xemu/hw/usb-uhci.c
Gerd Hoffmann 806b602482 qdev/usb: add usb bus support to qdev, convert drivers.
* Add USBBus.
 * Add USBDeviceInfo, move device callbacks here.
 * Add usb-qdev helper functions.
 * Switch drivers to qdev.

TODO:
 * make the rest of qemu aware of usb busses and kill the FIXMEs
   added by this patch.

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-09-09 14:55:17 -05:00

1142 lines
29 KiB
C

/*
* USB UHCI controller emulation
*
* Copyright (c) 2005 Fabrice Bellard
*
* Copyright (c) 2008 Max Krasnyansky
* Magor rewrite of the UHCI data structures parser and frame processor
* Support for fully async operation and multiple outstanding transactions
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "usb.h"
#include "pci.h"
#include "qemu-timer.h"
//#define DEBUG
//#define DEBUG_DUMP_DATA
#define UHCI_CMD_FGR (1 << 4)
#define UHCI_CMD_EGSM (1 << 3)
#define UHCI_CMD_GRESET (1 << 2)
#define UHCI_CMD_HCRESET (1 << 1)
#define UHCI_CMD_RS (1 << 0)
#define UHCI_STS_HCHALTED (1 << 5)
#define UHCI_STS_HCPERR (1 << 4)
#define UHCI_STS_HSERR (1 << 3)
#define UHCI_STS_RD (1 << 2)
#define UHCI_STS_USBERR (1 << 1)
#define UHCI_STS_USBINT (1 << 0)
#define TD_CTRL_SPD (1 << 29)
#define TD_CTRL_ERROR_SHIFT 27
#define TD_CTRL_IOS (1 << 25)
#define TD_CTRL_IOC (1 << 24)
#define TD_CTRL_ACTIVE (1 << 23)
#define TD_CTRL_STALL (1 << 22)
#define TD_CTRL_BABBLE (1 << 20)
#define TD_CTRL_NAK (1 << 19)
#define TD_CTRL_TIMEOUT (1 << 18)
#define UHCI_PORT_RESET (1 << 9)
#define UHCI_PORT_LSDA (1 << 8)
#define UHCI_PORT_ENC (1 << 3)
#define UHCI_PORT_EN (1 << 2)
#define UHCI_PORT_CSC (1 << 1)
#define UHCI_PORT_CCS (1 << 0)
#define FRAME_TIMER_FREQ 1000
#define FRAME_MAX_LOOPS 100
#define NB_PORTS 2
#ifdef DEBUG
#define dprintf printf
static const char *pid2str(int pid)
{
switch (pid) {
case USB_TOKEN_SETUP: return "SETUP";
case USB_TOKEN_IN: return "IN";
case USB_TOKEN_OUT: return "OUT";
}
return "?";
}
#else
#define dprintf(...)
#endif
#ifdef DEBUG_DUMP_DATA
static void dump_data(const uint8_t *data, int len)
{
int i;
printf("uhci: data: ");
for(i = 0; i < len; i++)
printf(" %02x", data[i]);
printf("\n");
}
#else
static void dump_data(const uint8_t *data, int len) {}
#endif
/*
* Pending async transaction.
* 'packet' must be the first field because completion
* handler does "(UHCIAsync *) pkt" cast.
*/
typedef struct UHCIAsync {
USBPacket packet;
struct UHCIAsync *next;
uint32_t td;
uint32_t token;
int8_t valid;
uint8_t done;
uint8_t buffer[2048];
} UHCIAsync;
typedef struct UHCIPort {
USBPort port;
uint16_t ctrl;
} UHCIPort;
typedef struct UHCIState {
PCIDevice dev;
uint16_t cmd; /* cmd register */
uint16_t status;
uint16_t intr; /* interrupt enable register */
uint16_t frnum; /* frame number */
uint32_t fl_base_addr; /* frame list base address */
uint8_t sof_timing;
uint8_t status2; /* bit 0 and 1 are used to generate UHCI_STS_USBINT */
QEMUTimer *frame_timer;
UHCIPort ports[NB_PORTS];
/* Interrupts that should be raised at the end of the current frame. */
uint32_t pending_int_mask;
/* Active packets */
UHCIAsync *async_pending;
UHCIAsync *async_pool;
} UHCIState;
typedef struct UHCI_TD {
uint32_t link;
uint32_t ctrl; /* see TD_CTRL_xxx */
uint32_t token;
uint32_t buffer;
} UHCI_TD;
typedef struct UHCI_QH {
uint32_t link;
uint32_t el_link;
} UHCI_QH;
static UHCIAsync *uhci_async_alloc(UHCIState *s)
{
UHCIAsync *async = qemu_malloc(sizeof(UHCIAsync));
memset(&async->packet, 0, sizeof(async->packet));
async->valid = 0;
async->td = 0;
async->token = 0;
async->done = 0;
async->next = NULL;
return async;
}
static void uhci_async_free(UHCIState *s, UHCIAsync *async)
{
qemu_free(async);
}
static void uhci_async_link(UHCIState *s, UHCIAsync *async)
{
async->next = s->async_pending;
s->async_pending = async;
}
static void uhci_async_unlink(UHCIState *s, UHCIAsync *async)
{
UHCIAsync *curr = s->async_pending;
UHCIAsync **prev = &s->async_pending;
while (curr) {
if (curr == async) {
*prev = curr->next;
return;
}
prev = &curr->next;
curr = curr->next;
}
}
static void uhci_async_cancel(UHCIState *s, UHCIAsync *async)
{
dprintf("uhci: cancel td 0x%x token 0x%x done %u\n",
async->td, async->token, async->done);
if (!async->done)
usb_cancel_packet(&async->packet);
uhci_async_free(s, async);
}
/*
* Mark all outstanding async packets as invalid.
* This is used for canceling them when TDs are removed by the HCD.
*/
static UHCIAsync *uhci_async_validate_begin(UHCIState *s)
{
UHCIAsync *async = s->async_pending;
while (async) {
async->valid--;
async = async->next;
}
return NULL;
}
/*
* Cancel async packets that are no longer valid
*/
static void uhci_async_validate_end(UHCIState *s)
{
UHCIAsync *curr = s->async_pending;
UHCIAsync **prev = &s->async_pending;
UHCIAsync *next;
while (curr) {
if (curr->valid > 0) {
prev = &curr->next;
curr = curr->next;
continue;
}
next = curr->next;
/* Unlink */
*prev = next;
uhci_async_cancel(s, curr);
curr = next;
}
}
static void uhci_async_cancel_all(UHCIState *s)
{
UHCIAsync *curr = s->async_pending;
UHCIAsync *next;
while (curr) {
next = curr->next;
uhci_async_cancel(s, curr);
curr = next;
}
s->async_pending = NULL;
}
static UHCIAsync *uhci_async_find_td(UHCIState *s, uint32_t addr, uint32_t token)
{
UHCIAsync *async = s->async_pending;
UHCIAsync *match = NULL;
int count = 0;
/*
* We're looking for the best match here. ie both td addr and token.
* Otherwise we return last good match. ie just token.
* It's ok to match just token because it identifies the transaction
* rather well, token includes: device addr, endpoint, size, etc.
*
* Also since we queue async transactions in reverse order by returning
* last good match we restores the order.
*
* It's expected that we wont have a ton of outstanding transactions.
* If we ever do we'd want to optimize this algorithm.
*/
while (async) {
if (async->token == token) {
/* Good match */
match = async;
if (async->td == addr) {
/* Best match */
break;
}
}
async = async->next;
count++;
}
if (count > 64)
fprintf(stderr, "uhci: warning lots of async transactions\n");
return match;
}
static void uhci_attach(USBPort *port1, USBDevice *dev);
static void uhci_update_irq(UHCIState *s)
{
int level;
if (((s->status2 & 1) && (s->intr & (1 << 2))) ||
((s->status2 & 2) && (s->intr & (1 << 3))) ||
((s->status & UHCI_STS_USBERR) && (s->intr & (1 << 0))) ||
((s->status & UHCI_STS_RD) && (s->intr & (1 << 1))) ||
(s->status & UHCI_STS_HSERR) ||
(s->status & UHCI_STS_HCPERR)) {
level = 1;
} else {
level = 0;
}
qemu_set_irq(s->dev.irq[3], level);
}
static void uhci_reset(void *opaque)
{
UHCIState *s = opaque;
uint8_t *pci_conf;
int i;
UHCIPort *port;
dprintf("uhci: full reset\n");
pci_conf = s->dev.config;
pci_conf[0x6a] = 0x01; /* usb clock */
pci_conf[0x6b] = 0x00;
s->cmd = 0;
s->status = 0;
s->status2 = 0;
s->intr = 0;
s->fl_base_addr = 0;
s->sof_timing = 64;
for(i = 0; i < NB_PORTS; i++) {
port = &s->ports[i];
port->ctrl = 0x0080;
if (port->port.dev)
uhci_attach(&port->port, port->port.dev);
}
uhci_async_cancel_all(s);
}
static void uhci_save(QEMUFile *f, void *opaque)
{
UHCIState *s = opaque;
uint8_t num_ports = NB_PORTS;
int i;
uhci_async_cancel_all(s);
pci_device_save(&s->dev, f);
qemu_put_8s(f, &num_ports);
for (i = 0; i < num_ports; ++i)
qemu_put_be16s(f, &s->ports[i].ctrl);
qemu_put_be16s(f, &s->cmd);
qemu_put_be16s(f, &s->status);
qemu_put_be16s(f, &s->intr);
qemu_put_be16s(f, &s->frnum);
qemu_put_be32s(f, &s->fl_base_addr);
qemu_put_8s(f, &s->sof_timing);
qemu_put_8s(f, &s->status2);
qemu_put_timer(f, s->frame_timer);
}
static int uhci_load(QEMUFile *f, void *opaque, int version_id)
{
UHCIState *s = opaque;
uint8_t num_ports;
int i, ret;
if (version_id > 1)
return -EINVAL;
ret = pci_device_load(&s->dev, f);
if (ret < 0)
return ret;
qemu_get_8s(f, &num_ports);
if (num_ports != NB_PORTS)
return -EINVAL;
for (i = 0; i < num_ports; ++i)
qemu_get_be16s(f, &s->ports[i].ctrl);
qemu_get_be16s(f, &s->cmd);
qemu_get_be16s(f, &s->status);
qemu_get_be16s(f, &s->intr);
qemu_get_be16s(f, &s->frnum);
qemu_get_be32s(f, &s->fl_base_addr);
qemu_get_8s(f, &s->sof_timing);
qemu_get_8s(f, &s->status2);
qemu_get_timer(f, s->frame_timer);
return 0;
}
static void uhci_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
{
UHCIState *s = opaque;
addr &= 0x1f;
switch(addr) {
case 0x0c:
s->sof_timing = val;
break;
}
}
static uint32_t uhci_ioport_readb(void *opaque, uint32_t addr)
{
UHCIState *s = opaque;
uint32_t val;
addr &= 0x1f;
switch(addr) {
case 0x0c:
val = s->sof_timing;
break;
default:
val = 0xff;
break;
}
return val;
}
static void uhci_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
{
UHCIState *s = opaque;
addr &= 0x1f;
dprintf("uhci: writew port=0x%04x val=0x%04x\n", addr, val);
switch(addr) {
case 0x00:
if ((val & UHCI_CMD_RS) && !(s->cmd & UHCI_CMD_RS)) {
/* start frame processing */
qemu_mod_timer(s->frame_timer, qemu_get_clock(vm_clock));
s->status &= ~UHCI_STS_HCHALTED;
} else if (!(val & UHCI_CMD_RS)) {
s->status |= UHCI_STS_HCHALTED;
}
if (val & UHCI_CMD_GRESET) {
UHCIPort *port;
USBDevice *dev;
int i;
/* send reset on the USB bus */
for(i = 0; i < NB_PORTS; i++) {
port = &s->ports[i];
dev = port->port.dev;
if (dev) {
usb_send_msg(dev, USB_MSG_RESET);
}
}
uhci_reset(s);
return;
}
if (val & UHCI_CMD_HCRESET) {
uhci_reset(s);
return;
}
s->cmd = val;
break;
case 0x02:
s->status &= ~val;
/* XXX: the chip spec is not coherent, so we add a hidden
register to distinguish between IOC and SPD */
if (val & UHCI_STS_USBINT)
s->status2 = 0;
uhci_update_irq(s);
break;
case 0x04:
s->intr = val;
uhci_update_irq(s);
break;
case 0x06:
if (s->status & UHCI_STS_HCHALTED)
s->frnum = val & 0x7ff;
break;
case 0x10 ... 0x1f:
{
UHCIPort *port;
USBDevice *dev;
int n;
n = (addr >> 1) & 7;
if (n >= NB_PORTS)
return;
port = &s->ports[n];
dev = port->port.dev;
if (dev) {
/* port reset */
if ( (val & UHCI_PORT_RESET) &&
!(port->ctrl & UHCI_PORT_RESET) ) {
usb_send_msg(dev, USB_MSG_RESET);
}
}
port->ctrl = (port->ctrl & 0x01fb) | (val & ~0x01fb);
/* some bits are reset when a '1' is written to them */
port->ctrl &= ~(val & 0x000a);
}
break;
}
}
static uint32_t uhci_ioport_readw(void *opaque, uint32_t addr)
{
UHCIState *s = opaque;
uint32_t val;
addr &= 0x1f;
switch(addr) {
case 0x00:
val = s->cmd;
break;
case 0x02:
val = s->status;
break;
case 0x04:
val = s->intr;
break;
case 0x06:
val = s->frnum;
break;
case 0x10 ... 0x1f:
{
UHCIPort *port;
int n;
n = (addr >> 1) & 7;
if (n >= NB_PORTS)
goto read_default;
port = &s->ports[n];
val = port->ctrl;
}
break;
default:
read_default:
val = 0xff7f; /* disabled port */
break;
}
dprintf("uhci: readw port=0x%04x val=0x%04x\n", addr, val);
return val;
}
static void uhci_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
{
UHCIState *s = opaque;
addr &= 0x1f;
dprintf("uhci: writel port=0x%04x val=0x%08x\n", addr, val);
switch(addr) {
case 0x08:
s->fl_base_addr = val & ~0xfff;
break;
}
}
static uint32_t uhci_ioport_readl(void *opaque, uint32_t addr)
{
UHCIState *s = opaque;
uint32_t val;
addr &= 0x1f;
switch(addr) {
case 0x08:
val = s->fl_base_addr;
break;
default:
val = 0xffffffff;
break;
}
return val;
}
/* signal resume if controller suspended */
static void uhci_resume (void *opaque)
{
UHCIState *s = (UHCIState *)opaque;
if (!s)
return;
if (s->cmd & UHCI_CMD_EGSM) {
s->cmd |= UHCI_CMD_FGR;
s->status |= UHCI_STS_RD;
uhci_update_irq(s);
}
}
static void uhci_attach(USBPort *port1, USBDevice *dev)
{
UHCIState *s = port1->opaque;
UHCIPort *port = &s->ports[port1->index];
if (dev) {
if (port->port.dev) {
usb_attach(port1, NULL);
}
/* set connect status */
port->ctrl |= UHCI_PORT_CCS | UHCI_PORT_CSC;
/* update speed */
if (dev->speed == USB_SPEED_LOW)
port->ctrl |= UHCI_PORT_LSDA;
else
port->ctrl &= ~UHCI_PORT_LSDA;
uhci_resume(s);
port->port.dev = dev;
/* send the attach message */
usb_send_msg(dev, USB_MSG_ATTACH);
} else {
/* set connect status */
if (port->ctrl & UHCI_PORT_CCS) {
port->ctrl &= ~UHCI_PORT_CCS;
port->ctrl |= UHCI_PORT_CSC;
}
/* disable port */
if (port->ctrl & UHCI_PORT_EN) {
port->ctrl &= ~UHCI_PORT_EN;
port->ctrl |= UHCI_PORT_ENC;
}
uhci_resume(s);
dev = port->port.dev;
if (dev) {
/* send the detach message */
usb_send_msg(dev, USB_MSG_DETACH);
}
port->port.dev = NULL;
}
}
static int uhci_broadcast_packet(UHCIState *s, USBPacket *p)
{
int i, ret;
dprintf("uhci: packet enter. pid %s addr 0x%02x ep %d len %d\n",
pid2str(p->pid), p->devaddr, p->devep, p->len);
if (p->pid == USB_TOKEN_OUT || p->pid == USB_TOKEN_SETUP)
dump_data(p->data, p->len);
ret = USB_RET_NODEV;
for (i = 0; i < NB_PORTS && ret == USB_RET_NODEV; i++) {
UHCIPort *port = &s->ports[i];
USBDevice *dev = port->port.dev;
if (dev && (port->ctrl & UHCI_PORT_EN))
ret = dev->info->handle_packet(dev, p);
}
dprintf("uhci: packet exit. ret %d len %d\n", ret, p->len);
if (p->pid == USB_TOKEN_IN && ret > 0)
dump_data(p->data, ret);
return ret;
}
static void uhci_async_complete(USBPacket * packet, void *opaque);
static void uhci_process_frame(UHCIState *s);
/* return -1 if fatal error (frame must be stopped)
0 if TD successful
1 if TD unsuccessful or inactive
*/
static int uhci_complete_td(UHCIState *s, UHCI_TD *td, UHCIAsync *async, uint32_t *int_mask)
{
int len = 0, max_len, err, ret;
uint8_t pid;
max_len = ((td->token >> 21) + 1) & 0x7ff;
pid = td->token & 0xff;
ret = async->packet.len;
if (td->ctrl & TD_CTRL_IOC)
*int_mask |= 0x01;
if (td->ctrl & TD_CTRL_IOS)
td->ctrl &= ~TD_CTRL_ACTIVE;
if (ret < 0)
goto out;
len = async->packet.len;
td->ctrl = (td->ctrl & ~0x7ff) | ((len - 1) & 0x7ff);
/* The NAK bit may have been set by a previous frame, so clear it
here. The docs are somewhat unclear, but win2k relies on this
behavior. */
td->ctrl &= ~(TD_CTRL_ACTIVE | TD_CTRL_NAK);
if (pid == USB_TOKEN_IN) {
if (len > max_len) {
len = max_len;
ret = USB_RET_BABBLE;
goto out;
}
if (len > 0) {
/* write the data back */
cpu_physical_memory_write(td->buffer, async->buffer, len);
}
if ((td->ctrl & TD_CTRL_SPD) && len < max_len) {
*int_mask |= 0x02;
/* short packet: do not update QH */
dprintf("uhci: short packet. td 0x%x token 0x%x\n", async->td, async->token);
return 1;
}
}
/* success */
return 0;
out:
switch(ret) {
case USB_RET_STALL:
td->ctrl |= TD_CTRL_STALL;
td->ctrl &= ~TD_CTRL_ACTIVE;
return 1;
case USB_RET_BABBLE:
td->ctrl |= TD_CTRL_BABBLE | TD_CTRL_STALL;
td->ctrl &= ~TD_CTRL_ACTIVE;
/* frame interrupted */
return -1;
case USB_RET_NAK:
td->ctrl |= TD_CTRL_NAK;
if (pid == USB_TOKEN_SETUP)
break;
return 1;
case USB_RET_NODEV:
default:
break;
}
/* Retry the TD if error count is not zero */
td->ctrl |= TD_CTRL_TIMEOUT;
err = (td->ctrl >> TD_CTRL_ERROR_SHIFT) & 3;
if (err != 0) {
err--;
if (err == 0) {
td->ctrl &= ~TD_CTRL_ACTIVE;
s->status |= UHCI_STS_USBERR;
uhci_update_irq(s);
}
}
td->ctrl = (td->ctrl & ~(3 << TD_CTRL_ERROR_SHIFT)) |
(err << TD_CTRL_ERROR_SHIFT);
return 1;
}
static int uhci_handle_td(UHCIState *s, uint32_t addr, UHCI_TD *td, uint32_t *int_mask)
{
UHCIAsync *async;
int len = 0, max_len;
uint8_t pid;
/* Is active ? */
if (!(td->ctrl & TD_CTRL_ACTIVE))
return 1;
async = uhci_async_find_td(s, addr, td->token);
if (async) {
/* Already submitted */
async->valid = 32;
if (!async->done)
return 1;
uhci_async_unlink(s, async);
goto done;
}
/* Allocate new packet */
async = uhci_async_alloc(s);
if (!async)
return 1;
async->valid = 10;
async->td = addr;
async->token = td->token;
max_len = ((td->token >> 21) + 1) & 0x7ff;
pid = td->token & 0xff;
async->packet.pid = pid;
async->packet.devaddr = (td->token >> 8) & 0x7f;
async->packet.devep = (td->token >> 15) & 0xf;
async->packet.data = async->buffer;
async->packet.len = max_len;
async->packet.complete_cb = uhci_async_complete;
async->packet.complete_opaque = s;
switch(pid) {
case USB_TOKEN_OUT:
case USB_TOKEN_SETUP:
cpu_physical_memory_read(td->buffer, async->buffer, max_len);
len = uhci_broadcast_packet(s, &async->packet);
if (len >= 0)
len = max_len;
break;
case USB_TOKEN_IN:
len = uhci_broadcast_packet(s, &async->packet);
break;
default:
/* invalid pid : frame interrupted */
uhci_async_free(s, async);
s->status |= UHCI_STS_HCPERR;
uhci_update_irq(s);
return -1;
}
if (len == USB_RET_ASYNC) {
uhci_async_link(s, async);
return 2;
}
async->packet.len = len;
done:
len = uhci_complete_td(s, td, async, int_mask);
uhci_async_free(s, async);
return len;
}
static void uhci_async_complete(USBPacket *packet, void *opaque)
{
UHCIState *s = opaque;
UHCIAsync *async = (UHCIAsync *) packet;
dprintf("uhci: async complete. td 0x%x token 0x%x\n", async->td, async->token);
async->done = 1;
uhci_process_frame(s);
}
static int is_valid(uint32_t link)
{
return (link & 1) == 0;
}
static int is_qh(uint32_t link)
{
return (link & 2) != 0;
}
static int depth_first(uint32_t link)
{
return (link & 4) != 0;
}
/* QH DB used for detecting QH loops */
#define UHCI_MAX_QUEUES 128
typedef struct {
uint32_t addr[UHCI_MAX_QUEUES];
int count;
} QhDb;
static void qhdb_reset(QhDb *db)
{
db->count = 0;
}
/* Add QH to DB. Returns 1 if already present or DB is full. */
static int qhdb_insert(QhDb *db, uint32_t addr)
{
int i;
for (i = 0; i < db->count; i++)
if (db->addr[i] == addr)
return 1;
if (db->count >= UHCI_MAX_QUEUES)
return 1;
db->addr[db->count++] = addr;
return 0;
}
static void uhci_process_frame(UHCIState *s)
{
uint32_t frame_addr, link, old_td_ctrl, val, int_mask;
uint32_t curr_qh;
int cnt, ret;
UHCI_TD td;
UHCI_QH qh;
QhDb qhdb;
frame_addr = s->fl_base_addr + ((s->frnum & 0x3ff) << 2);
dprintf("uhci: processing frame %d addr 0x%x\n" , s->frnum, frame_addr);
cpu_physical_memory_read(frame_addr, (uint8_t *)&link, 4);
le32_to_cpus(&link);
int_mask = 0;
curr_qh = 0;
qhdb_reset(&qhdb);
for (cnt = FRAME_MAX_LOOPS; is_valid(link) && cnt; cnt--) {
if (is_qh(link)) {
/* QH */
if (qhdb_insert(&qhdb, link)) {
/*
* We're going in circles. Which is not a bug because
* HCD is allowed to do that as part of the BW management.
* In our case though it makes no sense to spin here. Sync transations
* are already done, and async completion handler will re-process
* the frame when something is ready.
*/
dprintf("uhci: detected loop. qh 0x%x\n", link);
break;
}
cpu_physical_memory_read(link & ~0xf, (uint8_t *) &qh, sizeof(qh));
le32_to_cpus(&qh.link);
le32_to_cpus(&qh.el_link);
dprintf("uhci: QH 0x%x load. link 0x%x elink 0x%x\n",
link, qh.link, qh.el_link);
if (!is_valid(qh.el_link)) {
/* QH w/o elements */
curr_qh = 0;
link = qh.link;
} else {
/* QH with elements */
curr_qh = link;
link = qh.el_link;
}
continue;
}
/* TD */
cpu_physical_memory_read(link & ~0xf, (uint8_t *) &td, sizeof(td));
le32_to_cpus(&td.link);
le32_to_cpus(&td.ctrl);
le32_to_cpus(&td.token);
le32_to_cpus(&td.buffer);
dprintf("uhci: TD 0x%x load. link 0x%x ctrl 0x%x token 0x%x qh 0x%x\n",
link, td.link, td.ctrl, td.token, curr_qh);
old_td_ctrl = td.ctrl;
ret = uhci_handle_td(s, link, &td, &int_mask);
if (old_td_ctrl != td.ctrl) {
/* update the status bits of the TD */
val = cpu_to_le32(td.ctrl);
cpu_physical_memory_write((link & ~0xf) + 4,
(const uint8_t *)&val, sizeof(val));
}
if (ret < 0) {
/* interrupted frame */
break;
}
if (ret == 2 || ret == 1) {
dprintf("uhci: TD 0x%x %s. link 0x%x ctrl 0x%x token 0x%x qh 0x%x\n",
link, ret == 2 ? "pend" : "skip",
td.link, td.ctrl, td.token, curr_qh);
link = curr_qh ? qh.link : td.link;
continue;
}
/* completed TD */
dprintf("uhci: TD 0x%x done. link 0x%x ctrl 0x%x token 0x%x qh 0x%x\n",
link, td.link, td.ctrl, td.token, curr_qh);
link = td.link;
if (curr_qh) {
/* update QH element link */
qh.el_link = link;
val = cpu_to_le32(qh.el_link);
cpu_physical_memory_write((curr_qh & ~0xf) + 4,
(const uint8_t *)&val, sizeof(val));
if (!depth_first(link)) {
/* done with this QH */
dprintf("uhci: QH 0x%x done. link 0x%x elink 0x%x\n",
curr_qh, qh.link, qh.el_link);
curr_qh = 0;
link = qh.link;
}
}
/* go to the next entry */
}
s->pending_int_mask = int_mask;
}
static void uhci_frame_timer(void *opaque)
{
UHCIState *s = opaque;
int64_t expire_time;
if (!(s->cmd & UHCI_CMD_RS)) {
/* Full stop */
qemu_del_timer(s->frame_timer);
/* set hchalted bit in status - UHCI11D 2.1.2 */
s->status |= UHCI_STS_HCHALTED;
dprintf("uhci: halted\n");
return;
}
/* Complete the previous frame */
if (s->pending_int_mask) {
s->status2 |= s->pending_int_mask;
s->status |= UHCI_STS_USBINT;
uhci_update_irq(s);
}
/* Start new frame */
s->frnum = (s->frnum + 1) & 0x7ff;
dprintf("uhci: new frame #%u\n" , s->frnum);
uhci_async_validate_begin(s);
uhci_process_frame(s);
uhci_async_validate_end(s);
/* prepare the timer for the next frame */
expire_time = qemu_get_clock(vm_clock) +
(ticks_per_sec / FRAME_TIMER_FREQ);
qemu_mod_timer(s->frame_timer, expire_time);
}
static void uhci_map(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
UHCIState *s = (UHCIState *)pci_dev;
register_ioport_write(addr, 32, 2, uhci_ioport_writew, s);
register_ioport_read(addr, 32, 2, uhci_ioport_readw, s);
register_ioport_write(addr, 32, 4, uhci_ioport_writel, s);
register_ioport_read(addr, 32, 4, uhci_ioport_readl, s);
register_ioport_write(addr, 32, 1, uhci_ioport_writeb, s);
register_ioport_read(addr, 32, 1, uhci_ioport_readb, s);
}
void usb_uhci_piix3_init(PCIBus *bus, int devfn)
{
UHCIState *s;
uint8_t *pci_conf;
int i;
s = (UHCIState *)pci_register_device(bus,
"USB-UHCI", sizeof(UHCIState),
devfn, NULL, NULL);
pci_conf = s->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371SB_2);
pci_conf[0x08] = 0x01; // revision number
pci_conf[0x09] = 0x00;
pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
pci_conf[0x3d] = 4; // interrupt pin 3
pci_conf[0x60] = 0x10; // release number
for(i = 0; i < NB_PORTS; i++) {
qemu_register_usb_port(&s->ports[i].port, s, i, uhci_attach);
}
s->frame_timer = qemu_new_timer(vm_clock, uhci_frame_timer, s);
qemu_register_reset(uhci_reset, s);
uhci_reset(s);
/* Use region 4 for consistency with real hardware. BSD guests seem
to rely on this. */
pci_register_bar(&s->dev, 4, 0x20,
PCI_ADDRESS_SPACE_IO, uhci_map);
register_savevm("uhci", 0, 1, uhci_save, uhci_load, s);
}
void usb_uhci_piix4_init(PCIBus *bus, int devfn)
{
UHCIState *s;
uint8_t *pci_conf;
int i;
s = (UHCIState *)pci_register_device(bus,
"USB-UHCI", sizeof(UHCIState),
devfn, NULL, NULL);
pci_conf = s->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371AB_2);
pci_conf[0x08] = 0x01; // revision number
pci_conf[0x09] = 0x00;
pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
pci_conf[0x3d] = 4; // interrupt pin 3
pci_conf[0x60] = 0x10; // release number
for(i = 0; i < NB_PORTS; i++) {
qemu_register_usb_port(&s->ports[i].port, s, i, uhci_attach);
}
s->frame_timer = qemu_new_timer(vm_clock, uhci_frame_timer, s);
qemu_register_reset(uhci_reset, s);
uhci_reset(s);
/* Use region 4 for consistency with real hardware. BSD guests seem
to rely on this. */
pci_register_bar(&s->dev, 4, 0x20,
PCI_ADDRESS_SPACE_IO, uhci_map);
register_savevm("uhci", 0, 1, uhci_save, uhci_load, s);
}