mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-30 15:00:34 +00:00
5ef3cc5636
This will be used for both Normal and Streaming SVE, and the value does not necessarily come from ZCR_ELx. While we're at it, emphasize the units in which the value is returned. Patch produced by git grep -l sve_zcr_len_for_el | \ xargs -n1 sed -i 's/sve_zcr_len_for_el/sve_vqm1_for_el/g' and then adding a function comment. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20220607203306.657998-13-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
212 lines
5.4 KiB
C
212 lines
5.4 KiB
C
/*
|
|
* ARM gdb server stub: AArch64 specific functions.
|
|
*
|
|
* Copyright (c) 2013 SUSE LINUX Products GmbH
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "exec/gdbstub.h"
|
|
|
|
int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (n < 31) {
|
|
/* Core integer register. */
|
|
return gdb_get_reg64(mem_buf, env->xregs[n]);
|
|
}
|
|
switch (n) {
|
|
case 31:
|
|
return gdb_get_reg64(mem_buf, env->xregs[31]);
|
|
case 32:
|
|
return gdb_get_reg64(mem_buf, env->pc);
|
|
case 33:
|
|
return gdb_get_reg32(mem_buf, pstate_read(env));
|
|
}
|
|
/* Unknown register. */
|
|
return 0;
|
|
}
|
|
|
|
int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint64_t tmp;
|
|
|
|
tmp = ldq_p(mem_buf);
|
|
|
|
if (n < 31) {
|
|
/* Core integer register. */
|
|
env->xregs[n] = tmp;
|
|
return 8;
|
|
}
|
|
switch (n) {
|
|
case 31:
|
|
env->xregs[31] = tmp;
|
|
return 8;
|
|
case 32:
|
|
env->pc = tmp;
|
|
return 8;
|
|
case 33:
|
|
/* CPSR */
|
|
pstate_write(env, tmp);
|
|
return 4;
|
|
}
|
|
/* Unknown register. */
|
|
return 0;
|
|
}
|
|
|
|
int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
|
|
{
|
|
switch (reg) {
|
|
case 0 ... 31:
|
|
{
|
|
/* 128 bit FP register - quads are in LE order */
|
|
uint64_t *q = aa64_vfp_qreg(env, reg);
|
|
return gdb_get_reg128(buf, q[1], q[0]);
|
|
}
|
|
case 32:
|
|
/* FPSR */
|
|
return gdb_get_reg32(buf, vfp_get_fpsr(env));
|
|
case 33:
|
|
/* FPCR */
|
|
return gdb_get_reg32(buf, vfp_get_fpcr(env));
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
switch (reg) {
|
|
case 0 ... 31:
|
|
/* 128 bit FP register */
|
|
{
|
|
uint64_t *q = aa64_vfp_qreg(env, reg);
|
|
q[0] = ldq_le_p(buf);
|
|
q[1] = ldq_le_p(buf + 8);
|
|
return 16;
|
|
}
|
|
case 32:
|
|
/* FPSR */
|
|
vfp_set_fpsr(env, ldl_p(buf));
|
|
return 4;
|
|
case 33:
|
|
/* FPCR */
|
|
vfp_set_fpcr(env, ldl_p(buf));
|
|
return 4;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
switch (reg) {
|
|
/* The first 32 registers are the zregs */
|
|
case 0 ... 31:
|
|
{
|
|
int vq, len = 0;
|
|
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
|
|
len += gdb_get_reg128(buf,
|
|
env->vfp.zregs[reg].d[vq * 2 + 1],
|
|
env->vfp.zregs[reg].d[vq * 2]);
|
|
}
|
|
return len;
|
|
}
|
|
case 32:
|
|
return gdb_get_reg32(buf, vfp_get_fpsr(env));
|
|
case 33:
|
|
return gdb_get_reg32(buf, vfp_get_fpcr(env));
|
|
/* then 16 predicates and the ffr */
|
|
case 34 ... 50:
|
|
{
|
|
int preg = reg - 34;
|
|
int vq, len = 0;
|
|
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
|
|
len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
|
|
}
|
|
return len;
|
|
}
|
|
case 51:
|
|
{
|
|
/*
|
|
* We report in Vector Granules (VG) which is 64bit in a Z reg
|
|
* while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
|
|
*/
|
|
int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
|
|
return gdb_get_reg64(buf, vq * 2);
|
|
}
|
|
default:
|
|
/* gdbstub asked for something out our range */
|
|
qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/* The first 32 registers are the zregs */
|
|
switch (reg) {
|
|
/* The first 32 registers are the zregs */
|
|
case 0 ... 31:
|
|
{
|
|
int vq, len = 0;
|
|
uint64_t *p = (uint64_t *) buf;
|
|
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
|
|
env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
|
|
env->vfp.zregs[reg].d[vq * 2] = *p++;
|
|
len += 16;
|
|
}
|
|
return len;
|
|
}
|
|
case 32:
|
|
vfp_set_fpsr(env, *(uint32_t *)buf);
|
|
return 4;
|
|
case 33:
|
|
vfp_set_fpcr(env, *(uint32_t *)buf);
|
|
return 4;
|
|
case 34 ... 50:
|
|
{
|
|
int preg = reg - 34;
|
|
int vq, len = 0;
|
|
uint64_t *p = (uint64_t *) buf;
|
|
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
|
|
env->vfp.pregs[preg].p[vq / 4] = *p++;
|
|
len += 8;
|
|
}
|
|
return len;
|
|
}
|
|
case 51:
|
|
/* cannot set vg via gdbstub */
|
|
return 0;
|
|
default:
|
|
/* gdbstub asked for something out our range */
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|