mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-27 05:20:50 +00:00
0f9668e0c1
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <20220323155743.1585078-33-marcandre.lureau@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
696 lines
24 KiB
C
696 lines
24 KiB
C
/*
|
|
* QEMU PowerPC pSeries Logical Partition NUMA associativity handling
|
|
*
|
|
* Copyright IBM Corp. 2020
|
|
*
|
|
* Authors:
|
|
* Daniel Henrique Barboza <danielhb413@gmail.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "hw/ppc/spapr_numa.h"
|
|
#include "hw/pci-host/spapr.h"
|
|
#include "hw/ppc/fdt.h"
|
|
|
|
/* Moved from hw/ppc/spapr_pci_nvlink2.c */
|
|
#define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
|
|
|
|
/*
|
|
* Retrieves max_dist_ref_points of the current NUMA affinity.
|
|
*/
|
|
static int get_max_dist_ref_points(SpaprMachineState *spapr)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return FORM2_DIST_REF_POINTS;
|
|
}
|
|
|
|
return FORM1_DIST_REF_POINTS;
|
|
}
|
|
|
|
/*
|
|
* Retrieves numa_assoc_size of the current NUMA affinity.
|
|
*/
|
|
static int get_numa_assoc_size(SpaprMachineState *spapr)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return FORM2_NUMA_ASSOC_SIZE;
|
|
}
|
|
|
|
return FORM1_NUMA_ASSOC_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Retrieves vcpu_assoc_size of the current NUMA affinity.
|
|
*
|
|
* vcpu_assoc_size is the size of ibm,associativity array
|
|
* for CPUs, which has an extra element (vcpu_id) in the end.
|
|
*/
|
|
static int get_vcpu_assoc_size(SpaprMachineState *spapr)
|
|
{
|
|
return get_numa_assoc_size(spapr) + 1;
|
|
}
|
|
|
|
/*
|
|
* Retrieves the ibm,associativity array of NUMA node 'node_id'
|
|
* for the current NUMA affinity.
|
|
*/
|
|
static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return spapr->FORM2_assoc_array[node_id];
|
|
}
|
|
return spapr->FORM1_assoc_array[node_id];
|
|
}
|
|
|
|
/*
|
|
* Wrapper that returns node distance from ms->numa_state->nodes
|
|
* after handling edge cases where the distance might be absent.
|
|
*/
|
|
static int get_numa_distance(MachineState *ms, int src, int dst)
|
|
{
|
|
NodeInfo *numa_info = ms->numa_state->nodes;
|
|
int ret = numa_info[src].distance[dst];
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* In case QEMU adds a default NUMA single node when the user
|
|
* did not add any, or where the user did not supply distances,
|
|
* the distance will be absent (zero). Return local/remote
|
|
* distance in this case.
|
|
*/
|
|
if (src == dst) {
|
|
return NUMA_DISTANCE_MIN;
|
|
}
|
|
|
|
return NUMA_DISTANCE_DEFAULT;
|
|
}
|
|
|
|
static bool spapr_numa_is_symmetrical(MachineState *ms)
|
|
{
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
int src, dst;
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
for (dst = src; dst < nb_numa_nodes; dst++) {
|
|
if (get_numa_distance(ms, src, dst) !=
|
|
get_numa_distance(ms, dst, src)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
|
|
* We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
|
|
* called from vPHB reset handler so we initialize the counter here.
|
|
* If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
|
|
* must be equally distant from any other node.
|
|
* The final value of spapr->gpu_numa_id is going to be written to
|
|
* max-associativity-domains in spapr_build_fdt().
|
|
*/
|
|
unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
|
|
{
|
|
return MAX(1, machine->numa_state->num_nodes);
|
|
}
|
|
|
|
/*
|
|
* This function will translate the user distances into
|
|
* what the kernel understand as possible values: 10
|
|
* (local distance), 20, 40, 80 and 160, and return the equivalent
|
|
* NUMA level for each. Current heuristic is:
|
|
* - local distance (10) returns numa_level = 0x4, meaning there is
|
|
* no rounding for local distance
|
|
* - distances between 11 and 30 inclusive -> rounded to 20,
|
|
* numa_level = 0x3
|
|
* - distances between 31 and 60 inclusive -> rounded to 40,
|
|
* numa_level = 0x2
|
|
* - distances between 61 and 120 inclusive -> rounded to 80,
|
|
* numa_level = 0x1
|
|
* - everything above 120 returns numa_level = 0 to indicate that
|
|
* there is no match. This will be calculated as disntace = 160
|
|
* by the kernel (as of v5.9)
|
|
*/
|
|
static uint8_t spapr_numa_get_numa_level(uint8_t distance)
|
|
{
|
|
if (distance == 10) {
|
|
return 0x4;
|
|
} else if (distance > 11 && distance <= 30) {
|
|
return 0x3;
|
|
} else if (distance > 31 && distance <= 60) {
|
|
return 0x2;
|
|
} else if (distance > 61 && distance <= 120) {
|
|
return 0x1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
int src, dst, i, j;
|
|
|
|
/*
|
|
* Fill all associativity domains of non-zero NUMA nodes with
|
|
* node_id. This is required because the default value (0) is
|
|
* considered a match with associativity domains of node 0.
|
|
*/
|
|
for (i = 1; i < nb_numa_nodes; i++) {
|
|
for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
|
|
spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
|
|
}
|
|
}
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
for (dst = src; dst < nb_numa_nodes; dst++) {
|
|
/*
|
|
* This is how the associativity domain between A and B
|
|
* is calculated:
|
|
*
|
|
* - get the distance D between them
|
|
* - get the correspondent NUMA level 'n_level' for D
|
|
* - all associativity arrays were initialized with their own
|
|
* numa_ids, and we're calculating the distance in node_id
|
|
* ascending order, starting from node id 0 (the first node
|
|
* retrieved by numa_state). This will have a cascade effect in
|
|
* the algorithm because the associativity domains that node 0
|
|
* defines will be carried over to other nodes, and node 1
|
|
* associativities will be carried over after taking node 0
|
|
* associativities into account, and so on. This happens because
|
|
* we'll assign assoc_src as the associativity domain of dst
|
|
* as well, for all NUMA levels beyond and including n_level.
|
|
*
|
|
* The PPC kernel expects the associativity domains of node 0 to
|
|
* be always 0, and this algorithm will grant that by default.
|
|
*/
|
|
uint8_t distance = get_numa_distance(ms, src, dst);
|
|
uint8_t n_level = spapr_numa_get_numa_level(distance);
|
|
uint32_t assoc_src;
|
|
|
|
/*
|
|
* n_level = 0 means that the distance is greater than our last
|
|
* rounded value (120). In this case there is no NUMA level match
|
|
* between src and dst and we can skip the remaining of the loop.
|
|
*
|
|
* The Linux kernel will assume that the distance between src and
|
|
* dst, in this case of no match, is 10 (local distance) doubled
|
|
* for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
|
|
* levels (4), so this gives us 10*2*2*2*2 = 160.
|
|
*
|
|
* This logic can be seen in the Linux kernel source code, as of
|
|
* v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
|
|
*/
|
|
if (n_level == 0) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We must assign all assoc_src to dst, starting from n_level
|
|
* and going up to 0x1.
|
|
*/
|
|
for (i = n_level; i > 0; i--) {
|
|
assoc_src = spapr->FORM1_assoc_array[src][i];
|
|
spapr->FORM1_assoc_array[dst][i] = assoc_src;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void spapr_numa_FORM1_affinity_check(MachineState *machine)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Check we don't have a memory-less/cpu-less NUMA node
|
|
* Firmware relies on the existing memory/cpu topology to provide the
|
|
* NUMA topology to the kernel.
|
|
* And the linux kernel needs to know the NUMA topology at start
|
|
* to be able to hotplug CPUs later.
|
|
*/
|
|
if (machine->numa_state->num_nodes) {
|
|
for (i = 0; i < machine->numa_state->num_nodes; ++i) {
|
|
/* check for memory-less node */
|
|
if (machine->numa_state->nodes[i].node_mem == 0) {
|
|
CPUState *cs;
|
|
int found = 0;
|
|
/* check for cpu-less node */
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
if (cpu->node_id == i) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
/* memory-less and cpu-less node */
|
|
if (!found) {
|
|
error_report(
|
|
"Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!spapr_numa_is_symmetrical(machine)) {
|
|
error_report(
|
|
"Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set NUMA machine state data based on FORM1 affinity semantics.
|
|
*/
|
|
static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
|
|
MachineState *machine)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
int nb_numa_nodes = machine->numa_state->num_nodes;
|
|
int i, j, max_nodes_with_gpus;
|
|
|
|
/*
|
|
* For all associativity arrays: first position is the size,
|
|
* position FORM1_DIST_REF_POINTS is always the numa_id,
|
|
* represented by the index 'i'.
|
|
*
|
|
* This will break on sparse NUMA setups, when/if QEMU starts
|
|
* to support it, because there will be no more guarantee that
|
|
* 'i' will be a valid node_id set by the user.
|
|
*/
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
|
|
spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
|
|
}
|
|
|
|
/*
|
|
* Initialize NVLink GPU associativity arrays. We know that
|
|
* the first GPU will take the first available NUMA id, and
|
|
* we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
|
|
* At this point we're not sure if there are GPUs or not, but
|
|
* let's initialize the associativity arrays and allow NVLink
|
|
* GPUs to be handled like regular NUMA nodes later on.
|
|
*/
|
|
max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
|
|
|
|
for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
|
|
spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
|
|
|
|
for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
|
|
uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
|
|
SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
|
|
spapr->FORM1_assoc_array[i][j] = gpu_assoc;
|
|
}
|
|
|
|
spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
|
|
}
|
|
|
|
/*
|
|
* Guests pseries-5.1 and older uses zeroed associativity domains,
|
|
* i.e. no domain definition based on NUMA distance input.
|
|
*
|
|
* Same thing with guests that have only one NUMA node.
|
|
*/
|
|
if (smc->pre_5_2_numa_associativity ||
|
|
machine->numa_state->num_nodes <= 1) {
|
|
return;
|
|
}
|
|
|
|
spapr_numa_define_FORM1_domains(spapr);
|
|
}
|
|
|
|
/*
|
|
* Init NUMA FORM2 machine state data
|
|
*/
|
|
static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* For all resources but CPUs, FORM2 associativity arrays will
|
|
* be a size 2 array with the following format:
|
|
*
|
|
* ibm,associativity = {1, numa_id}
|
|
*
|
|
* CPUs will write an additional 'vcpu_id' on top of the arrays
|
|
* being initialized here. 'numa_id' is represented by the
|
|
* index 'i' of the loop.
|
|
*
|
|
* Given that this initialization is also valid for GPU associativity
|
|
* arrays, handle everything in one single step by populating the
|
|
* arrays up to NUMA_NODES_MAX_NUM.
|
|
*/
|
|
for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
|
|
spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
|
|
spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
|
|
}
|
|
}
|
|
|
|
void spapr_numa_associativity_init(SpaprMachineState *spapr,
|
|
MachineState *machine)
|
|
{
|
|
spapr_numa_FORM1_affinity_init(spapr, machine);
|
|
spapr_numa_FORM2_affinity_init(spapr);
|
|
}
|
|
|
|
void spapr_numa_associativity_check(SpaprMachineState *spapr)
|
|
{
|
|
/*
|
|
* FORM2 does not have any restrictions we need to handle
|
|
* at CAS time, for now.
|
|
*/
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return;
|
|
}
|
|
|
|
spapr_numa_FORM1_affinity_check(MACHINE(spapr));
|
|
}
|
|
|
|
void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
|
|
int offset, int nodeid)
|
|
{
|
|
const uint32_t *associativity = get_associativity(spapr, nodeid);
|
|
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,associativity",
|
|
associativity,
|
|
get_numa_assoc_size(spapr) * sizeof(uint32_t))));
|
|
}
|
|
|
|
static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
|
|
PowerPCCPU *cpu)
|
|
{
|
|
const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
|
|
int max_distance_ref_points = get_max_dist_ref_points(spapr);
|
|
int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
|
|
uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
|
|
int index = spapr_get_vcpu_id(cpu);
|
|
|
|
/*
|
|
* VCPUs have an extra 'cpu_id' value in ibm,associativity
|
|
* compared to other resources. Increment the size at index
|
|
* 0, put cpu_id last, then copy the remaining associativity
|
|
* domains.
|
|
*/
|
|
vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
|
|
vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
|
|
memcpy(vcpu_assoc + 1, associativity + 1,
|
|
(vcpu_assoc_size - 2) * sizeof(uint32_t));
|
|
|
|
return vcpu_assoc;
|
|
}
|
|
|
|
int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
|
|
int offset, PowerPCCPU *cpu)
|
|
{
|
|
g_autofree uint32_t *vcpu_assoc = NULL;
|
|
int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
|
|
|
|
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
|
|
|
|
/* Advertise NUMA via ibm,associativity */
|
|
return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
|
|
vcpu_assoc_size * sizeof(uint32_t));
|
|
}
|
|
|
|
|
|
int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
|
|
int offset)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
int max_distance_ref_points = get_max_dist_ref_points(spapr);
|
|
int nb_numa_nodes = machine->numa_state->num_nodes;
|
|
int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
|
|
g_autofree uint32_t *int_buf = NULL;
|
|
uint32_t *cur_index;
|
|
int i;
|
|
|
|
/* ibm,associativity-lookup-arrays */
|
|
int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
|
|
cur_index = int_buf;
|
|
int_buf[0] = cpu_to_be32(nr_nodes);
|
|
/* Number of entries per associativity list */
|
|
int_buf[1] = cpu_to_be32(max_distance_ref_points);
|
|
cur_index += 2;
|
|
for (i = 0; i < nr_nodes; i++) {
|
|
/*
|
|
* For the lookup-array we use the ibm,associativity array of the
|
|
* current NUMA affinity, without the first element (size).
|
|
*/
|
|
const uint32_t *associativity = get_associativity(spapr, i);
|
|
memcpy(cur_index, ++associativity,
|
|
sizeof(uint32_t) * max_distance_ref_points);
|
|
cur_index += max_distance_ref_points;
|
|
}
|
|
|
|
return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
|
|
int_buf, (cur_index - int_buf) * sizeof(uint32_t));
|
|
}
|
|
|
|
static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
|
|
void *fdt, int rtas)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
|
|
spapr_numa_initial_nvgpu_numa_id(ms);
|
|
uint32_t refpoints[] = {
|
|
cpu_to_be32(0x4),
|
|
cpu_to_be32(0x3),
|
|
cpu_to_be32(0x2),
|
|
cpu_to_be32(0x1),
|
|
};
|
|
uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
|
|
uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
|
|
uint32_t maxdomains[] = {
|
|
cpu_to_be32(4),
|
|
cpu_to_be32(maxdomain),
|
|
cpu_to_be32(maxdomain),
|
|
cpu_to_be32(maxdomain),
|
|
cpu_to_be32(maxdomain)
|
|
};
|
|
|
|
if (smc->pre_5_2_numa_associativity ||
|
|
ms->numa_state->num_nodes <= 1) {
|
|
uint32_t legacy_refpoints[] = {
|
|
cpu_to_be32(0x4),
|
|
cpu_to_be32(0x4),
|
|
cpu_to_be32(0x2),
|
|
};
|
|
uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
|
|
uint32_t legacy_maxdomains[] = {
|
|
cpu_to_be32(4),
|
|
cpu_to_be32(legacy_maxdomain),
|
|
cpu_to_be32(legacy_maxdomain),
|
|
cpu_to_be32(legacy_maxdomain),
|
|
cpu_to_be32(spapr->gpu_numa_id),
|
|
};
|
|
|
|
G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
|
|
G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
|
|
|
|
nr_refpoints = 3;
|
|
|
|
memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
|
|
memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
|
|
|
|
/* pseries-5.0 and older reference-points array is {0x4, 0x4} */
|
|
if (smc->pre_5_1_assoc_refpoints) {
|
|
nr_refpoints = 2;
|
|
}
|
|
}
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
|
|
refpoints, nr_refpoints * sizeof(refpoints[0])));
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
|
|
maxdomains, sizeof(maxdomains)));
|
|
}
|
|
|
|
static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
|
|
void *fdt, int rtas)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
|
|
g_autofree uint32_t *lookup_index_table = NULL;
|
|
g_autofree uint8_t *distance_table = NULL;
|
|
int src, dst, i, distance_table_size;
|
|
|
|
/*
|
|
* ibm,numa-lookup-index-table: array with length and a
|
|
* list of NUMA ids present in the guest.
|
|
*/
|
|
lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
|
|
lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
|
|
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
lookup_index_table[i + 1] = cpu_to_be32(i);
|
|
}
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
|
|
lookup_index_table,
|
|
(nb_numa_nodes + 1) * sizeof(uint32_t)));
|
|
|
|
/*
|
|
* ibm,numa-distance-table: contains all node distances. First
|
|
* element is the size of the table as uint32, followed up
|
|
* by all the uint8 distances from the first NUMA node, then all
|
|
* distances from the second NUMA node and so on.
|
|
*
|
|
* ibm,numa-lookup-index-table is used by guest to navigate this
|
|
* array because NUMA ids can be sparse (node 0 is the first,
|
|
* node 8 is the second ...).
|
|
*/
|
|
distance_table_size = distance_table_entries * sizeof(uint8_t) +
|
|
sizeof(uint32_t);
|
|
distance_table = g_new0(uint8_t, distance_table_size);
|
|
stl_be_p(distance_table, distance_table_entries);
|
|
|
|
/* Skip the uint32_t array length at the start */
|
|
i = sizeof(uint32_t);
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
for (dst = 0; dst < nb_numa_nodes; dst++) {
|
|
distance_table[i++] = get_numa_distance(ms, src, dst);
|
|
}
|
|
}
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
|
|
distance_table, distance_table_size));
|
|
}
|
|
|
|
/*
|
|
* This helper could be compressed in a single function with
|
|
* FORM1 logic since we're setting the same DT values, with the
|
|
* difference being a call to spapr_numa_FORM2_write_rtas_tables()
|
|
* in the end. The separation was made to avoid clogging FORM1 code
|
|
* which already has to deal with compat modes from previous
|
|
* QEMU machine types.
|
|
*/
|
|
static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
|
|
void *fdt, int rtas)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
|
|
spapr_numa_initial_nvgpu_numa_id(ms);
|
|
|
|
/*
|
|
* In FORM2, ibm,associativity-reference-points will point to
|
|
* the element in the ibm,associativity array that contains the
|
|
* primary domain index (for FORM2, the first element).
|
|
*
|
|
* This value (in our case, the numa-id) is then used as an index
|
|
* to retrieve all other attributes of the node (distance,
|
|
* bandwidth, latency) via ibm,numa-lookup-index-table and other
|
|
* ibm,numa-*-table properties.
|
|
*/
|
|
uint32_t refpoints[] = { cpu_to_be32(1) };
|
|
|
|
uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
|
|
uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
|
|
refpoints, sizeof(refpoints)));
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
|
|
maxdomains, sizeof(maxdomains)));
|
|
|
|
spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
|
|
}
|
|
|
|
/*
|
|
* Helper that writes ibm,associativity-reference-points and
|
|
* max-associativity-domains in the RTAS pointed by @rtas
|
|
* in the DT @fdt.
|
|
*/
|
|
void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
|
|
return;
|
|
}
|
|
|
|
spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
|
|
}
|
|
|
|
static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
g_autofree uint32_t *vcpu_assoc = NULL;
|
|
target_ulong flags = args[0];
|
|
target_ulong procno = args[1];
|
|
PowerPCCPU *tcpu;
|
|
int idx, assoc_idx;
|
|
int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
|
|
|
|
/* only support procno from H_REGISTER_VPA */
|
|
if (flags != 0x1) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
tcpu = spapr_find_cpu(procno);
|
|
if (tcpu == NULL) {
|
|
return H_P2;
|
|
}
|
|
|
|
/*
|
|
* Given that we want to be flexible with the sizes and indexes,
|
|
* we must consider that there is a hard limit of how many
|
|
* associativities domain we can fit in R4 up to R9, which would be
|
|
* 12 associativity domains for vcpus. Assert and bail if that's
|
|
* not the case.
|
|
*/
|
|
g_assert((vcpu_assoc_size - 1) <= 12);
|
|
|
|
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
|
|
/* assoc_idx starts at 1 to skip associativity size */
|
|
assoc_idx = 1;
|
|
|
|
#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
|
|
((uint64_t)(b) & 0xffffffff))
|
|
|
|
for (idx = 0; idx < 6; idx++) {
|
|
int32_t a, b;
|
|
|
|
/*
|
|
* vcpu_assoc[] will contain the associativity domains for tcpu,
|
|
* including tcpu->node_id and procno, meaning that we don't
|
|
* need to use these variables here.
|
|
*
|
|
* We'll read 2 values at a time to fill up the ASSOCIATIVITY()
|
|
* macro. The ternary will fill the remaining registers with -1
|
|
* after we went through vcpu_assoc[].
|
|
*/
|
|
a = assoc_idx < vcpu_assoc_size ?
|
|
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
|
|
b = assoc_idx < vcpu_assoc_size ?
|
|
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
|
|
|
|
args[idx] = ASSOCIATIVITY(a, b);
|
|
}
|
|
#undef ASSOCIATIVITY
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static void spapr_numa_register_types(void)
|
|
{
|
|
/* Virtual Processor Home Node */
|
|
spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
|
|
h_home_node_associativity);
|
|
}
|
|
|
|
type_init(spapr_numa_register_types)
|