xemu/target/sh4/op_helper.c
Alex Bennée 24f91e81b6 target/*/cpu.h: remove softfloat.h
As cpu.h is another typically widely included file which doesn't need
full access to the softfloat API we can remove the includes from here
as well. Where they do need types it's typically for float_status and
the rounding modes so we move that to softfloat-types.h as well.

As a result of not having softfloat in every cpu.h call we now need to
add it to various helpers that do need the full softfloat.h
definitions.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[For PPC parts]
Acked-by: David Gibson <david@gibson.dropbear.id.au>
2018-02-21 10:20:24 +00:00

505 lines
13 KiB
C

/*
* SH4 emulation
*
* Copyright (c) 2005 Samuel Tardieu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "fpu/softfloat.h"
#ifndef CONFIG_USER_ONLY
void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
switch (access_type) {
case MMU_INST_FETCH:
case MMU_DATA_LOAD:
cs->exception_index = 0x0e0;
break;
case MMU_DATA_STORE:
cs->exception_index = 0x100;
break;
}
cpu_loop_exit_restore(cs, retaddr);
}
void tlb_fill(CPUState *cs, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
int ret;
ret = superh_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
if (ret) {
/* now we have a real cpu fault */
cpu_loop_exit_restore(cs, retaddr);
}
}
#endif
void helper_ldtlb(CPUSH4State *env)
{
#ifdef CONFIG_USER_ONLY
SuperHCPU *cpu = sh_env_get_cpu(env);
/* XXXXX */
cpu_abort(CPU(cpu), "Unhandled ldtlb");
#else
cpu_load_tlb(env);
#endif
}
static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
uintptr_t retaddr)
{
CPUState *cs = CPU(sh_env_get_cpu(env));
cs->exception_index = index;
cpu_loop_exit_restore(cs, retaddr);
}
void helper_raise_illegal_instruction(CPUSH4State *env)
{
raise_exception(env, 0x180, 0);
}
void helper_raise_slot_illegal_instruction(CPUSH4State *env)
{
raise_exception(env, 0x1a0, 0);
}
void helper_raise_fpu_disable(CPUSH4State *env)
{
raise_exception(env, 0x800, 0);
}
void helper_raise_slot_fpu_disable(CPUSH4State *env)
{
raise_exception(env, 0x820, 0);
}
void helper_debug(CPUSH4State *env)
{
raise_exception(env, EXCP_DEBUG, 0);
}
void helper_sleep(CPUSH4State *env)
{
CPUState *cs = CPU(sh_env_get_cpu(env));
cs->halted = 1;
env->in_sleep = 1;
raise_exception(env, EXCP_HLT, 0);
}
void helper_trapa(CPUSH4State *env, uint32_t tra)
{
env->tra = tra << 2;
raise_exception(env, 0x160, 0);
}
void helper_exclusive(CPUSH4State *env)
{
/* We do not want cpu_restore_state to run. */
cpu_loop_exit_atomic(ENV_GET_CPU(env), 0);
}
void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
{
if (cpu_sh4_is_cached (env, address))
{
memory_content *r = g_new(memory_content, 1);
r->address = address;
r->value = value;
r->next = NULL;
*(env->movcal_backup_tail) = r;
env->movcal_backup_tail = &(r->next);
}
}
void helper_discard_movcal_backup(CPUSH4State *env)
{
memory_content *current = env->movcal_backup;
while(current)
{
memory_content *next = current->next;
g_free(current);
env->movcal_backup = current = next;
if (current == NULL)
env->movcal_backup_tail = &(env->movcal_backup);
}
}
void helper_ocbi(CPUSH4State *env, uint32_t address)
{
memory_content **current = &(env->movcal_backup);
while (*current)
{
uint32_t a = (*current)->address;
if ((a & ~0x1F) == (address & ~0x1F))
{
memory_content *next = (*current)->next;
cpu_stl_data(env, a, (*current)->value);
if (next == NULL)
{
env->movcal_backup_tail = current;
}
g_free(*current);
*current = next;
break;
}
}
}
void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & (1u << SR_S)) {
if (res < 0)
env->mach |= 0xffff0000;
else
env->mach &= 0x00007fff;
}
}
void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & (1u << SR_S)) {
if (res < -0x80000000) {
env->mach = 1;
env->macl = 0x80000000;
} else if (res > 0x000000007fffffff) {
env->mach = 1;
env->macl = 0x7fffffff;
}
}
}
void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
{
env->fpscr = val & FPSCR_MASK;
if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
} else {
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
}
set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
}
static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
{
int xcpt, cause, enable;
xcpt = get_float_exception_flags(&env->fp_status);
/* Clear the cause entries */
env->fpscr &= ~FPSCR_CAUSE_MASK;
if (unlikely(xcpt)) {
if (xcpt & float_flag_invalid) {
env->fpscr |= FPSCR_CAUSE_V;
}
if (xcpt & float_flag_divbyzero) {
env->fpscr |= FPSCR_CAUSE_Z;
}
if (xcpt & float_flag_overflow) {
env->fpscr |= FPSCR_CAUSE_O;
}
if (xcpt & float_flag_underflow) {
env->fpscr |= FPSCR_CAUSE_U;
}
if (xcpt & float_flag_inexact) {
env->fpscr |= FPSCR_CAUSE_I;
}
/* Accumulate in flag entries */
env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
>> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
/* Generate an exception if enabled */
cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
if (cause & enable) {
raise_exception(env, 0x120, retaddr);
}
}
}
float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_add(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_add(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float32_compare(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return relation == float_relation_equal;
}
uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float64_compare(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return relation == float_relation_equal;
}
uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float32_compare(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return relation == float_relation_greater;
}
uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float64_compare(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return relation == float_relation_greater;
}
float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
{
float64 ret;
set_float_exception_flags(0, &env->fp_status);
ret = float32_to_float64(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
{
float32 ret;
set_float_exception_flags(0, &env->fp_status);
ret = float64_to_float32(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_div(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_div(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
{
float32 ret;
set_float_exception_flags(0, &env->fp_status);
ret = int32_to_float32(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
{
float64 ret;
set_float_exception_flags(0, &env->fp_status);
ret = int32_to_float64(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_mul(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_mul(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_sqrt(t0, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_sqrt(t0, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
{
set_float_exception_flags(0, &env->fp_status);
/* "Approximate" 1/sqrt(x) via actual computation. */
t0 = float32_sqrt(t0, &env->fp_status);
t0 = float32_div(float32_one, t0, &env->fp_status);
/* Since this is supposed to be an approximation, an imprecision
exception is required. One supposes this also follows the usual
IEEE rule that other exceptions take precidence. */
if (get_float_exception_flags(&env->fp_status) == 0) {
set_float_exception_flags(float_flag_inexact, &env->fp_status);
}
update_fpscr(env, GETPC());
return t0;
}
float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_sub(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_sub(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
{
uint32_t ret;
set_float_exception_flags(0, &env->fp_status);
ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
{
uint32_t ret;
set_float_exception_flags(0, &env->fp_status);
ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
{
int bank, i;
float32 r, p;
bank = (env->sr & FPSCR_FR) ? 16 : 0;
r = float32_zero;
set_float_exception_flags(0, &env->fp_status);
for (i = 0 ; i < 4 ; i++) {
p = float32_mul(env->fregs[bank + m + i],
env->fregs[bank + n + i],
&env->fp_status);
r = float32_add(r, p, &env->fp_status);
}
update_fpscr(env, GETPC());
env->fregs[bank + n + 3] = r;
}
void helper_ftrv(CPUSH4State *env, uint32_t n)
{
int bank_matrix, bank_vector;
int i, j;
float32 r[4];
float32 p;
bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
set_float_exception_flags(0, &env->fp_status);
for (i = 0 ; i < 4 ; i++) {
r[i] = float32_zero;
for (j = 0 ; j < 4 ; j++) {
p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
env->fregs[bank_vector + j],
&env->fp_status);
r[i] = float32_add(r[i], p, &env->fp_status);
}
}
update_fpscr(env, GETPC());
for (i = 0 ; i < 4 ; i++) {
env->fregs[bank_vector + i] = r[i];
}
}