xemu/target/xtensa/gdbstub.c
Max Filippov 1b7b26e474 target/xtensa: use correct number of registers in gdbstub
System emulation should provide access to all registers, userspace
emulation should only provide access to unprivileged registers.
Record register flags from GDB register map definition, calculate both
num_regs and num_core_regs if either is zero. Use num_regs in system
emulation, num_core_regs in userspace emulation gdbstub.

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
2018-03-13 11:30:22 -07:00

145 lines
4.2 KiB
C

/*
* Xtensa gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "cpu.h"
#include "exec/gdbstub.h"
#include "qemu/log.h"
int xtensa_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
#ifdef CONFIG_USER_ONLY
int num_regs = env->config->gdb_regmap.num_core_regs;
#else
int num_regs = env->config->gdb_regmap.num_regs;
#endif
unsigned i;
if (n < 0 || n >= num_regs) {
return 0;
}
switch (reg->type) {
case 9: /*pc*/
return gdb_get_reg32(mem_buf, env->pc);
case 1: /*ar*/
xtensa_sync_phys_from_window(env);
return gdb_get_reg32(mem_buf, env->phys_regs[(reg->targno & 0xff)
% env->config->nareg]);
case 2: /*SR*/
return gdb_get_reg32(mem_buf, env->sregs[reg->targno & 0xff]);
case 3: /*UR*/
return gdb_get_reg32(mem_buf, env->uregs[reg->targno & 0xff]);
case 4: /*f*/
i = reg->targno & 0x0f;
switch (reg->size) {
case 4:
return gdb_get_reg32(mem_buf,
float32_val(env->fregs[i].f32[FP_F32_LOW]));
case 8:
return gdb_get_reg64(mem_buf, float64_val(env->fregs[i].f64));
default:
qemu_log_mask(LOG_UNIMP, "%s from reg %d of unsupported size %d\n",
__func__, n, reg->size);
memset(mem_buf, 0, reg->size);
return reg->size;
}
case 8: /*a*/
return gdb_get_reg32(mem_buf, env->regs[reg->targno & 0x0f]);
default:
qemu_log_mask(LOG_UNIMP, "%s from reg %d of unsupported type %d\n",
__func__, n, reg->type);
memset(mem_buf, 0, reg->size);
return reg->size;
}
}
int xtensa_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
uint32_t tmp;
const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
#ifdef CONFIG_USER_ONLY
int num_regs = env->config->gdb_regmap.num_core_regs;
#else
int num_regs = env->config->gdb_regmap.num_regs;
#endif
if (n < 0 || n >= num_regs) {
return 0;
}
tmp = ldl_p(mem_buf);
switch (reg->type) {
case 9: /*pc*/
env->pc = tmp;
break;
case 1: /*ar*/
env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
xtensa_sync_window_from_phys(env);
break;
case 2: /*SR*/
env->sregs[reg->targno & 0xff] = tmp;
break;
case 3: /*UR*/
env->uregs[reg->targno & 0xff] = tmp;
break;
case 4: /*f*/
switch (reg->size) {
case 4:
env->fregs[reg->targno & 0x0f].f32[FP_F32_LOW] = make_float32(tmp);
return 4;
case 8:
env->fregs[reg->targno & 0x0f].f64 = make_float64(tmp);
return 8;
default:
qemu_log_mask(LOG_UNIMP, "%s to reg %d of unsupported size %d\n",
__func__, n, reg->size);
return reg->size;
}
case 8: /*a*/
env->regs[reg->targno & 0x0f] = tmp;
break;
default:
qemu_log_mask(LOG_UNIMP, "%s to reg %d of unsupported type %d\n",
__func__, n, reg->type);
return reg->size;
}
return 4;
}