mirror of
https://github.com/xemu-project/xemu.git
synced 2025-01-07 12:10:23 +00:00
c4487d76d5
Currently we query the host CPU features in the class init function for the TYPE_ARM_HOST_CPU class, so that we can later copy them from the class object into the instance object in the object instance init function. This is awkward for implementing "-cpu max", which should work like "-cpu host" for KVM but like "cpu with all implemented features" for TCG. Move the place where we store the information about the host CPU from a class object to static variables in kvm.c, and then in the instance init function call a new kvm_arm_set_cpu_features_from_host() function which will query the host kernel if necessary and then fill in the CPU instance fields. This allows us to drop the special class struct and class init function for TYPE_ARM_HOST_CPU entirely. We can't delay the probe until realize, because the ARM instance_post_init hook needs to look at the feature bits we set, so we need to do it in the initfn. This is safe because the probing doesn't affect the actual VM state (it creates a separate scratch VM to do its testing), but the probe might fail. Because we can't report errors in retrieving the host features in the initfn, we check this belatedly in the realize function (the intervening code will be able to cope with the relevant fields in the CPU structure being zero). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Message-id: 20180308130626.12393-2-peter.maydell@linaro.org
534 lines
16 KiB
C
534 lines
16 KiB
C
/*
|
|
* ARM implementation of KVM hooks, 32 bit specific code.
|
|
*
|
|
* Copyright Christoffer Dall 2009-2010
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_arm.h"
|
|
#include "internals.h"
|
|
#include "hw/arm/arm.h"
|
|
#include "qemu/log.h"
|
|
|
|
static inline void set_feature(uint64_t *features, int feature)
|
|
{
|
|
*features |= 1ULL << feature;
|
|
}
|
|
|
|
bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
|
|
{
|
|
/* Identify the feature bits corresponding to the host CPU, and
|
|
* fill out the ARMHostCPUClass fields accordingly. To do this
|
|
* we have to create a scratch VM, create a single CPU inside it,
|
|
* and then query that CPU for the relevant ID registers.
|
|
*/
|
|
int i, ret, fdarray[3];
|
|
uint32_t midr, id_pfr0, id_isar0, mvfr1;
|
|
uint64_t features = 0;
|
|
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
|
|
* we know these will only support creating one kind of guest CPU,
|
|
* which is its preferred CPU type.
|
|
*/
|
|
static const uint32_t cpus_to_try[] = {
|
|
QEMU_KVM_ARM_TARGET_CORTEX_A15,
|
|
QEMU_KVM_ARM_TARGET_NONE
|
|
};
|
|
struct kvm_vcpu_init init;
|
|
struct kvm_one_reg idregs[] = {
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
|
|
.addr = (uintptr_t)&midr,
|
|
},
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
|
|
.addr = (uintptr_t)&id_pfr0,
|
|
},
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
|
|
.addr = (uintptr_t)&id_isar0,
|
|
},
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
|
|
.addr = (uintptr_t)&mvfr1,
|
|
},
|
|
};
|
|
|
|
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
|
|
return false;
|
|
}
|
|
|
|
ahcf->target = init.target;
|
|
|
|
/* This is not strictly blessed by the device tree binding docs yet,
|
|
* but in practice the kernel does not care about this string so
|
|
* there is no point maintaining an KVM_ARM_TARGET_* -> string table.
|
|
*/
|
|
ahcf->dtb_compatible = "arm,arm-v7";
|
|
|
|
for (i = 0; i < ARRAY_SIZE(idregs); i++) {
|
|
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
kvm_arm_destroy_scratch_host_vcpu(fdarray);
|
|
|
|
if (ret) {
|
|
return false;
|
|
}
|
|
|
|
/* Now we've retrieved all the register information we can
|
|
* set the feature bits based on the ID register fields.
|
|
* We can assume any KVM supporting CPU is at least a v7
|
|
* with VFPv3, LPAE and the generic timers; this in turn implies
|
|
* most of the other feature bits, but a few must be tested.
|
|
*/
|
|
set_feature(&features, ARM_FEATURE_V7);
|
|
set_feature(&features, ARM_FEATURE_VFP3);
|
|
set_feature(&features, ARM_FEATURE_LPAE);
|
|
set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
|
|
|
|
switch (extract32(id_isar0, 24, 4)) {
|
|
case 1:
|
|
set_feature(&features, ARM_FEATURE_THUMB_DIV);
|
|
break;
|
|
case 2:
|
|
set_feature(&features, ARM_FEATURE_ARM_DIV);
|
|
set_feature(&features, ARM_FEATURE_THUMB_DIV);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (extract32(id_pfr0, 12, 4) == 1) {
|
|
set_feature(&features, ARM_FEATURE_THUMB2EE);
|
|
}
|
|
if (extract32(mvfr1, 20, 4) == 1) {
|
|
set_feature(&features, ARM_FEATURE_VFP_FP16);
|
|
}
|
|
if (extract32(mvfr1, 12, 4) == 1) {
|
|
set_feature(&features, ARM_FEATURE_NEON);
|
|
}
|
|
if (extract32(mvfr1, 28, 4) == 1) {
|
|
/* FMAC support implies VFPv4 */
|
|
set_feature(&features, ARM_FEATURE_VFP4);
|
|
}
|
|
|
|
ahcf->features = features;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
|
|
{
|
|
/* Return true if the regidx is a register we should synchronize
|
|
* via the cpreg_tuples array (ie is not a core reg we sync by
|
|
* hand in kvm_arch_get/put_registers())
|
|
*/
|
|
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
|
case KVM_REG_ARM_CORE:
|
|
case KVM_REG_ARM_VFP:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
typedef struct CPRegStateLevel {
|
|
uint64_t regidx;
|
|
int level;
|
|
} CPRegStateLevel;
|
|
|
|
/* All coprocessor registers not listed in the following table are assumed to
|
|
* be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
|
|
* often, you must add it to this table with a state of either
|
|
* KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
|
|
*/
|
|
static const CPRegStateLevel non_runtime_cpregs[] = {
|
|
{ KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
|
|
};
|
|
|
|
int kvm_arm_cpreg_level(uint64_t regidx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
|
|
const CPRegStateLevel *l = &non_runtime_cpregs[i];
|
|
if (l->regidx == regidx) {
|
|
return l->level;
|
|
}
|
|
}
|
|
|
|
return KVM_PUT_RUNTIME_STATE;
|
|
}
|
|
|
|
#define ARM_CPU_ID_MPIDR 0, 0, 0, 5
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
{
|
|
int ret;
|
|
uint64_t v;
|
|
uint32_t mpidr;
|
|
struct kvm_one_reg r;
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
|
|
fprintf(stderr, "KVM is not supported for this guest CPU type\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Determine init features for this CPU */
|
|
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
|
|
if (cpu->start_powered_off) {
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
|
|
}
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
|
|
cpu->psci_version = 2;
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
|
|
}
|
|
|
|
/* Do KVM_ARM_VCPU_INIT ioctl */
|
|
ret = kvm_arm_vcpu_init(cs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Query the kernel to make sure it supports 32 VFP
|
|
* registers: QEMU's "cortex-a15" CPU is always a
|
|
* VFP-D32 core. The simplest way to do this is just
|
|
* to attempt to read register d31.
|
|
*/
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
|
|
r.addr = (uintptr_t)(&v);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret == -ENOENT) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
|
|
* Currently KVM has its own idea about MPIDR assignment, so we
|
|
* override our defaults with what we get from KVM.
|
|
*/
|
|
ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
|
|
|
|
return kvm_arm_init_cpreg_list(cpu);
|
|
}
|
|
|
|
typedef struct Reg {
|
|
uint64_t id;
|
|
int offset;
|
|
} Reg;
|
|
|
|
#define COREREG(KERNELNAME, QEMUFIELD) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
|
|
offsetof(CPUARMState, QEMUFIELD) \
|
|
}
|
|
|
|
#define VFPSYSREG(R) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
|
|
KVM_REG_ARM_VFP_##R, \
|
|
offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
|
|
}
|
|
|
|
/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
|
|
#define COREREG64(KERNELNAME, QEMUFIELD) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
|
|
offsetoflow32(CPUARMState, QEMUFIELD) \
|
|
}
|
|
|
|
static const Reg regs[] = {
|
|
/* R0_usr .. R14_usr */
|
|
COREREG(usr_regs.uregs[0], regs[0]),
|
|
COREREG(usr_regs.uregs[1], regs[1]),
|
|
COREREG(usr_regs.uregs[2], regs[2]),
|
|
COREREG(usr_regs.uregs[3], regs[3]),
|
|
COREREG(usr_regs.uregs[4], regs[4]),
|
|
COREREG(usr_regs.uregs[5], regs[5]),
|
|
COREREG(usr_regs.uregs[6], regs[6]),
|
|
COREREG(usr_regs.uregs[7], regs[7]),
|
|
COREREG(usr_regs.uregs[8], usr_regs[0]),
|
|
COREREG(usr_regs.uregs[9], usr_regs[1]),
|
|
COREREG(usr_regs.uregs[10], usr_regs[2]),
|
|
COREREG(usr_regs.uregs[11], usr_regs[3]),
|
|
COREREG(usr_regs.uregs[12], usr_regs[4]),
|
|
COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
|
|
COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
|
|
/* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
|
|
COREREG(svc_regs[0], banked_r13[BANK_SVC]),
|
|
COREREG(svc_regs[1], banked_r14[BANK_SVC]),
|
|
COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
|
|
COREREG(abt_regs[0], banked_r13[BANK_ABT]),
|
|
COREREG(abt_regs[1], banked_r14[BANK_ABT]),
|
|
COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
|
|
COREREG(und_regs[0], banked_r13[BANK_UND]),
|
|
COREREG(und_regs[1], banked_r14[BANK_UND]),
|
|
COREREG64(und_regs[2], banked_spsr[BANK_UND]),
|
|
COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
|
|
COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
|
|
COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
|
|
/* R8_fiq .. R14_fiq and SPSR_fiq */
|
|
COREREG(fiq_regs[0], fiq_regs[0]),
|
|
COREREG(fiq_regs[1], fiq_regs[1]),
|
|
COREREG(fiq_regs[2], fiq_regs[2]),
|
|
COREREG(fiq_regs[3], fiq_regs[3]),
|
|
COREREG(fiq_regs[4], fiq_regs[4]),
|
|
COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
|
|
COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
|
|
COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
|
|
/* R15 */
|
|
COREREG(usr_regs.uregs[15], regs[15]),
|
|
/* VFP system registers */
|
|
VFPSYSREG(FPSID),
|
|
VFPSYSREG(MVFR1),
|
|
VFPSYSREG(MVFR0),
|
|
VFPSYSREG(FPEXC),
|
|
VFPSYSREG(FPINST),
|
|
VFPSYSREG(FPINST2),
|
|
};
|
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
struct kvm_one_reg r;
|
|
int mode, bn;
|
|
int ret, i;
|
|
uint32_t cpsr, fpscr;
|
|
|
|
/* Make sure the banked regs are properly set */
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
bn = bank_number(mode);
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
} else {
|
|
memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
}
|
|
env->banked_r13[bn] = env->regs[13];
|
|
env->banked_r14[bn] = env->regs[14];
|
|
env->banked_spsr[bn] = env->spsr;
|
|
|
|
/* Now we can safely copy stuff down to the kernel */
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
r.id = regs[i].id;
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
cpsr = cpsr_read(env);
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* VFP registers */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
for (i = 0; i < 32; i++) {
|
|
r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
r.id++;
|
|
}
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
fpscr = vfp_get_fpscr(env);
|
|
r.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Note that we do not call write_cpustate_to_list()
|
|
* here, so we are only writing the tuple list back to
|
|
* KVM. This is safe because nothing can change the
|
|
* CPUARMState cp15 fields (in particular gdb accesses cannot)
|
|
* and so there are no changes to sync. In fact syncing would
|
|
* be wrong at this point: for a constant register where TCG and
|
|
* KVM disagree about its value, the preceding write_list_to_cpustate()
|
|
* would not have had any effect on the CPUARMState value (since the
|
|
* register is read-only), and a write_cpustate_to_list() here would
|
|
* then try to write the TCG value back into KVM -- this would either
|
|
* fail or incorrectly change the value the guest sees.
|
|
*
|
|
* If we ever want to allow the user to modify cp15 registers via
|
|
* the gdb stub, we would need to be more clever here (for instance
|
|
* tracking the set of registers kvm_arch_get_registers() successfully
|
|
* managed to update the CPUARMState with, and only allowing those
|
|
* to be written back up into the kernel).
|
|
*/
|
|
if (!write_list_to_kvmstate(cpu, level)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
kvm_arm_sync_mpstate_to_kvm(cpu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
struct kvm_one_reg r;
|
|
int mode, bn;
|
|
int ret, i;
|
|
uint32_t cpsr, fpscr;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
r.id = regs[i].id;
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
|
|
|
|
/* Make sure the current mode regs are properly set */
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
bn = bank_number(mode);
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
} else {
|
|
memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
}
|
|
env->regs[13] = env->banked_r13[bn];
|
|
env->regs[14] = env->banked_r14[bn];
|
|
env->spsr = env->banked_spsr[bn];
|
|
|
|
/* VFP registers */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
for (i = 0; i < 32; i++) {
|
|
r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
r.id++;
|
|
}
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
r.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
vfp_set_fpscr(env, fpscr);
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
return EINVAL;
|
|
}
|
|
/* Note that it's OK to have registers which aren't in CPUState,
|
|
* so we can ignore a failure return here.
|
|
*/
|
|
write_list_to_cpustate(cpu);
|
|
|
|
kvm_arm_sync_mpstate_to_qemu(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
bool kvm_arm_hw_debug_active(CPUState *cs)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
void kvm_arm_pmu_init(CPUState *cs)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|