xemu/hw/arm/smmuv3-internal.h
Eric Auger 9bde7f0674 hw/arm/smmuv3: Implement translate callback
This patch implements the IOMMU Memory Region translate()
callback. Most of the code relates to the translation
configuration decoding and check (STE, CD).

Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Prem Mallappa <prem.mallappa@broadcom.com>
Message-id: 1524665762-31355-10-git-send-email-eric.auger@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-05-04 18:51:25 +01:00

622 lines
20 KiB
C

/*
* ARM SMMUv3 support - Internal API
*
* Copyright (C) 2014-2016 Broadcom Corporation
* Copyright (c) 2017 Red Hat, Inc.
* Written by Prem Mallappa, Eric Auger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_ARM_SMMU_V3_INTERNAL_H
#define HW_ARM_SMMU_V3_INTERNAL_H
#include "hw/arm/smmu-common.h"
/* MMIO Registers */
REG32(IDR0, 0x0)
FIELD(IDR0, S1P, 1 , 1)
FIELD(IDR0, TTF, 2 , 2)
FIELD(IDR0, COHACC, 4 , 1)
FIELD(IDR0, ASID16, 12, 1)
FIELD(IDR0, TTENDIAN, 21, 2)
FIELD(IDR0, STALL_MODEL, 24, 2)
FIELD(IDR0, TERM_MODEL, 26, 1)
FIELD(IDR0, STLEVEL, 27, 2)
REG32(IDR1, 0x4)
FIELD(IDR1, SIDSIZE, 0 , 6)
FIELD(IDR1, EVENTQS, 16, 5)
FIELD(IDR1, CMDQS, 21, 5)
#define SMMU_IDR1_SIDSIZE 16
#define SMMU_CMDQS 19
#define SMMU_EVENTQS 19
REG32(IDR2, 0x8)
REG32(IDR3, 0xc)
REG32(IDR4, 0x10)
REG32(IDR5, 0x14)
FIELD(IDR5, OAS, 0, 3);
FIELD(IDR5, GRAN4K, 4, 1);
FIELD(IDR5, GRAN16K, 5, 1);
FIELD(IDR5, GRAN64K, 6, 1);
#define SMMU_IDR5_OAS 4
REG32(IIDR, 0x1c)
REG32(CR0, 0x20)
FIELD(CR0, SMMU_ENABLE, 0, 1)
FIELD(CR0, EVENTQEN, 2, 1)
FIELD(CR0, CMDQEN, 3, 1)
#define SMMU_CR0_RESERVED 0xFFFFFC20
REG32(CR0ACK, 0x24)
REG32(CR1, 0x28)
REG32(CR2, 0x2c)
REG32(STATUSR, 0x40)
REG32(IRQ_CTRL, 0x50)
FIELD(IRQ_CTRL, GERROR_IRQEN, 0, 1)
FIELD(IRQ_CTRL, PRI_IRQEN, 1, 1)
FIELD(IRQ_CTRL, EVENTQ_IRQEN, 2, 1)
REG32(IRQ_CTRL_ACK, 0x54)
REG32(GERROR, 0x60)
FIELD(GERROR, CMDQ_ERR, 0, 1)
FIELD(GERROR, EVENTQ_ABT_ERR, 2, 1)
FIELD(GERROR, PRIQ_ABT_ERR, 3, 1)
FIELD(GERROR, MSI_CMDQ_ABT_ERR, 4, 1)
FIELD(GERROR, MSI_EVENTQ_ABT_ERR, 5, 1)
FIELD(GERROR, MSI_PRIQ_ABT_ERR, 6, 1)
FIELD(GERROR, MSI_GERROR_ABT_ERR, 7, 1)
FIELD(GERROR, MSI_SFM_ERR, 8, 1)
REG32(GERRORN, 0x64)
#define A_GERROR_IRQ_CFG0 0x68 /* 64b */
REG32(GERROR_IRQ_CFG1, 0x70)
REG32(GERROR_IRQ_CFG2, 0x74)
#define A_STRTAB_BASE 0x80 /* 64b */
#define SMMU_BASE_ADDR_MASK 0xffffffffffe0
REG32(STRTAB_BASE_CFG, 0x88)
FIELD(STRTAB_BASE_CFG, FMT, 16, 2)
FIELD(STRTAB_BASE_CFG, SPLIT, 6 , 5)
FIELD(STRTAB_BASE_CFG, LOG2SIZE, 0 , 6)
#define A_CMDQ_BASE 0x90 /* 64b */
REG32(CMDQ_PROD, 0x98)
REG32(CMDQ_CONS, 0x9c)
FIELD(CMDQ_CONS, ERR, 24, 7)
#define A_EVENTQ_BASE 0xa0 /* 64b */
REG32(EVENTQ_PROD, 0xa8)
REG32(EVENTQ_CONS, 0xac)
#define A_EVENTQ_IRQ_CFG0 0xb0 /* 64b */
REG32(EVENTQ_IRQ_CFG1, 0xb8)
REG32(EVENTQ_IRQ_CFG2, 0xbc)
#define A_IDREGS 0xfd0
static inline int smmu_enabled(SMMUv3State *s)
{
return FIELD_EX32(s->cr[0], CR0, SMMU_ENABLE);
}
/* Command Queue Entry */
typedef struct Cmd {
uint32_t word[4];
} Cmd;
/* Event Queue Entry */
typedef struct Evt {
uint32_t word[8];
} Evt;
static inline uint32_t smmuv3_idreg(int regoffset)
{
/*
* Return the value of the Primecell/Corelink ID registers at the
* specified offset from the first ID register.
* These value indicate an ARM implementation of MMU600 p1
*/
static const uint8_t smmuv3_ids[] = {
0x04, 0, 0, 0, 0x84, 0xB4, 0xF0, 0x10, 0x0D, 0xF0, 0x05, 0xB1
};
return smmuv3_ids[regoffset / 4];
}
static inline bool smmuv3_eventq_irq_enabled(SMMUv3State *s)
{
return FIELD_EX32(s->irq_ctrl, IRQ_CTRL, EVENTQ_IRQEN);
}
static inline bool smmuv3_gerror_irq_enabled(SMMUv3State *s)
{
return FIELD_EX32(s->irq_ctrl, IRQ_CTRL, GERROR_IRQEN);
}
/* Queue Handling */
#define Q_BASE(q) ((q)->base & SMMU_BASE_ADDR_MASK)
#define WRAP_MASK(q) (1 << (q)->log2size)
#define INDEX_MASK(q) (((1 << (q)->log2size)) - 1)
#define WRAP_INDEX_MASK(q) ((1 << ((q)->log2size + 1)) - 1)
#define Q_CONS(q) ((q)->cons & INDEX_MASK(q))
#define Q_PROD(q) ((q)->prod & INDEX_MASK(q))
#define Q_CONS_ENTRY(q) (Q_BASE(q) + (q)->entry_size * Q_CONS(q))
#define Q_PROD_ENTRY(q) (Q_BASE(q) + (q)->entry_size * Q_PROD(q))
#define Q_CONS_WRAP(q) (((q)->cons & WRAP_MASK(q)) >> (q)->log2size)
#define Q_PROD_WRAP(q) (((q)->prod & WRAP_MASK(q)) >> (q)->log2size)
static inline bool smmuv3_q_full(SMMUQueue *q)
{
return ((q->cons ^ q->prod) & WRAP_INDEX_MASK(q)) == WRAP_MASK(q);
}
static inline bool smmuv3_q_empty(SMMUQueue *q)
{
return (q->cons & WRAP_INDEX_MASK(q)) == (q->prod & WRAP_INDEX_MASK(q));
}
static inline void queue_prod_incr(SMMUQueue *q)
{
q->prod = (q->prod + 1) & WRAP_INDEX_MASK(q);
}
static inline void queue_cons_incr(SMMUQueue *q)
{
/*
* We have to use deposit for the CONS registers to preserve
* the ERR field in the high bits.
*/
q->cons = deposit32(q->cons, 0, q->log2size + 1, q->cons + 1);
}
static inline bool smmuv3_cmdq_enabled(SMMUv3State *s)
{
return FIELD_EX32(s->cr[0], CR0, CMDQEN);
}
static inline bool smmuv3_eventq_enabled(SMMUv3State *s)
{
return FIELD_EX32(s->cr[0], CR0, EVENTQEN);
}
static inline void smmu_write_cmdq_err(SMMUv3State *s, uint32_t err_type)
{
s->cmdq.cons = FIELD_DP32(s->cmdq.cons, CMDQ_CONS, ERR, err_type);
}
/* Commands */
typedef enum SMMUCommandType {
SMMU_CMD_NONE = 0x00,
SMMU_CMD_PREFETCH_CONFIG ,
SMMU_CMD_PREFETCH_ADDR,
SMMU_CMD_CFGI_STE,
SMMU_CMD_CFGI_STE_RANGE,
SMMU_CMD_CFGI_CD,
SMMU_CMD_CFGI_CD_ALL,
SMMU_CMD_CFGI_ALL,
SMMU_CMD_TLBI_NH_ALL = 0x10,
SMMU_CMD_TLBI_NH_ASID,
SMMU_CMD_TLBI_NH_VA,
SMMU_CMD_TLBI_NH_VAA,
SMMU_CMD_TLBI_EL3_ALL = 0x18,
SMMU_CMD_TLBI_EL3_VA = 0x1a,
SMMU_CMD_TLBI_EL2_ALL = 0x20,
SMMU_CMD_TLBI_EL2_ASID,
SMMU_CMD_TLBI_EL2_VA,
SMMU_CMD_TLBI_EL2_VAA,
SMMU_CMD_TLBI_S12_VMALL = 0x28,
SMMU_CMD_TLBI_S2_IPA = 0x2a,
SMMU_CMD_TLBI_NSNH_ALL = 0x30,
SMMU_CMD_ATC_INV = 0x40,
SMMU_CMD_PRI_RESP,
SMMU_CMD_RESUME = 0x44,
SMMU_CMD_STALL_TERM,
SMMU_CMD_SYNC,
} SMMUCommandType;
static const char *cmd_stringify[] = {
[SMMU_CMD_PREFETCH_CONFIG] = "SMMU_CMD_PREFETCH_CONFIG",
[SMMU_CMD_PREFETCH_ADDR] = "SMMU_CMD_PREFETCH_ADDR",
[SMMU_CMD_CFGI_STE] = "SMMU_CMD_CFGI_STE",
[SMMU_CMD_CFGI_STE_RANGE] = "SMMU_CMD_CFGI_STE_RANGE",
[SMMU_CMD_CFGI_CD] = "SMMU_CMD_CFGI_CD",
[SMMU_CMD_CFGI_CD_ALL] = "SMMU_CMD_CFGI_CD_ALL",
[SMMU_CMD_CFGI_ALL] = "SMMU_CMD_CFGI_ALL",
[SMMU_CMD_TLBI_NH_ALL] = "SMMU_CMD_TLBI_NH_ALL",
[SMMU_CMD_TLBI_NH_ASID] = "SMMU_CMD_TLBI_NH_ASID",
[SMMU_CMD_TLBI_NH_VA] = "SMMU_CMD_TLBI_NH_VA",
[SMMU_CMD_TLBI_NH_VAA] = "SMMU_CMD_TLBI_NH_VAA",
[SMMU_CMD_TLBI_EL3_ALL] = "SMMU_CMD_TLBI_EL3_ALL",
[SMMU_CMD_TLBI_EL3_VA] = "SMMU_CMD_TLBI_EL3_VA",
[SMMU_CMD_TLBI_EL2_ALL] = "SMMU_CMD_TLBI_EL2_ALL",
[SMMU_CMD_TLBI_EL2_ASID] = "SMMU_CMD_TLBI_EL2_ASID",
[SMMU_CMD_TLBI_EL2_VA] = "SMMU_CMD_TLBI_EL2_VA",
[SMMU_CMD_TLBI_EL2_VAA] = "SMMU_CMD_TLBI_EL2_VAA",
[SMMU_CMD_TLBI_S12_VMALL] = "SMMU_CMD_TLBI_S12_VMALL",
[SMMU_CMD_TLBI_S2_IPA] = "SMMU_CMD_TLBI_S2_IPA",
[SMMU_CMD_TLBI_NSNH_ALL] = "SMMU_CMD_TLBI_NSNH_ALL",
[SMMU_CMD_ATC_INV] = "SMMU_CMD_ATC_INV",
[SMMU_CMD_PRI_RESP] = "SMMU_CMD_PRI_RESP",
[SMMU_CMD_RESUME] = "SMMU_CMD_RESUME",
[SMMU_CMD_STALL_TERM] = "SMMU_CMD_STALL_TERM",
[SMMU_CMD_SYNC] = "SMMU_CMD_SYNC",
};
static inline const char *smmu_cmd_string(SMMUCommandType type)
{
if (type > SMMU_CMD_NONE && type < ARRAY_SIZE(cmd_stringify)) {
return cmd_stringify[type] ? cmd_stringify[type] : "UNKNOWN";
} else {
return "INVALID";
}
}
/* CMDQ fields */
typedef enum {
SMMU_CERROR_NONE = 0,
SMMU_CERROR_ILL,
SMMU_CERROR_ABT,
SMMU_CERROR_ATC_INV_SYNC,
} SMMUCmdError;
enum { /* Command completion notification */
CMD_SYNC_SIG_NONE,
CMD_SYNC_SIG_IRQ,
CMD_SYNC_SIG_SEV,
};
#define CMD_TYPE(x) extract32((x)->word[0], 0 , 8)
#define CMD_SSEC(x) extract32((x)->word[0], 10, 1)
#define CMD_SSV(x) extract32((x)->word[0], 11, 1)
#define CMD_RESUME_AC(x) extract32((x)->word[0], 12, 1)
#define CMD_RESUME_AB(x) extract32((x)->word[0], 13, 1)
#define CMD_SYNC_CS(x) extract32((x)->word[0], 12, 2)
#define CMD_SSID(x) extract32((x)->word[0], 12, 20)
#define CMD_SID(x) ((x)->word[1])
#define CMD_VMID(x) extract32((x)->word[1], 0 , 16)
#define CMD_ASID(x) extract32((x)->word[1], 16, 16)
#define CMD_RESUME_STAG(x) extract32((x)->word[2], 0 , 16)
#define CMD_RESP(x) extract32((x)->word[2], 11, 2)
#define CMD_LEAF(x) extract32((x)->word[2], 0 , 1)
#define CMD_STE_RANGE(x) extract32((x)->word[2], 0 , 5)
#define CMD_ADDR(x) ({ \
uint64_t high = (uint64_t)(x)->word[3]; \
uint64_t low = extract32((x)->word[2], 12, 20); \
uint64_t addr = high << 32 | (low << 12); \
addr; \
})
#define SMMU_FEATURE_2LVL_STE (1 << 0)
/* Events */
typedef enum SMMUEventType {
SMMU_EVT_OK = 0x00,
SMMU_EVT_F_UUT ,
SMMU_EVT_C_BAD_STREAMID ,
SMMU_EVT_F_STE_FETCH ,
SMMU_EVT_C_BAD_STE ,
SMMU_EVT_F_BAD_ATS_TREQ ,
SMMU_EVT_F_STREAM_DISABLED ,
SMMU_EVT_F_TRANS_FORBIDDEN ,
SMMU_EVT_C_BAD_SUBSTREAMID ,
SMMU_EVT_F_CD_FETCH ,
SMMU_EVT_C_BAD_CD ,
SMMU_EVT_F_WALK_EABT ,
SMMU_EVT_F_TRANSLATION = 0x10,
SMMU_EVT_F_ADDR_SIZE ,
SMMU_EVT_F_ACCESS ,
SMMU_EVT_F_PERMISSION ,
SMMU_EVT_F_TLB_CONFLICT = 0x20,
SMMU_EVT_F_CFG_CONFLICT ,
SMMU_EVT_E_PAGE_REQ = 0x24,
} SMMUEventType;
static const char *event_stringify[] = {
[SMMU_EVT_OK] = "SMMU_EVT_OK",
[SMMU_EVT_F_UUT] = "SMMU_EVT_F_UUT",
[SMMU_EVT_C_BAD_STREAMID] = "SMMU_EVT_C_BAD_STREAMID",
[SMMU_EVT_F_STE_FETCH] = "SMMU_EVT_F_STE_FETCH",
[SMMU_EVT_C_BAD_STE] = "SMMU_EVT_C_BAD_STE",
[SMMU_EVT_F_BAD_ATS_TREQ] = "SMMU_EVT_F_BAD_ATS_TREQ",
[SMMU_EVT_F_STREAM_DISABLED] = "SMMU_EVT_F_STREAM_DISABLED",
[SMMU_EVT_F_TRANS_FORBIDDEN] = "SMMU_EVT_F_TRANS_FORBIDDEN",
[SMMU_EVT_C_BAD_SUBSTREAMID] = "SMMU_EVT_C_BAD_SUBSTREAMID",
[SMMU_EVT_F_CD_FETCH] = "SMMU_EVT_F_CD_FETCH",
[SMMU_EVT_C_BAD_CD] = "SMMU_EVT_C_BAD_CD",
[SMMU_EVT_F_WALK_EABT] = "SMMU_EVT_F_WALK_EABT",
[SMMU_EVT_F_TRANSLATION] = "SMMU_EVT_F_TRANSLATION",
[SMMU_EVT_F_ADDR_SIZE] = "SMMU_EVT_F_ADDR_SIZE",
[SMMU_EVT_F_ACCESS] = "SMMU_EVT_F_ACCESS",
[SMMU_EVT_F_PERMISSION] = "SMMU_EVT_F_PERMISSION",
[SMMU_EVT_F_TLB_CONFLICT] = "SMMU_EVT_F_TLB_CONFLICT",
[SMMU_EVT_F_CFG_CONFLICT] = "SMMU_EVT_F_CFG_CONFLICT",
[SMMU_EVT_E_PAGE_REQ] = "SMMU_EVT_E_PAGE_REQ",
};
static inline const char *smmu_event_string(SMMUEventType type)
{
if (type < ARRAY_SIZE(event_stringify)) {
return event_stringify[type] ? event_stringify[type] : "UNKNOWN";
} else {
return "INVALID";
}
}
/* Encode an event record */
typedef struct SMMUEventInfo {
SMMUEventType type;
uint32_t sid;
bool recorded;
bool record_trans_faults;
union {
struct {
uint32_t ssid;
bool ssv;
dma_addr_t addr;
bool rnw;
bool pnu;
bool ind;
} f_uut;
struct SSIDInfo {
uint32_t ssid;
bool ssv;
} c_bad_streamid;
struct SSIDAddrInfo {
uint32_t ssid;
bool ssv;
dma_addr_t addr;
} f_ste_fetch;
struct SSIDInfo c_bad_ste;
struct {
dma_addr_t addr;
bool rnw;
} f_transl_forbidden;
struct {
uint32_t ssid;
} c_bad_substream;
struct SSIDAddrInfo f_cd_fetch;
struct SSIDInfo c_bad_cd;
struct FullInfo {
bool stall;
uint16_t stag;
uint32_t ssid;
bool ssv;
bool s2;
dma_addr_t addr;
bool rnw;
bool pnu;
bool ind;
uint8_t class;
dma_addr_t addr2;
} f_walk_eabt;
struct FullInfo f_translation;
struct FullInfo f_addr_size;
struct FullInfo f_access;
struct FullInfo f_permission;
struct SSIDInfo f_cfg_conflict;
/**
* not supported yet:
* F_BAD_ATS_TREQ
* F_BAD_ATS_TREQ
* F_TLB_CONFLICT
* E_PAGE_REQUEST
* IMPDEF_EVENTn
*/
} u;
} SMMUEventInfo;
/* EVTQ fields */
#define EVT_Q_OVERFLOW (1 << 31)
#define EVT_SET_TYPE(x, v) deposit32((x)->word[0], 0 , 8 , v)
#define EVT_SET_SSV(x, v) deposit32((x)->word[0], 11, 1 , v)
#define EVT_SET_SSID(x, v) deposit32((x)->word[0], 12, 20, v)
#define EVT_SET_SID(x, v) ((x)->word[1] = v)
#define EVT_SET_STAG(x, v) deposit32((x)->word[2], 0 , 16, v)
#define EVT_SET_STALL(x, v) deposit32((x)->word[2], 31, 1 , v)
#define EVT_SET_PNU(x, v) deposit32((x)->word[3], 1 , 1 , v)
#define EVT_SET_IND(x, v) deposit32((x)->word[3], 2 , 1 , v)
#define EVT_SET_RNW(x, v) deposit32((x)->word[3], 3 , 1 , v)
#define EVT_SET_S2(x, v) deposit32((x)->word[3], 7 , 1 , v)
#define EVT_SET_CLASS(x, v) deposit32((x)->word[3], 8 , 2 , v)
#define EVT_SET_ADDR(x, addr) \
do { \
(x)->word[5] = (uint32_t)(addr >> 32); \
(x)->word[4] = (uint32_t)(addr & 0xffffffff); \
} while (0)
#define EVT_SET_ADDR2(x, addr) \
do { \
deposit32((x)->word[7], 3, 29, addr >> 16); \
deposit32((x)->word[7], 0, 16, addr & 0xffff);\
} while (0)
void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *event);
/* Configuration Data */
/* STE Level 1 Descriptor */
typedef struct STEDesc {
uint32_t word[2];
} STEDesc;
/* CD Level 1 Descriptor */
typedef struct CDDesc {
uint32_t word[2];
} CDDesc;
/* Stream Table Entry(STE) */
typedef struct STE {
uint32_t word[16];
} STE;
/* Context Descriptor(CD) */
typedef struct CD {
uint32_t word[16];
} CD;
/* STE fields */
#define STE_VALID(x) extract32((x)->word[0], 0, 1)
#define STE_CONFIG(x) extract32((x)->word[0], 1, 3)
#define STE_CFG_S1_ENABLED(config) (config & 0x1)
#define STE_CFG_S2_ENABLED(config) (config & 0x2)
#define STE_CFG_ABORT(config) (!(config & 0x4))
#define STE_CFG_BYPASS(config) (config == 0x4)
#define STE_S1FMT(x) extract32((x)->word[0], 4 , 2)
#define STE_S1CDMAX(x) extract32((x)->word[1], 27, 5)
#define STE_S1STALLD(x) extract32((x)->word[2], 27, 1)
#define STE_EATS(x) extract32((x)->word[2], 28, 2)
#define STE_STRW(x) extract32((x)->word[2], 30, 2)
#define STE_S2VMID(x) extract32((x)->word[4], 0 , 16)
#define STE_S2T0SZ(x) extract32((x)->word[5], 0 , 6)
#define STE_S2SL0(x) extract32((x)->word[5], 6 , 2)
#define STE_S2TG(x) extract32((x)->word[5], 14, 2)
#define STE_S2PS(x) extract32((x)->word[5], 16, 3)
#define STE_S2AA64(x) extract32((x)->word[5], 19, 1)
#define STE_S2HD(x) extract32((x)->word[5], 24, 1)
#define STE_S2HA(x) extract32((x)->word[5], 25, 1)
#define STE_S2S(x) extract32((x)->word[5], 26, 1)
#define STE_CTXPTR(x) \
({ \
unsigned long addr; \
addr = (uint64_t)extract32((x)->word[1], 0, 16) << 32; \
addr |= (uint64_t)((x)->word[0] & 0xffffffc0); \
addr; \
})
#define STE_S2TTB(x) \
({ \
unsigned long addr; \
addr = (uint64_t)extract32((x)->word[7], 0, 16) << 32; \
addr |= (uint64_t)((x)->word[6] & 0xfffffff0); \
addr; \
})
static inline int oas2bits(int oas_field)
{
switch (oas_field) {
case 0:
return 32;
case 1:
return 36;
case 2:
return 40;
case 3:
return 42;
case 4:
return 44;
case 5:
return 48;
}
return -1;
}
static inline int pa_range(STE *ste)
{
int oas_field = MIN(STE_S2PS(ste), SMMU_IDR5_OAS);
if (!STE_S2AA64(ste)) {
return 40;
}
return oas2bits(oas_field);
}
#define MAX_PA(ste) ((1 << pa_range(ste)) - 1)
/* CD fields */
#define CD_VALID(x) extract32((x)->word[0], 30, 1)
#define CD_ASID(x) extract32((x)->word[1], 16, 16)
#define CD_TTB(x, sel) \
({ \
uint64_t hi, lo; \
hi = extract32((x)->word[(sel) * 2 + 3], 0, 19); \
hi <<= 32; \
lo = (x)->word[(sel) * 2 + 2] & ~0xfULL; \
hi | lo; \
})
#define CD_TSZ(x, sel) extract32((x)->word[0], (16 * (sel)) + 0, 6)
#define CD_TG(x, sel) extract32((x)->word[0], (16 * (sel)) + 6, 2)
#define CD_EPD(x, sel) extract32((x)->word[0], (16 * (sel)) + 14, 1)
#define CD_ENDI(x) extract32((x)->word[0], 15, 1)
#define CD_IPS(x) extract32((x)->word[1], 0 , 3)
#define CD_TBI(x) extract32((x)->word[1], 6 , 2)
#define CD_HD(x) extract32((x)->word[1], 10 , 1)
#define CD_HA(x) extract32((x)->word[1], 11 , 1)
#define CD_S(x) extract32((x)->word[1], 12, 1)
#define CD_R(x) extract32((x)->word[1], 13, 1)
#define CD_A(x) extract32((x)->word[1], 14, 1)
#define CD_AARCH64(x) extract32((x)->word[1], 9 , 1)
#define CDM_VALID(x) ((x)->word[0] & 0x1)
static inline int is_cd_valid(SMMUv3State *s, STE *ste, CD *cd)
{
return CD_VALID(cd);
}
/**
* tg2granule - Decodes the CD translation granule size field according
* to the ttbr in use
* @bits: TG0/1 fields
* @ttbr: ttbr index in use
*/
static inline int tg2granule(int bits, int ttbr)
{
switch (bits) {
case 0:
return ttbr ? 0 : 12;
case 1:
return ttbr ? 14 : 16;
case 2:
return ttbr ? 12 : 14;
case 3:
return ttbr ? 16 : 0;
default:
return 0;
}
}
static inline uint64_t l1std_l2ptr(STEDesc *desc)
{
uint64_t hi, lo;
hi = desc->word[1];
lo = desc->word[0] & ~0x1fULL;
return hi << 32 | lo;
}
#define L1STD_SPAN(stm) (extract32((stm)->word[0], 0, 4))
#endif