xemu/target/hppa/op_helper.c
Helge Deller 6fab0c182d target/hppa: Fix proberi instruction emulation for linux-user
The proberi assembler instruction checks the read/write access rights
for the page of a given address and shall return a value of 1 if the
test succeeds and a value of 0 on failure in the target register.

But when run in linux-user mode, qemu currently simply returns the
return code of page_check_range() which returns 0 on success and -1 on
failure, which is the opposite of what proberi should return.

Fix it by checking the return code of page_check_range() and return the
expected return value.

The easiest way to reproduce the issue is by running
"/lib/ld.so.1 --version" in a chroot which fails without this patch.
At startup of ld.so the __canonicalize_funcptr_for_compare() function is
used to resolve the function address out of a function descriptor, which
fails because proberi (due to the wrong return code) seems to indicate
that the given address isn't accessible.

Signed-off-by: Helge Deller <deller@gmx.de>
2022-08-19 15:59:14 +02:00

715 lines
19 KiB
C

/*
* Helpers for HPPA instructions.
*
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "qemu/timer.h"
#include "sysemu/runstate.h"
#include "fpu/softfloat.h"
#include "trace.h"
G_NORETURN void HELPER(excp)(CPUHPPAState *env, int excp)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
cpu_loop_exit(cs);
}
G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
cpu_loop_exit_restore(cs, ra);
}
void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
{
if (unlikely((target_sreg)cond < 0)) {
hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
}
}
void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
{
if (unlikely(cond)) {
hppa_dynamic_excp(env, EXCP_COND, GETPC());
}
}
static void atomic_store_3(CPUHPPAState *env, target_ulong addr,
uint32_t val, uintptr_t ra)
{
int mmu_idx = cpu_mmu_index(env, 0);
uint32_t old, new, cmp, mask, *haddr;
void *vaddr;
vaddr = probe_access(env, addr, 3, MMU_DATA_STORE, mmu_idx, ra);
if (vaddr == NULL) {
cpu_loop_exit_atomic(env_cpu(env), ra);
}
haddr = (uint32_t *)((uintptr_t)vaddr & -4);
mask = addr & 1 ? 0x00ffffffu : 0xffffff00u;
old = *haddr;
while (1) {
new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask));
cmp = qatomic_cmpxchg(haddr, old, new);
if (cmp == old) {
return;
}
old = cmp;
}
}
static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
bool parallel, uintptr_t ra)
{
switch (addr & 3) {
case 3:
cpu_stb_data_ra(env, addr, val, ra);
break;
case 2:
cpu_stw_data_ra(env, addr, val, ra);
break;
case 1:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_3(env, addr, val, ra);
} else {
cpu_stb_data_ra(env, addr, val >> 16, ra);
cpu_stw_data_ra(env, addr + 1, val, ra);
}
break;
default:
cpu_stl_data_ra(env, addr, val, ra);
break;
}
}
void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
{
do_stby_b(env, addr, val, false, GETPC());
}
void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
target_ureg val)
{
do_stby_b(env, addr, val, true, GETPC());
}
static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
bool parallel, uintptr_t ra)
{
switch (addr & 3) {
case 3:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_3(env, addr - 3, val, ra);
} else {
cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
}
break;
case 2:
cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
break;
case 1:
cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
break;
default:
/* Nothing is stored, but protection is checked and the
cacheline is marked dirty. */
probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
break;
}
}
void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
{
do_stby_e(env, addr, val, false, GETPC());
}
void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
target_ureg val)
{
do_stby_e(env, addr, val, true, GETPC());
}
void HELPER(ldc_check)(target_ulong addr)
{
if (unlikely(addr & 0xf)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Undefined ldc to unaligned address mod 16: "
TARGET_FMT_lx "\n", addr);
}
}
target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
uint32_t level, uint32_t want)
{
#ifdef CONFIG_USER_ONLY
return (page_check_range(addr, 1, want) == 0) ? 1 : 0;
#else
int prot, excp;
hwaddr phys;
trace_hppa_tlb_probe(addr, level, want);
/* Fail if the requested privilege level is higher than current. */
if (level < (env->iaoq_f & 3)) {
return 0;
}
excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
if (excp >= 0) {
if (env->psw & PSW_Q) {
/* ??? Needs tweaking for hppa64. */
env->cr[CR_IOR] = addr;
env->cr[CR_ISR] = addr >> 32;
}
if (excp == EXCP_DTLB_MISS) {
excp = EXCP_NA_DTLB_MISS;
}
hppa_dynamic_excp(env, excp, GETPC());
}
return (want & prot) != 0;
#endif
}
void HELPER(loaded_fr0)(CPUHPPAState *env)
{
uint32_t shadow = env->fr[0] >> 32;
int rm, d;
env->fr0_shadow = shadow;
switch (extract32(shadow, 9, 2)) {
default:
rm = float_round_nearest_even;
break;
case 1:
rm = float_round_to_zero;
break;
case 2:
rm = float_round_up;
break;
case 3:
rm = float_round_down;
break;
}
set_float_rounding_mode(rm, &env->fp_status);
d = extract32(shadow, 5, 1);
set_flush_to_zero(d, &env->fp_status);
set_flush_inputs_to_zero(d, &env->fp_status);
}
void cpu_hppa_loaded_fr0(CPUHPPAState *env)
{
helper_loaded_fr0(env);
}
#define CONVERT_BIT(X, SRC, DST) \
((SRC) > (DST) \
? (X) / ((SRC) / (DST)) & (DST) \
: ((X) & (SRC)) * ((DST) / (SRC)))
static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
{
uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
uint32_t hard_exp = 0;
uint32_t shadow = env->fr0_shadow;
if (likely(soft_exp == 0)) {
env->fr[0] = (uint64_t)shadow << 32;
return;
}
set_float_exception_flags(0, &env->fp_status);
hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0);
hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2);
hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4);
shadow |= hard_exp << (32 - 5);
env->fr0_shadow = shadow;
env->fr[0] = (uint64_t)shadow << 32;
if (hard_exp & shadow) {
hppa_dynamic_excp(env, EXCP_ASSIST, ra);
}
}
float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
{
float32 ret = float32_sqrt(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
{
float32 ret = float32_round_to_int(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
{
float32 ret = float32_add(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
{
float32 ret = float32_sub(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
{
float32 ret = float32_mul(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
{
float32 ret = float32_div(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
{
float64 ret = float64_sqrt(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
{
float64 ret = float64_round_to_int(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
{
float64 ret = float64_add(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
{
float64 ret = float64_sub(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
{
float64 ret = float64_mul(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
{
float64 ret = float64_div(a, b, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
{
float64 ret = float32_to_float64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
{
float32 ret = float64_to_float32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
{
float32 ret = int32_to_float32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
{
float32 ret = int64_to_float32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
{
float64 ret = int32_to_float64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
{
float64 ret = int64_to_float64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
{
int32_t ret = float32_to_int32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
{
int32_t ret = float64_to_int32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
{
int64_t ret = float32_to_int64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
{
int64_t ret = float64_to_int64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
{
int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
{
int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
{
int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
{
int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
{
float32 ret = uint32_to_float32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
{
float32 ret = uint64_to_float32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
{
float64 ret = uint32_to_float64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
{
float64 ret = uint64_to_float64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
{
uint32_t ret = float32_to_uint32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
{
uint32_t ret = float64_to_uint32(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
{
uint64_t ret = float32_to_uint64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
{
uint64_t ret = float64_to_uint64(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
{
uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
{
uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
{
uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
{
uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
static void update_fr0_cmp(CPUHPPAState *env, uint32_t y,
uint32_t c, FloatRelation r)
{
uint32_t shadow = env->fr0_shadow;
switch (r) {
case float_relation_greater:
c = extract32(c, 4, 1);
break;
case float_relation_less:
c = extract32(c, 3, 1);
break;
case float_relation_equal:
c = extract32(c, 2, 1);
break;
case float_relation_unordered:
c = extract32(c, 1, 1);
break;
default:
g_assert_not_reached();
}
if (y) {
/* targeted comparison */
/* set fpsr[ca[y - 1]] to current compare */
shadow = deposit32(shadow, 21 - (y - 1), 1, c);
} else {
/* queued comparison */
/* shift cq right by one place */
shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
/* move fpsr[c] to fpsr[cq[0]] */
shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
/* set fpsr[c] to current compare */
shadow = deposit32(shadow, 26, 1, c);
}
env->fr0_shadow = shadow;
env->fr[0] = (uint64_t)shadow << 32;
}
void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
uint32_t y, uint32_t c)
{
FloatRelation r;
if (c & 1) {
r = float32_compare(a, b, &env->fp_status);
} else {
r = float32_compare_quiet(a, b, &env->fp_status);
}
update_fr0_op(env, GETPC());
update_fr0_cmp(env, y, c, r);
}
void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
uint32_t y, uint32_t c)
{
FloatRelation r;
if (c & 1) {
r = float64_compare(a, b, &env->fp_status);
} else {
r = float64_compare_quiet(a, b, &env->fp_status);
}
update_fr0_op(env, GETPC());
update_fr0_cmp(env, y, c, r);
}
float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
{
float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
{
float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
&env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
{
float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
{
float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
&env->fp_status);
update_fr0_op(env, GETPC());
return ret;
}
target_ureg HELPER(read_interval_timer)(void)
{
#ifdef CONFIG_USER_ONLY
/* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
Just pass through the host cpu clock ticks. */
return cpu_get_host_ticks();
#else
/* In system mode we have access to a decent high-resolution clock.
In order to make OS-level time accounting work with the cr16,
present it with a well-timed clock fixed at 250MHz. */
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
#endif
}
#ifndef CONFIG_USER_ONLY
void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
{
HPPACPU *cpu = env_archcpu(env);
uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t timeout;
/* Even in 64-bit mode, the comparator is always 32-bit. But the
value we expose to the guest is 1/4 of the speed of the clock,
so moosh in 34 bits. */
timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
/* If the mooshing puts the clock in the past, advance to next round. */
if (timeout < current + 1000) {
timeout += 1ULL << 34;
}
cpu->env.cr[CR_IT] = timeout;
timer_mod(cpu->alarm_timer, timeout);
}
void HELPER(halt)(CPUHPPAState *env)
{
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
helper_excp(env, EXCP_HLT);
}
void HELPER(reset)(CPUHPPAState *env)
{
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
helper_excp(env, EXCP_HLT);
}
target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
{
target_ulong psw = env->psw;
/*
* Setting the PSW Q bit to 1, if it was not already 1, is an
* undefined operation.
*
* However, HP-UX 10.20 does this with the SSM instruction.
* Tested this on HP9000/712 and HP9000/785/C3750 and both
* machines set the Q bit from 0 to 1 without an exception,
* so let this go without comment.
*/
env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
return psw & PSW_SM;
}
void HELPER(rfi)(CPUHPPAState *env)
{
env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
env->iasq_b = (uint64_t)env->cr_back[0] << 32;
env->iaoq_f = env->cr[CR_IIAOQ];
env->iaoq_b = env->cr_back[1];
cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
}
void HELPER(getshadowregs)(CPUHPPAState *env)
{
env->gr[1] = env->shadow[0];
env->gr[8] = env->shadow[1];
env->gr[9] = env->shadow[2];
env->gr[16] = env->shadow[3];
env->gr[17] = env->shadow[4];
env->gr[24] = env->shadow[5];
env->gr[25] = env->shadow[6];
}
void HELPER(rfi_r)(CPUHPPAState *env)
{
helper_getshadowregs(env);
helper_rfi(env);
}
#endif