xemu/target-arm/kvm_arm.h
Pranavkumar Sawargaonkar 228d5e048b target-arm: Common kvm_arm_vcpu_init() for KVM ARM and KVM ARM64
Introduce a common kvm_arm_vcpu_init() for doing KVM_ARM_VCPU_INIT
ioctl in KVM ARM and KVM ARM64. This also helps us factor-out few
common code lines from kvm_arch_init_vcpu() for KVM ARM/ARM64.

Signed-off-by: Pranavkumar Sawargaonkar <pranavkumar@linaro.org>
Signed-off-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1402901605-24551-5-git-send-email-pranavkumar@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2014-06-19 18:33:02 +01:00

146 lines
4.6 KiB
C

/*
* QEMU KVM support -- ARM specific functions.
*
* Copyright (c) 2012 Linaro Limited
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#ifndef QEMU_KVM_ARM_H
#define QEMU_KVM_ARM_H
#include "sysemu/kvm.h"
#include "exec/memory.h"
/**
* kvm_arm_vcpu_init:
* @cs: CPUState
*
* Initialize (or reinitialize) the VCPU by invoking the
* KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
* bitmask specified in the CPUState.
*
* Returns: 0 if success else < 0 error code
*/
int kvm_arm_vcpu_init(CPUState *cs);
/**
* kvm_arm_register_device:
* @mr: memory region for this device
* @devid: the KVM device ID
* @group: device control API group for setting addresses
* @attr: device control API address type
* @dev_fd: device control device file descriptor (or -1 if not supported)
*
* Remember the memory region @mr, and when it is mapped by the
* machine model, tell the kernel that base address using the
* KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API. @devid
* should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or
* the arm-vgic device in the device control API.
* The machine model may map
* and unmap the device multiple times; the kernel will only be told the final
* address at the point where machine init is complete.
*/
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
uint64_t attr, int dev_fd);
/**
* write_list_to_kvmstate:
* @cpu: ARMCPU
*
* For each register listed in the ARMCPU cpreg_indexes list, write
* its value from the cpreg_values list into the kernel (via ioctl).
* This updates KVM's working data structures from TCG data or
* from incoming migration state.
*
* Returns: true if all register values were updated correctly,
* false if some register was unknown to the kernel or could not
* be written (eg constant register with the wrong value).
* Note that we do not stop early on failure -- we will attempt
* writing all registers in the list.
*/
bool write_list_to_kvmstate(ARMCPU *cpu);
/**
* write_kvmstate_to_list:
* @cpu: ARMCPU
*
* For each register listed in the ARMCPU cpreg_indexes list, write
* its value from the kernel into the cpreg_values list. This is used to
* copy info from KVM's working data structures into TCG or
* for outbound migration.
*
* Returns: true if all register values were read correctly,
* false if some register was unknown or could not be read.
* Note that we do not stop early on failure -- we will attempt
* reading all registers in the list.
*/
bool write_kvmstate_to_list(ARMCPU *cpu);
/**
* kvm_arm_reset_vcpu:
* @cpu: ARMCPU
*
* Called at reset time to kernel registers to their initial values.
*/
void kvm_arm_reset_vcpu(ARMCPU *cpu);
#ifdef CONFIG_KVM
/**
* kvm_arm_create_scratch_host_vcpu:
* @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with
* QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not
* know the PREFERRED_TARGET ioctl
* @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order
* @init: filled in with the necessary values for creating a host vcpu
*
* Create a scratch vcpu in its own VM of the type preferred by the host
* kernel (as would be used for '-cpu host'), for purposes of probing it
* for capabilities.
*
* Returns: true on success (and fdarray and init are filled in),
* false on failure (and fdarray and init are not valid).
*/
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
int *fdarray,
struct kvm_vcpu_init *init);
/**
* kvm_arm_destroy_scratch_host_vcpu:
* @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu
*
* Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu.
*/
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);
#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
#define ARM_HOST_CPU_CLASS(klass) \
OBJECT_CLASS_CHECK(ARMHostCPUClass, (klass), TYPE_ARM_HOST_CPU)
#define ARM_HOST_CPU_GET_CLASS(obj) \
OBJECT_GET_CLASS(ARMHostCPUClass, (obj), TYPE_ARM_HOST_CPU)
typedef struct ARMHostCPUClass {
/*< private >*/
ARMCPUClass parent_class;
/*< public >*/
uint64_t features;
uint32_t target;
const char *dtb_compatible;
} ARMHostCPUClass;
/**
* kvm_arm_get_host_cpu_features:
* @ahcc: ARMHostCPUClass to fill in
*
* Probe the capabilities of the host kernel's preferred CPU and fill
* in the ARMHostCPUClass struct accordingly.
*/
bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc);
#endif
#endif