xemu/hw/m48t59.c
Avi Kivity 750ecd444f sysbus: rename sysbus_init_mmio_region() to sysbus_init_mmio()
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-11-28 15:38:45 +02:00

756 lines
20 KiB
C

/*
* QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
*
* Copyright (c) 2003-2005, 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "nvram.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "sysbus.h"
#include "isa.h"
//#define DEBUG_NVRAM
#if defined(DEBUG_NVRAM)
#define NVRAM_PRINTF(fmt, ...) do { printf(fmt , ## __VA_ARGS__); } while (0)
#else
#define NVRAM_PRINTF(fmt, ...) do { } while (0)
#endif
/*
* The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
* alarm and a watchdog timer and related control registers. In the
* PPC platform there is also a nvram lock function.
*/
/*
* Chipset docs:
* http://www.st.com/stonline/products/literature/ds/2410/m48t02.pdf
* http://www.st.com/stonline/products/literature/ds/2411/m48t08.pdf
* http://www.st.com/stonline/products/literature/od/7001/m48t59y.pdf
*/
struct M48t59State {
/* Hardware parameters */
qemu_irq IRQ;
MemoryRegion iomem;
uint32_t io_base;
uint32_t size;
/* RTC management */
time_t time_offset;
time_t stop_time;
/* Alarm & watchdog */
struct tm alarm;
struct QEMUTimer *alrm_timer;
struct QEMUTimer *wd_timer;
/* NVRAM storage */
uint8_t *buffer;
/* Model parameters */
uint32_t type; /* 2 = m48t02, 8 = m48t08, 59 = m48t59 */
/* NVRAM storage */
uint16_t addr;
uint8_t lock;
};
typedef struct M48t59ISAState {
ISADevice busdev;
M48t59State state;
MemoryRegion io;
} M48t59ISAState;
typedef struct M48t59SysBusState {
SysBusDevice busdev;
M48t59State state;
} M48t59SysBusState;
/* Fake timer functions */
/* Alarm management */
static void alarm_cb (void *opaque)
{
struct tm tm;
uint64_t next_time;
M48t59State *NVRAM = opaque;
qemu_set_irq(NVRAM->IRQ, 1);
if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a month */
qemu_get_timedate(&tm, NVRAM->time_offset);
tm.tm_mon++;
if (tm.tm_mon == 13) {
tm.tm_mon = 1;
tm.tm_year++;
}
next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a day */
next_time = 24 * 60 * 60;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once an hour */
next_time = 60 * 60;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a minute */
next_time = 60;
} else {
/* Repeat once a second */
next_time = 1;
}
qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock_ns(vm_clock) +
next_time * 1000);
qemu_set_irq(NVRAM->IRQ, 0);
}
static void set_alarm(M48t59State *NVRAM)
{
int diff;
if (NVRAM->alrm_timer != NULL) {
qemu_del_timer(NVRAM->alrm_timer);
diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
if (diff > 0)
qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
}
}
/* RTC management helpers */
static inline void get_time(M48t59State *NVRAM, struct tm *tm)
{
qemu_get_timedate(tm, NVRAM->time_offset);
}
static void set_time(M48t59State *NVRAM, struct tm *tm)
{
NVRAM->time_offset = qemu_timedate_diff(tm);
set_alarm(NVRAM);
}
/* Watchdog management */
static void watchdog_cb (void *opaque)
{
M48t59State *NVRAM = opaque;
NVRAM->buffer[0x1FF0] |= 0x80;
if (NVRAM->buffer[0x1FF7] & 0x80) {
NVRAM->buffer[0x1FF7] = 0x00;
NVRAM->buffer[0x1FFC] &= ~0x40;
/* May it be a hw CPU Reset instead ? */
qemu_system_reset_request();
} else {
qemu_set_irq(NVRAM->IRQ, 1);
qemu_set_irq(NVRAM->IRQ, 0);
}
}
static void set_up_watchdog(M48t59State *NVRAM, uint8_t value)
{
uint64_t interval; /* in 1/16 seconds */
NVRAM->buffer[0x1FF0] &= ~0x80;
if (NVRAM->wd_timer != NULL) {
qemu_del_timer(NVRAM->wd_timer);
if (value != 0) {
interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
((interval * 1000) >> 4));
}
}
}
/* Direct access to NVRAM */
void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
{
M48t59State *NVRAM = opaque;
struct tm tm;
int tmp;
if (addr > 0x1FF8 && addr < 0x2000)
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
/* check for NVRAM access */
if ((NVRAM->type == 2 && addr < 0x7f8) ||
(NVRAM->type == 8 && addr < 0x1ff8) ||
(NVRAM->type == 59 && addr < 0x1ff0))
goto do_write;
/* TOD access */
switch (addr) {
case 0x1FF0:
/* flags register : read-only */
break;
case 0x1FF1:
/* unused */
break;
case 0x1FF2:
/* alarm seconds */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
NVRAM->alarm.tm_sec = tmp;
NVRAM->buffer[0x1FF2] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF3:
/* alarm minutes */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
NVRAM->alarm.tm_min = tmp;
NVRAM->buffer[0x1FF3] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF4:
/* alarm hours */
tmp = from_bcd(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
NVRAM->alarm.tm_hour = tmp;
NVRAM->buffer[0x1FF4] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF5:
/* alarm date */
tmp = from_bcd(val & 0x1F);
if (tmp != 0) {
NVRAM->alarm.tm_mday = tmp;
NVRAM->buffer[0x1FF5] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF6:
/* interrupts */
NVRAM->buffer[0x1FF6] = val;
break;
case 0x1FF7:
/* watchdog */
NVRAM->buffer[0x1FF7] = val;
set_up_watchdog(NVRAM, val);
break;
case 0x1FF8:
case 0x07F8:
/* control */
NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
break;
case 0x1FF9:
case 0x07F9:
/* seconds (BCD) */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_sec = tmp;
set_time(NVRAM, &tm);
}
if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
if (val & 0x80) {
NVRAM->stop_time = time(NULL);
} else {
NVRAM->time_offset += NVRAM->stop_time - time(NULL);
NVRAM->stop_time = 0;
}
}
NVRAM->buffer[addr] = val & 0x80;
break;
case 0x1FFA:
case 0x07FA:
/* minutes (BCD) */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_min = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFB:
case 0x07FB:
/* hours (BCD) */
tmp = from_bcd(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
get_time(NVRAM, &tm);
tm.tm_hour = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFC:
case 0x07FC:
/* day of the week / century */
tmp = from_bcd(val & 0x07);
get_time(NVRAM, &tm);
tm.tm_wday = tmp;
set_time(NVRAM, &tm);
NVRAM->buffer[addr] = val & 0x40;
break;
case 0x1FFD:
case 0x07FD:
/* date */
tmp = from_bcd(val & 0x1F);
if (tmp != 0) {
get_time(NVRAM, &tm);
tm.tm_mday = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFE:
case 0x07FE:
/* month */
tmp = from_bcd(val & 0x1F);
if (tmp >= 1 && tmp <= 12) {
get_time(NVRAM, &tm);
tm.tm_mon = tmp - 1;
set_time(NVRAM, &tm);
}
break;
case 0x1FFF:
case 0x07FF:
/* year */
tmp = from_bcd(val);
if (tmp >= 0 && tmp <= 99) {
get_time(NVRAM, &tm);
if (NVRAM->type == 8)
tm.tm_year = from_bcd(val) + 68; // Base year is 1968
else
tm.tm_year = from_bcd(val);
set_time(NVRAM, &tm);
}
break;
default:
/* Check lock registers state */
if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
break;
if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
break;
do_write:
if (addr < NVRAM->size) {
NVRAM->buffer[addr] = val & 0xFF;
}
break;
}
}
uint32_t m48t59_read (void *opaque, uint32_t addr)
{
M48t59State *NVRAM = opaque;
struct tm tm;
uint32_t retval = 0xFF;
/* check for NVRAM access */
if ((NVRAM->type == 2 && addr < 0x078f) ||
(NVRAM->type == 8 && addr < 0x1ff8) ||
(NVRAM->type == 59 && addr < 0x1ff0))
goto do_read;
/* TOD access */
switch (addr) {
case 0x1FF0:
/* flags register */
goto do_read;
case 0x1FF1:
/* unused */
retval = 0;
break;
case 0x1FF2:
/* alarm seconds */
goto do_read;
case 0x1FF3:
/* alarm minutes */
goto do_read;
case 0x1FF4:
/* alarm hours */
goto do_read;
case 0x1FF5:
/* alarm date */
goto do_read;
case 0x1FF6:
/* interrupts */
goto do_read;
case 0x1FF7:
/* A read resets the watchdog */
set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
goto do_read;
case 0x1FF8:
case 0x07F8:
/* control */
goto do_read;
case 0x1FF9:
case 0x07F9:
/* seconds (BCD) */
get_time(NVRAM, &tm);
retval = (NVRAM->buffer[addr] & 0x80) | to_bcd(tm.tm_sec);
break;
case 0x1FFA:
case 0x07FA:
/* minutes (BCD) */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_min);
break;
case 0x1FFB:
case 0x07FB:
/* hours (BCD) */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_hour);
break;
case 0x1FFC:
case 0x07FC:
/* day of the week / century */
get_time(NVRAM, &tm);
retval = NVRAM->buffer[addr] | tm.tm_wday;
break;
case 0x1FFD:
case 0x07FD:
/* date */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_mday);
break;
case 0x1FFE:
case 0x07FE:
/* month */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_mon + 1);
break;
case 0x1FFF:
case 0x07FF:
/* year */
get_time(NVRAM, &tm);
if (NVRAM->type == 8)
retval = to_bcd(tm.tm_year - 68); // Base year is 1968
else
retval = to_bcd(tm.tm_year);
break;
default:
/* Check lock registers state */
if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
break;
if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
break;
do_read:
if (addr < NVRAM->size) {
retval = NVRAM->buffer[addr];
}
break;
}
if (addr > 0x1FF9 && addr < 0x2000)
NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
return retval;
}
void m48t59_set_addr (void *opaque, uint32_t addr)
{
M48t59State *NVRAM = opaque;
NVRAM->addr = addr;
}
void m48t59_toggle_lock (void *opaque, int lock)
{
M48t59State *NVRAM = opaque;
NVRAM->lock ^= 1 << lock;
}
/* IO access to NVRAM */
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
{
M48t59State *NVRAM = opaque;
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
switch (addr) {
case 0:
NVRAM->addr &= ~0x00FF;
NVRAM->addr |= val;
break;
case 1:
NVRAM->addr &= ~0xFF00;
NVRAM->addr |= val << 8;
break;
case 3:
m48t59_write(NVRAM, NVRAM->addr, val);
NVRAM->addr = 0x0000;
break;
default:
break;
}
}
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
{
M48t59State *NVRAM = opaque;
uint32_t retval;
switch (addr) {
case 3:
retval = m48t59_read(NVRAM, NVRAM->addr);
break;
default:
retval = -1;
break;
}
NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
return retval;
}
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
M48t59State *NVRAM = opaque;
m48t59_write(NVRAM, addr, value & 0xff);
}
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
M48t59State *NVRAM = opaque;
m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
m48t59_write(NVRAM, addr + 1, value & 0xff);
}
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
M48t59State *NVRAM = opaque;
m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
m48t59_write(NVRAM, addr + 3, value & 0xff);
}
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
{
M48t59State *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr);
return retval;
}
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
{
M48t59State *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr) << 8;
retval |= m48t59_read(NVRAM, addr + 1);
return retval;
}
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
{
M48t59State *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr) << 24;
retval |= m48t59_read(NVRAM, addr + 1) << 16;
retval |= m48t59_read(NVRAM, addr + 2) << 8;
retval |= m48t59_read(NVRAM, addr + 3);
return retval;
}
static const MemoryRegionOps nvram_ops = {
.old_mmio = {
.read = { nvram_readb, nvram_readw, nvram_readl, },
.write = { nvram_writeb, nvram_writew, nvram_writel, },
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_m48t59 = {
.name = "m48t59",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(lock, M48t59State),
VMSTATE_UINT16(addr, M48t59State),
VMSTATE_VBUFFER_UINT32(buffer, M48t59State, 0, NULL, 0, size),
VMSTATE_END_OF_LIST()
}
};
static void m48t59_reset_common(M48t59State *NVRAM)
{
NVRAM->addr = 0;
NVRAM->lock = 0;
if (NVRAM->alrm_timer != NULL)
qemu_del_timer(NVRAM->alrm_timer);
if (NVRAM->wd_timer != NULL)
qemu_del_timer(NVRAM->wd_timer);
}
static void m48t59_reset_isa(DeviceState *d)
{
M48t59ISAState *isa = container_of(d, M48t59ISAState, busdev.qdev);
M48t59State *NVRAM = &isa->state;
m48t59_reset_common(NVRAM);
}
static void m48t59_reset_sysbus(DeviceState *d)
{
M48t59SysBusState *sys = container_of(d, M48t59SysBusState, busdev.qdev);
M48t59State *NVRAM = &sys->state;
m48t59_reset_common(NVRAM);
}
static const MemoryRegionPortio m48t59_portio[] = {
{0, 4, 1, .read = NVRAM_readb, .write = NVRAM_writeb },
PORTIO_END_OF_LIST(),
};
static const MemoryRegionOps m48t59_io_ops = {
.old_portio = m48t59_portio,
};
/* Initialisation routine */
M48t59State *m48t59_init(qemu_irq IRQ, target_phys_addr_t mem_base,
uint32_t io_base, uint16_t size, int type)
{
DeviceState *dev;
SysBusDevice *s;
M48t59SysBusState *d;
M48t59State *state;
dev = qdev_create(NULL, "m48t59");
qdev_prop_set_uint32(dev, "type", type);
qdev_prop_set_uint32(dev, "size", size);
qdev_prop_set_uint32(dev, "io_base", io_base);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
d = FROM_SYSBUS(M48t59SysBusState, s);
state = &d->state;
sysbus_connect_irq(s, 0, IRQ);
if (io_base != 0) {
register_ioport_read(io_base, 0x04, 1, NVRAM_readb, state);
register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, state);
}
if (mem_base != 0) {
sysbus_mmio_map(s, 0, mem_base);
}
return state;
}
M48t59State *m48t59_init_isa(uint32_t io_base, uint16_t size, int type)
{
M48t59ISAState *d;
ISADevice *dev;
M48t59State *s;
dev = isa_create("m48t59_isa");
qdev_prop_set_uint32(&dev->qdev, "type", type);
qdev_prop_set_uint32(&dev->qdev, "size", size);
qdev_prop_set_uint32(&dev->qdev, "io_base", io_base);
qdev_init_nofail(&dev->qdev);
d = DO_UPCAST(M48t59ISAState, busdev, dev);
s = &d->state;
memory_region_init_io(&d->io, &m48t59_io_ops, s, "m48t59", 4);
if (io_base != 0) {
isa_register_ioport(dev, &d->io, io_base);
}
return s;
}
static void m48t59_init_common(M48t59State *s)
{
s->buffer = g_malloc0(s->size);
if (s->type == 59) {
s->alrm_timer = qemu_new_timer_ns(vm_clock, &alarm_cb, s);
s->wd_timer = qemu_new_timer_ns(vm_clock, &watchdog_cb, s);
}
qemu_get_timedate(&s->alarm, 0);
vmstate_register(NULL, -1, &vmstate_m48t59, s);
}
static int m48t59_init_isa1(ISADevice *dev)
{
M48t59ISAState *d = DO_UPCAST(M48t59ISAState, busdev, dev);
M48t59State *s = &d->state;
isa_init_irq(dev, &s->IRQ, 8);
m48t59_init_common(s);
return 0;
}
static int m48t59_init1(SysBusDevice *dev)
{
M48t59SysBusState *d = FROM_SYSBUS(M48t59SysBusState, dev);
M48t59State *s = &d->state;
sysbus_init_irq(dev, &s->IRQ);
memory_region_init_io(&s->iomem, &nvram_ops, s, "m48t59.nvram", s->size);
sysbus_init_mmio(dev, &s->iomem);
m48t59_init_common(s);
return 0;
}
static ISADeviceInfo m48t59_isa_info = {
.init = m48t59_init_isa1,
.qdev.name = "m48t59_isa",
.qdev.size = sizeof(M48t59ISAState),
.qdev.reset = m48t59_reset_isa,
.qdev.no_user = 1,
.qdev.props = (Property[]) {
DEFINE_PROP_UINT32("size", M48t59ISAState, state.size, -1),
DEFINE_PROP_UINT32("type", M48t59ISAState, state.type, -1),
DEFINE_PROP_HEX32( "io_base", M48t59ISAState, state.io_base, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static SysBusDeviceInfo m48t59_info = {
.init = m48t59_init1,
.qdev.name = "m48t59",
.qdev.size = sizeof(M48t59SysBusState),
.qdev.reset = m48t59_reset_sysbus,
.qdev.props = (Property[]) {
DEFINE_PROP_UINT32("size", M48t59SysBusState, state.size, -1),
DEFINE_PROP_UINT32("type", M48t59SysBusState, state.type, -1),
DEFINE_PROP_HEX32( "io_base", M48t59SysBusState, state.io_base, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static void m48t59_register_devices(void)
{
sysbus_register_withprop(&m48t59_info);
isa_qdev_register(&m48t59_isa_info);
}
device_init(m48t59_register_devices)