0)) {
|
|
return -1;
|
|
} else if (a.VsrD(0) > b.VsrD(0)) {
|
|
return 1;
|
|
} else if (a.VsrD(1) < b.VsrD(1)) {
|
|
return -1;
|
|
} else if (a.VsrD(1) > b.VsrD(1)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
|
|
{
|
|
t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
|
|
t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
|
|
(~a.VsrD(1) < b.VsrD(1));
|
|
}
|
|
|
|
static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
|
|
{
|
|
ppc_avr_t not_a;
|
|
t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
|
|
t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
|
|
(~a.VsrD(1) < b.VsrD(1));
|
|
avr_qw_not(¬_a, a);
|
|
return avr_qw_cmpu(not_a, b) < 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 + b->u128;
|
|
#else
|
|
avr_qw_add(r, *a, *b);
|
|
#endif
|
|
}
|
|
|
|
void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 + b->u128 + (c->u128 & 1);
|
|
#else
|
|
|
|
if (c->VsrD(1) & 1) {
|
|
ppc_avr_t tmp;
|
|
|
|
tmp.VsrD(0) = 0;
|
|
tmp.VsrD(1) = c->VsrD(1) & 1;
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
avr_qw_add(r, tmp, *b);
|
|
} else {
|
|
avr_qw_add(r, *a, *b);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = (~a->u128 < b->u128);
|
|
#else
|
|
ppc_avr_t not_a;
|
|
|
|
avr_qw_not(¬_a, *a);
|
|
|
|
r->VsrD(0) = 0;
|
|
r->VsrD(1) = (avr_qw_cmpu(not_a, *b) < 0);
|
|
#endif
|
|
}
|
|
|
|
void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
int carry_out = (~a->u128 < b->u128);
|
|
if (!carry_out && (c->u128 & 1)) {
|
|
carry_out = ((a->u128 + b->u128 + 1) == 0) &&
|
|
((a->u128 != 0) || (b->u128 != 0));
|
|
}
|
|
r->u128 = carry_out;
|
|
#else
|
|
|
|
int carry_in = c->VsrD(1) & 1;
|
|
int carry_out = 0;
|
|
ppc_avr_t tmp;
|
|
|
|
carry_out = avr_qw_addc(&tmp, *a, *b);
|
|
|
|
if (!carry_out && carry_in) {
|
|
ppc_avr_t one = QW_ONE;
|
|
carry_out = avr_qw_addc(&tmp, tmp, one);
|
|
}
|
|
r->VsrD(0) = 0;
|
|
r->VsrD(1) = carry_out;
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 - b->u128;
|
|
#else
|
|
ppc_avr_t tmp;
|
|
ppc_avr_t one = QW_ONE;
|
|
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
avr_qw_add(r, tmp, one);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
|
|
#else
|
|
ppc_avr_t tmp, sum;
|
|
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&sum, *a, tmp);
|
|
|
|
tmp.VsrD(0) = 0;
|
|
tmp.VsrD(1) = c->VsrD(1) & 1;
|
|
avr_qw_add(r, sum, tmp);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 = (~a->u128 < ~b->u128) ||
|
|
(a->u128 + ~b->u128 == (__uint128_t)-1);
|
|
#else
|
|
int carry = (avr_qw_cmpu(*a, *b) > 0);
|
|
if (!carry) {
|
|
ppc_avr_t tmp;
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
carry = ((tmp.VsrSD(0) == -1ull) && (tmp.VsrSD(1) == -1ull));
|
|
}
|
|
r->VsrD(0) = 0;
|
|
r->VsrD(1) = carry;
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
#ifdef CONFIG_INT128
|
|
r->u128 =
|
|
(~a->u128 < ~b->u128) ||
|
|
((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
|
|
#else
|
|
int carry_in = c->VsrD(1) & 1;
|
|
int carry_out = (avr_qw_cmpu(*a, *b) > 0);
|
|
if (!carry_out && carry_in) {
|
|
ppc_avr_t tmp;
|
|
avr_qw_not(&tmp, *b);
|
|
avr_qw_add(&tmp, *a, tmp);
|
|
carry_out = ((tmp.VsrD(0) == -1ull) && (tmp.VsrD(1) == -1ull));
|
|
}
|
|
|
|
r->VsrD(0) = 0;
|
|
r->VsrD(1) = carry_out;
|
|
#endif
|
|
}
|
|
|
|
#define BCD_PLUS_PREF_1 0xC
|
|
#define BCD_PLUS_PREF_2 0xF
|
|
#define BCD_PLUS_ALT_1 0xA
|
|
#define BCD_NEG_PREF 0xD
|
|
#define BCD_NEG_ALT 0xB
|
|
#define BCD_PLUS_ALT_2 0xE
|
|
#define NATIONAL_PLUS 0x2B
|
|
#define NATIONAL_NEG 0x2D
|
|
|
|
#define BCD_DIG_BYTE(n) (15 - ((n) / 2))
|
|
|
|
static int bcd_get_sgn(ppc_avr_t *bcd)
|
|
{
|
|
switch (bcd->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
|
|
case BCD_PLUS_PREF_1:
|
|
case BCD_PLUS_PREF_2:
|
|
case BCD_PLUS_ALT_1:
|
|
case BCD_PLUS_ALT_2:
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
case BCD_NEG_PREF:
|
|
case BCD_NEG_ALT:
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
default:
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bcd_preferred_sgn(int sgn, int ps)
|
|
{
|
|
if (sgn >= 0) {
|
|
return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
|
|
} else {
|
|
return BCD_NEG_PREF;
|
|
}
|
|
}
|
|
|
|
static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
|
|
{
|
|
uint8_t result;
|
|
if (n & 1) {
|
|
result = bcd->VsrB(BCD_DIG_BYTE(n)) >> 4;
|
|
} else {
|
|
result = bcd->VsrB(BCD_DIG_BYTE(n)) & 0xF;
|
|
}
|
|
|
|
if (unlikely(result > 9)) {
|
|
*invalid = true;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
|
|
{
|
|
if (n & 1) {
|
|
bcd->VsrB(BCD_DIG_BYTE(n)) &= 0x0F;
|
|
bcd->VsrB(BCD_DIG_BYTE(n)) |= (digit << 4);
|
|
} else {
|
|
bcd->VsrB(BCD_DIG_BYTE(n)) &= 0xF0;
|
|
bcd->VsrB(BCD_DIG_BYTE(n)) |= digit;
|
|
}
|
|
}
|
|
|
|
static bool bcd_is_valid(ppc_avr_t *bcd)
|
|
{
|
|
int i;
|
|
int invalid = 0;
|
|
|
|
if (bcd_get_sgn(bcd) == 0) {
|
|
return false;
|
|
}
|
|
|
|
for (i = 1; i < 32; i++) {
|
|
bcd_get_digit(bcd, i, &invalid);
|
|
if (unlikely(invalid)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int bcd_cmp_zero(ppc_avr_t *bcd)
|
|
{
|
|
if (bcd->VsrD(0) == 0 && (bcd->VsrD(1) >> 4) == 0) {
|
|
return CRF_EQ;
|
|
} else {
|
|
return (bcd_get_sgn(bcd) == 1) ? CRF_GT : CRF_LT;
|
|
}
|
|
}
|
|
|
|
static uint16_t get_national_digit(ppc_avr_t *reg, int n)
|
|
{
|
|
return reg->VsrH(7 - n);
|
|
}
|
|
|
|
static void set_national_digit(ppc_avr_t *reg, uint8_t val, int n)
|
|
{
|
|
reg->VsrH(7 - n) = val;
|
|
}
|
|
|
|
static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
int invalid = 0;
|
|
for (i = 31; i > 0; i--) {
|
|
uint8_t dig_a = bcd_get_digit(a, i, &invalid);
|
|
uint8_t dig_b = bcd_get_digit(b, i, &invalid);
|
|
if (unlikely(invalid)) {
|
|
return 0; /* doesn't matter */
|
|
} else if (dig_a > dig_b) {
|
|
return 1;
|
|
} else if (dig_a < dig_b) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
|
|
int *overflow)
|
|
{
|
|
int carry = 0;
|
|
int i;
|
|
int is_zero = 1;
|
|
|
|
for (i = 1; i <= 31; i++) {
|
|
uint8_t digit = bcd_get_digit(a, i, invalid) +
|
|
bcd_get_digit(b, i, invalid) + carry;
|
|
is_zero &= (digit == 0);
|
|
if (digit > 9) {
|
|
carry = 1;
|
|
digit -= 10;
|
|
} else {
|
|
carry = 0;
|
|
}
|
|
|
|
bcd_put_digit(t, digit, i);
|
|
}
|
|
|
|
*overflow = carry;
|
|
return is_zero;
|
|
}
|
|
|
|
static void bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
|
|
int *overflow)
|
|
{
|
|
int carry = 0;
|
|
int i;
|
|
|
|
for (i = 1; i <= 31; i++) {
|
|
uint8_t digit = bcd_get_digit(a, i, invalid) -
|
|
bcd_get_digit(b, i, invalid) + carry;
|
|
if (digit & 0x80) {
|
|
carry = -1;
|
|
digit += 10;
|
|
} else {
|
|
carry = 0;
|
|
}
|
|
|
|
bcd_put_digit(t, digit, i);
|
|
}
|
|
|
|
*overflow = carry;
|
|
}
|
|
|
|
uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
|
|
int sgna = bcd_get_sgn(a);
|
|
int sgnb = bcd_get_sgn(b);
|
|
int invalid = (sgna == 0) || (sgnb == 0);
|
|
int overflow = 0;
|
|
int zero = 0;
|
|
uint32_t cr = 0;
|
|
ppc_avr_t result = { .u64 = { 0, 0 } };
|
|
|
|
if (!invalid) {
|
|
if (sgna == sgnb) {
|
|
result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
|
|
zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
|
|
cr = (sgna > 0) ? CRF_GT : CRF_LT;
|
|
} else {
|
|
int magnitude = bcd_cmp_mag(a, b);
|
|
if (magnitude > 0) {
|
|
result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
|
|
bcd_sub_mag(&result, a, b, &invalid, &overflow);
|
|
cr = (sgna > 0) ? CRF_GT : CRF_LT;
|
|
} else if (magnitude < 0) {
|
|
result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb, ps);
|
|
bcd_sub_mag(&result, b, a, &invalid, &overflow);
|
|
cr = (sgnb > 0) ? CRF_GT : CRF_LT;
|
|
} else {
|
|
result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps);
|
|
cr = CRF_EQ;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(invalid)) {
|
|
result.VsrD(0) = result.VsrD(1) = -1;
|
|
cr = CRF_SO;
|
|
} else if (overflow) {
|
|
cr |= CRF_SO;
|
|
} else if (zero) {
|
|
cr |= CRF_EQ;
|
|
}
|
|
|
|
*r = result;
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
ppc_avr_t bcopy = *b;
|
|
int sgnb = bcd_get_sgn(b);
|
|
if (sgnb < 0) {
|
|
bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
|
|
} else if (sgnb > 0) {
|
|
bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
|
|
}
|
|
/* else invalid ... defer to bcdadd code for proper handling */
|
|
|
|
return helper_bcdadd(r, a, &bcopy, ps);
|
|
}
|
|
|
|
uint32_t helper_bcdcfn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int i;
|
|
int cr = 0;
|
|
uint16_t national = 0;
|
|
uint16_t sgnb = get_national_digit(b, 0);
|
|
ppc_avr_t ret = { .u64 = { 0, 0 } };
|
|
int invalid = (sgnb != NATIONAL_PLUS && sgnb != NATIONAL_NEG);
|
|
|
|
for (i = 1; i < 8; i++) {
|
|
national = get_national_digit(b, i);
|
|
if (unlikely(national < 0x30 || national > 0x39)) {
|
|
invalid = 1;
|
|
break;
|
|
}
|
|
|
|
bcd_put_digit(&ret, national & 0xf, i);
|
|
}
|
|
|
|
if (sgnb == NATIONAL_PLUS) {
|
|
bcd_put_digit(&ret, (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2, 0);
|
|
} else {
|
|
bcd_put_digit(&ret, BCD_NEG_PREF, 0);
|
|
}
|
|
|
|
cr = bcd_cmp_zero(&ret);
|
|
|
|
if (unlikely(invalid)) {
|
|
cr = CRF_SO;
|
|
}
|
|
|
|
*r = ret;
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdctn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int i;
|
|
int cr = 0;
|
|
int sgnb = bcd_get_sgn(b);
|
|
int invalid = (sgnb == 0);
|
|
ppc_avr_t ret = { .u64 = { 0, 0 } };
|
|
|
|
int ox_flag = (b->VsrD(0) != 0) || ((b->VsrD(1) >> 32) != 0);
|
|
|
|
for (i = 1; i < 8; i++) {
|
|
set_national_digit(&ret, 0x30 + bcd_get_digit(b, i, &invalid), i);
|
|
|
|
if (unlikely(invalid)) {
|
|
break;
|
|
}
|
|
}
|
|
set_national_digit(&ret, (sgnb == -1) ? NATIONAL_NEG : NATIONAL_PLUS, 0);
|
|
|
|
cr = bcd_cmp_zero(b);
|
|
|
|
if (ox_flag) {
|
|
cr |= CRF_SO;
|
|
}
|
|
|
|
if (unlikely(invalid)) {
|
|
cr = CRF_SO;
|
|
}
|
|
|
|
*r = ret;
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdcfz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int i;
|
|
int cr = 0;
|
|
int invalid = 0;
|
|
int zone_digit = 0;
|
|
int zone_lead = ps ? 0xF : 0x3;
|
|
int digit = 0;
|
|
ppc_avr_t ret = { .u64 = { 0, 0 } };
|
|
int sgnb = b->VsrB(BCD_DIG_BYTE(0)) >> 4;
|
|
|
|
if (unlikely((sgnb < 0xA) && ps)) {
|
|
invalid = 1;
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
zone_digit = i ? b->VsrB(BCD_DIG_BYTE(i * 2)) >> 4 : zone_lead;
|
|
digit = b->VsrB(BCD_DIG_BYTE(i * 2)) & 0xF;
|
|
if (unlikely(zone_digit != zone_lead || digit > 0x9)) {
|
|
invalid = 1;
|
|
break;
|
|
}
|
|
|
|
bcd_put_digit(&ret, digit, i + 1);
|
|
}
|
|
|
|
if ((ps && (sgnb == 0xB || sgnb == 0xD)) ||
|
|
(!ps && (sgnb & 0x4))) {
|
|
bcd_put_digit(&ret, BCD_NEG_PREF, 0);
|
|
} else {
|
|
bcd_put_digit(&ret, BCD_PLUS_PREF_1, 0);
|
|
}
|
|
|
|
cr = bcd_cmp_zero(&ret);
|
|
|
|
if (unlikely(invalid)) {
|
|
cr = CRF_SO;
|
|
}
|
|
|
|
*r = ret;
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdctz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int i;
|
|
int cr = 0;
|
|
uint8_t digit = 0;
|
|
int sgnb = bcd_get_sgn(b);
|
|
int zone_lead = (ps) ? 0xF0 : 0x30;
|
|
int invalid = (sgnb == 0);
|
|
ppc_avr_t ret = { .u64 = { 0, 0 } };
|
|
|
|
int ox_flag = ((b->VsrD(0) >> 4) != 0);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
digit = bcd_get_digit(b, i + 1, &invalid);
|
|
|
|
if (unlikely(invalid)) {
|
|
break;
|
|
}
|
|
|
|
ret.VsrB(BCD_DIG_BYTE(i * 2)) = zone_lead + digit;
|
|
}
|
|
|
|
if (ps) {
|
|
bcd_put_digit(&ret, (sgnb == 1) ? 0xC : 0xD, 1);
|
|
} else {
|
|
bcd_put_digit(&ret, (sgnb == 1) ? 0x3 : 0x7, 1);
|
|
}
|
|
|
|
cr = bcd_cmp_zero(b);
|
|
|
|
if (ox_flag) {
|
|
cr |= CRF_SO;
|
|
}
|
|
|
|
if (unlikely(invalid)) {
|
|
cr = CRF_SO;
|
|
}
|
|
|
|
*r = ret;
|
|
|
|
return cr;
|
|
}
|
|
|
|
/**
|
|
* Compare 2 128-bit unsigned integers, passed in as unsigned 64-bit pairs
|
|
*
|
|
* Returns:
|
|
* > 0 if ahi|alo > bhi|blo,
|
|
* 0 if ahi|alo == bhi|blo,
|
|
* < 0 if ahi|alo < bhi|blo
|
|
*/
|
|
static inline int ucmp128(uint64_t alo, uint64_t ahi,
|
|
uint64_t blo, uint64_t bhi)
|
|
{
|
|
return (ahi == bhi) ?
|
|
(alo > blo ? 1 : (alo == blo ? 0 : -1)) :
|
|
(ahi > bhi ? 1 : -1);
|
|
}
|
|
|
|
uint32_t helper_bcdcfsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int i;
|
|
int cr;
|
|
uint64_t lo_value;
|
|
uint64_t hi_value;
|
|
uint64_t rem;
|
|
ppc_avr_t ret = { .u64 = { 0, 0 } };
|
|
|
|
if (b->VsrSD(0) < 0) {
|
|
lo_value = -b->VsrSD(1);
|
|
hi_value = ~b->VsrD(0) + !lo_value;
|
|
bcd_put_digit(&ret, 0xD, 0);
|
|
|
|
cr = CRF_LT;
|
|
} else {
|
|
lo_value = b->VsrD(1);
|
|
hi_value = b->VsrD(0);
|
|
bcd_put_digit(&ret, bcd_preferred_sgn(0, ps), 0);
|
|
|
|
if (hi_value == 0 && lo_value == 0) {
|
|
cr = CRF_EQ;
|
|
} else {
|
|
cr = CRF_GT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check src limits: abs(src) <= 10^31 - 1
|
|
*
|
|
* 10^31 - 1 = 0x0000007e37be2022 c0914b267fffffff
|
|
*/
|
|
if (ucmp128(lo_value, hi_value,
|
|
0xc0914b267fffffffULL, 0x7e37be2022ULL) > 0) {
|
|
cr |= CRF_SO;
|
|
|
|
/*
|
|
* According to the ISA, if src wouldn't fit in the destination
|
|
* register, the result is undefined.
|
|
* In that case, we leave r unchanged.
|
|
*/
|
|
} else {
|
|
rem = divu128(&lo_value, &hi_value, 1000000000000000ULL);
|
|
|
|
for (i = 1; i < 16; rem /= 10, i++) {
|
|
bcd_put_digit(&ret, rem % 10, i);
|
|
}
|
|
|
|
for (; i < 32; lo_value /= 10, i++) {
|
|
bcd_put_digit(&ret, lo_value % 10, i);
|
|
}
|
|
|
|
*r = ret;
|
|
}
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdctsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
uint8_t i;
|
|
int cr;
|
|
uint64_t carry;
|
|
uint64_t unused;
|
|
uint64_t lo_value;
|
|
uint64_t hi_value = 0;
|
|
int sgnb = bcd_get_sgn(b);
|
|
int invalid = (sgnb == 0);
|
|
|
|
lo_value = bcd_get_digit(b, 31, &invalid);
|
|
for (i = 30; i > 0; i--) {
|
|
mulu64(&lo_value, &carry, lo_value, 10ULL);
|
|
mulu64(&hi_value, &unused, hi_value, 10ULL);
|
|
lo_value += bcd_get_digit(b, i, &invalid);
|
|
hi_value += carry;
|
|
|
|
if (unlikely(invalid)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sgnb == -1) {
|
|
r->VsrSD(1) = -lo_value;
|
|
r->VsrSD(0) = ~hi_value + !r->VsrSD(1);
|
|
} else {
|
|
r->VsrSD(1) = lo_value;
|
|
r->VsrSD(0) = hi_value;
|
|
}
|
|
|
|
cr = bcd_cmp_zero(b);
|
|
|
|
if (unlikely(invalid)) {
|
|
cr = CRF_SO;
|
|
}
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdcpsgn(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int i;
|
|
int invalid = 0;
|
|
|
|
if (bcd_get_sgn(a) == 0 || bcd_get_sgn(b) == 0) {
|
|
return CRF_SO;
|
|
}
|
|
|
|
*r = *a;
|
|
bcd_put_digit(r, b->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
|
|
|
|
for (i = 1; i < 32; i++) {
|
|
bcd_get_digit(a, i, &invalid);
|
|
bcd_get_digit(b, i, &invalid);
|
|
if (unlikely(invalid)) {
|
|
return CRF_SO;
|
|
}
|
|
}
|
|
|
|
return bcd_cmp_zero(r);
|
|
}
|
|
|
|
uint32_t helper_bcdsetsgn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int sgnb = bcd_get_sgn(b);
|
|
|
|
*r = *b;
|
|
bcd_put_digit(r, bcd_preferred_sgn(sgnb, ps), 0);
|
|
|
|
if (bcd_is_valid(b) == false) {
|
|
return CRF_SO;
|
|
}
|
|
|
|
return bcd_cmp_zero(r);
|
|
}
|
|
|
|
uint32_t helper_bcds(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int cr;
|
|
int i = a->VsrSB(7);
|
|
bool ox_flag = false;
|
|
int sgnb = bcd_get_sgn(b);
|
|
ppc_avr_t ret = *b;
|
|
ret.VsrD(1) &= ~0xf;
|
|
|
|
if (bcd_is_valid(b) == false) {
|
|
return CRF_SO;
|
|
}
|
|
|
|
if (unlikely(i > 31)) {
|
|
i = 31;
|
|
} else if (unlikely(i < -31)) {
|
|
i = -31;
|
|
}
|
|
|
|
if (i > 0) {
|
|
ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
|
|
} else {
|
|
urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
|
|
}
|
|
bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
|
|
|
|
*r = ret;
|
|
|
|
cr = bcd_cmp_zero(r);
|
|
if (ox_flag) {
|
|
cr |= CRF_SO;
|
|
}
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdus(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int cr;
|
|
int i;
|
|
int invalid = 0;
|
|
bool ox_flag = false;
|
|
ppc_avr_t ret = *b;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
bcd_get_digit(b, i, &invalid);
|
|
|
|
if (unlikely(invalid)) {
|
|
return CRF_SO;
|
|
}
|
|
}
|
|
|
|
i = a->VsrSB(7);
|
|
if (i >= 32) {
|
|
ox_flag = true;
|
|
ret.VsrD(1) = ret.VsrD(0) = 0;
|
|
} else if (i <= -32) {
|
|
ret.VsrD(1) = ret.VsrD(0) = 0;
|
|
} else if (i > 0) {
|
|
ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
|
|
} else {
|
|
urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
|
|
}
|
|
*r = ret;
|
|
|
|
cr = bcd_cmp_zero(r);
|
|
if (ox_flag) {
|
|
cr |= CRF_SO;
|
|
}
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdsr(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int cr;
|
|
int unused = 0;
|
|
int invalid = 0;
|
|
bool ox_flag = false;
|
|
int sgnb = bcd_get_sgn(b);
|
|
ppc_avr_t ret = *b;
|
|
ret.VsrD(1) &= ~0xf;
|
|
|
|
int i = a->VsrSB(7);
|
|
ppc_avr_t bcd_one;
|
|
|
|
bcd_one.VsrD(0) = 0;
|
|
bcd_one.VsrD(1) = 0x10;
|
|
|
|
if (bcd_is_valid(b) == false) {
|
|
return CRF_SO;
|
|
}
|
|
|
|
if (unlikely(i > 31)) {
|
|
i = 31;
|
|
} else if (unlikely(i < -31)) {
|
|
i = -31;
|
|
}
|
|
|
|
if (i > 0) {
|
|
ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
|
|
} else {
|
|
urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
|
|
|
|
if (bcd_get_digit(&ret, 0, &invalid) >= 5) {
|
|
bcd_add_mag(&ret, &ret, &bcd_one, &invalid, &unused);
|
|
}
|
|
}
|
|
bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
|
|
|
|
cr = bcd_cmp_zero(&ret);
|
|
if (ox_flag) {
|
|
cr |= CRF_SO;
|
|
}
|
|
*r = ret;
|
|
|
|
return cr;
|
|
}
|
|
|
|
uint32_t helper_bcdtrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
uint64_t mask;
|
|
uint32_t ox_flag = 0;
|
|
int i = a->VsrSH(3) + 1;
|
|
ppc_avr_t ret = *b;
|
|
|
|
if (bcd_is_valid(b) == false) {
|
|
return CRF_SO;
|
|
}
|
|
|
|
if (i > 16 && i < 32) {
|
|
mask = (uint64_t)-1 >> (128 - i * 4);
|
|
if (ret.VsrD(0) & ~mask) {
|
|
ox_flag = CRF_SO;
|
|
}
|
|
|
|
ret.VsrD(0) &= mask;
|
|
} else if (i >= 0 && i <= 16) {
|
|
mask = (uint64_t)-1 >> (64 - i * 4);
|
|
if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
|
|
ox_flag = CRF_SO;
|
|
}
|
|
|
|
ret.VsrD(1) &= mask;
|
|
ret.VsrD(0) = 0;
|
|
}
|
|
bcd_put_digit(&ret, bcd_preferred_sgn(bcd_get_sgn(b), ps), 0);
|
|
*r = ret;
|
|
|
|
return bcd_cmp_zero(&ret) | ox_flag;
|
|
}
|
|
|
|
uint32_t helper_bcdutrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
|
|
{
|
|
int i;
|
|
uint64_t mask;
|
|
uint32_t ox_flag = 0;
|
|
int invalid = 0;
|
|
ppc_avr_t ret = *b;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
bcd_get_digit(b, i, &invalid);
|
|
|
|
if (unlikely(invalid)) {
|
|
return CRF_SO;
|
|
}
|
|
}
|
|
|
|
i = a->VsrSH(3);
|
|
if (i > 16 && i < 33) {
|
|
mask = (uint64_t)-1 >> (128 - i * 4);
|
|
if (ret.VsrD(0) & ~mask) {
|
|
ox_flag = CRF_SO;
|
|
}
|
|
|
|
ret.VsrD(0) &= mask;
|
|
} else if (i > 0 && i <= 16) {
|
|
mask = (uint64_t)-1 >> (64 - i * 4);
|
|
if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
|
|
ox_flag = CRF_SO;
|
|
}
|
|
|
|
ret.VsrD(1) &= mask;
|
|
ret.VsrD(0) = 0;
|
|
} else if (i == 0) {
|
|
if (ret.VsrD(0) || ret.VsrD(1)) {
|
|
ox_flag = CRF_SO;
|
|
}
|
|
ret.VsrD(0) = ret.VsrD(1) = 0;
|
|
}
|
|
|
|
*r = ret;
|
|
if (r->VsrD(0) == 0 && r->VsrD(1) == 0) {
|
|
return ox_flag | CRF_EQ;
|
|
}
|
|
|
|
return ox_flag | CRF_GT;
|
|
}
|
|
|
|
void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
|
|
{
|
|
int i;
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
r->u8[i] = AES_sbox[a->u8[i]];
|
|
}
|
|
}
|
|
|
|
void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
result.VsrW(i) = b->VsrW(i) ^
|
|
(AES_Te0[a->VsrB(AES_shifts[4 * i + 0])] ^
|
|
AES_Te1[a->VsrB(AES_shifts[4 * i + 1])] ^
|
|
AES_Te2[a->VsrB(AES_shifts[4 * i + 2])] ^
|
|
AES_Te3[a->VsrB(AES_shifts[4 * i + 3])]);
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
result.VsrB(i) = b->VsrB(i) ^ (AES_sbox[a->VsrB(AES_shifts[i])]);
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
/* This differs from what is written in ISA V2.07. The RTL is */
|
|
/* incorrect and will be fixed in V2.07B. */
|
|
int i;
|
|
ppc_avr_t tmp;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
tmp.VsrB(i) = b->VsrB(i) ^ AES_isbox[a->VsrB(AES_ishifts[i])];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->VsrW(i) =
|
|
AES_imc[tmp.VsrB(4 * i + 0)][0] ^
|
|
AES_imc[tmp.VsrB(4 * i + 1)][1] ^
|
|
AES_imc[tmp.VsrB(4 * i + 2)][2] ^
|
|
AES_imc[tmp.VsrB(4 * i + 3)][3];
|
|
}
|
|
}
|
|
|
|
void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
VECTOR_FOR_INORDER_I(i, u8) {
|
|
result.VsrB(i) = b->VsrB(i) ^ (AES_isbox[a->VsrB(AES_ishifts[i])]);
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
|
|
{
|
|
int st = (st_six & 0x10) != 0;
|
|
int six = st_six & 0xF;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
if (st == 0) {
|
|
if ((six & (0x8 >> i)) == 0) {
|
|
r->VsrW(i) = ror32(a->VsrW(i), 7) ^
|
|
ror32(a->VsrW(i), 18) ^
|
|
(a->VsrW(i) >> 3);
|
|
} else { /* six.bit[i] == 1 */
|
|
r->VsrW(i) = ror32(a->VsrW(i), 17) ^
|
|
ror32(a->VsrW(i), 19) ^
|
|
(a->VsrW(i) >> 10);
|
|
}
|
|
} else { /* st == 1 */
|
|
if ((six & (0x8 >> i)) == 0) {
|
|
r->VsrW(i) = ror32(a->VsrW(i), 2) ^
|
|
ror32(a->VsrW(i), 13) ^
|
|
ror32(a->VsrW(i), 22);
|
|
} else { /* six.bit[i] == 1 */
|
|
r->VsrW(i) = ror32(a->VsrW(i), 6) ^
|
|
ror32(a->VsrW(i), 11) ^
|
|
ror32(a->VsrW(i), 25);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
|
|
{
|
|
int st = (st_six & 0x10) != 0;
|
|
int six = st_six & 0xF;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
|
|
if (st == 0) {
|
|
if ((six & (0x8 >> (2 * i))) == 0) {
|
|
r->VsrD(i) = ror64(a->VsrD(i), 1) ^
|
|
ror64(a->VsrD(i), 8) ^
|
|
(a->VsrD(i) >> 7);
|
|
} else { /* six.bit[2*i] == 1 */
|
|
r->VsrD(i) = ror64(a->VsrD(i), 19) ^
|
|
ror64(a->VsrD(i), 61) ^
|
|
(a->VsrD(i) >> 6);
|
|
}
|
|
} else { /* st == 1 */
|
|
if ((six & (0x8 >> (2 * i))) == 0) {
|
|
r->VsrD(i) = ror64(a->VsrD(i), 28) ^
|
|
ror64(a->VsrD(i), 34) ^
|
|
ror64(a->VsrD(i), 39);
|
|
} else { /* six.bit[2*i] == 1 */
|
|
r->VsrD(i) = ror64(a->VsrD(i), 14) ^
|
|
ror64(a->VsrD(i), 18) ^
|
|
ror64(a->VsrD(i), 41);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int indexA = c->VsrB(i) >> 4;
|
|
int indexB = c->VsrB(i) & 0xF;
|
|
|
|
result.VsrB(i) = a->VsrB(indexA) ^ b->VsrB(indexB);
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#undef VECTOR_FOR_INORDER_I
|
|
|
|
/*****************************************************************************/
|
|
/* SPE extension helpers */
|
|
/* Use a table to make this quicker */
|
|
static const uint8_t hbrev[16] = {
|
|
0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
|
|
0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
|
|
};
|
|
|
|
static inline uint8_t byte_reverse(uint8_t val)
|
|
{
|
|
return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
|
|
}
|
|
|
|
static inline uint32_t word_reverse(uint32_t val)
|
|
{
|
|
return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
|
|
(byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
|
|
}
|
|
|
|
#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
|
|
target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint32_t a, b, d, mask;
|
|
|
|
mask = UINT32_MAX >> (32 - MASKBITS);
|
|
a = arg1 & mask;
|
|
b = arg2 & mask;
|
|
d = word_reverse(1 + word_reverse(a | ~b));
|
|
return (arg1 & ~mask) | (d & b);
|
|
}
|
|
|
|
uint32_t helper_cntlsw32(uint32_t val)
|
|
{
|
|
if (val & 0x80000000) {
|
|
return clz32(~val);
|
|
} else {
|
|
return clz32(val);
|
|
}
|
|
}
|
|
|
|
uint32_t helper_cntlzw32(uint32_t val)
|
|
{
|
|
return clz32(val);
|
|
}
|
|
|
|
/* 440 specific */
|
|
target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
|
|
target_ulong low, uint32_t update_Rc)
|
|
{
|
|
target_ulong mask;
|
|
int i;
|
|
|
|
i = 1;
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((high & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x4;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((low & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x8;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
i = 8;
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x2;
|
|
}
|
|
done:
|
|
env->xer = (env->xer & ~0x7F) | i;
|
|
if (update_Rc) {
|
|
env->crf[0] |= xer_so;
|
|
}
|
|
return i;
|
|
}
|