mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 03:59:52 +00:00
e5143e30fb
There are now only two uses of the global exit_request left. The first ensures we exit the run_loop when we first start to process pending work and in the kick handler. This is just as easily done by setting the first_cpu->exit_request flag. The second use is in the round robin kick routine. The global exit_request ensured every vCPU would set its local exit_request and cause a full exit of the loop. Now the iothread isn't being held while running we can just rely on the kick handler to push us out as intended. We lightly re-factor the main vCPU thread to ensure cpu->exit_requests cause us to exit the main loop and process any IO requests that might come along. As an cpu->exit_request may legitimately get squashed while processing the EXCP_INTERRUPT exception we also check cpu->queued_work_first to ensure queued work is expedited as soon as possible. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net>
83 lines
2.8 KiB
C
83 lines
2.8 KiB
C
/*
|
|
* emulator main execution loop
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memory-internal.h"
|
|
|
|
/* exit the current TB, but without causing any exception to be raised */
|
|
void cpu_loop_exit_noexc(CPUState *cpu)
|
|
{
|
|
/* XXX: restore cpu registers saved in host registers */
|
|
|
|
cpu->exception_index = -1;
|
|
siglongjmp(cpu->jmp_env, 1);
|
|
}
|
|
|
|
#if defined(CONFIG_SOFTMMU)
|
|
void cpu_reloading_memory_map(void)
|
|
{
|
|
if (qemu_in_vcpu_thread()) {
|
|
/* The guest can in theory prolong the RCU critical section as long
|
|
* as it feels like. The major problem with this is that because it
|
|
* can do multiple reconfigurations of the memory map within the
|
|
* critical section, we could potentially accumulate an unbounded
|
|
* collection of memory data structures awaiting reclamation.
|
|
*
|
|
* Because the only thing we're currently protecting with RCU is the
|
|
* memory data structures, it's sufficient to break the critical section
|
|
* in this callback, which we know will get called every time the
|
|
* memory map is rearranged.
|
|
*
|
|
* (If we add anything else in the system that uses RCU to protect
|
|
* its data structures, we will need to implement some other mechanism
|
|
* to force TCG CPUs to exit the critical section, at which point this
|
|
* part of this callback might become unnecessary.)
|
|
*
|
|
* This pair matches cpu_exec's rcu_read_lock()/rcu_read_unlock(), which
|
|
* only protects cpu->as->dispatch. Since we know our caller is about
|
|
* to reload it, it's safe to split the critical section.
|
|
*/
|
|
rcu_read_unlock();
|
|
rcu_read_lock();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void cpu_loop_exit(CPUState *cpu)
|
|
{
|
|
siglongjmp(cpu->jmp_env, 1);
|
|
}
|
|
|
|
void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc)
|
|
{
|
|
if (pc) {
|
|
cpu_restore_state(cpu, pc);
|
|
}
|
|
siglongjmp(cpu->jmp_env, 1);
|
|
}
|
|
|
|
void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc)
|
|
{
|
|
cpu->exception_index = EXCP_ATOMIC;
|
|
cpu_loop_exit_restore(cpu, pc);
|
|
}
|