mirror of
https://github.com/xemu-project/xemu.git
synced 2024-12-24 04:46:05 +00:00
4951967d84
Right now, rate limiting is protected by the AioContext mutex, which is taken for example both by the block jobs and by qmp_block_job_set_speed (via find_block_job). We would like to remove the dependency of block layer code on the AioContext mutex, since most drivers and the core I/O code are already not relying on it. However, there is no existing lock that can easily be taken by both ratelimit_set_speed and ratelimit_calculate_delay, especially because the latter might run in coroutine context (and therefore under a CoMutex) but the former will not. Since concurrent calls to ratelimit_calculate_delay are not possible, one idea could be to use a seqlock to get a snapshot of slice_ns and slice_quota. But for now keep it simple, and just add a mutex to the RateLimit struct; block jobs are generally not performance critical to the point of optimizing the clock cycles spent in synchronization. This also requires the introduction of init/destroy functions, so add them to the two users of ratelimit.h. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
842 lines
24 KiB
C
842 lines
24 KiB
C
/*
|
||
* block_copy API
|
||
*
|
||
* Copyright (C) 2013 Proxmox Server Solutions
|
||
* Copyright (c) 2019 Virtuozzo International GmbH.
|
||
*
|
||
* Authors:
|
||
* Dietmar Maurer (dietmar@proxmox.com)
|
||
* Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
|
||
*
|
||
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
||
* See the COPYING file in the top-level directory.
|
||
*/
|
||
|
||
#include "qemu/osdep.h"
|
||
|
||
#include "trace.h"
|
||
#include "qapi/error.h"
|
||
#include "block/block-copy.h"
|
||
#include "sysemu/block-backend.h"
|
||
#include "qemu/units.h"
|
||
#include "qemu/coroutine.h"
|
||
#include "block/aio_task.h"
|
||
|
||
#define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
|
||
#define BLOCK_COPY_MAX_BUFFER (1 * MiB)
|
||
#define BLOCK_COPY_MAX_MEM (128 * MiB)
|
||
#define BLOCK_COPY_MAX_WORKERS 64
|
||
#define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
|
||
|
||
static coroutine_fn int block_copy_task_entry(AioTask *task);
|
||
|
||
typedef struct BlockCopyCallState {
|
||
/* IN parameters. Initialized in block_copy_async() and never changed. */
|
||
BlockCopyState *s;
|
||
int64_t offset;
|
||
int64_t bytes;
|
||
int max_workers;
|
||
int64_t max_chunk;
|
||
bool ignore_ratelimit;
|
||
BlockCopyAsyncCallbackFunc cb;
|
||
void *cb_opaque;
|
||
|
||
/* Coroutine where async block-copy is running */
|
||
Coroutine *co;
|
||
|
||
/* To reference all call states from BlockCopyState */
|
||
QLIST_ENTRY(BlockCopyCallState) list;
|
||
|
||
/* State */
|
||
int ret;
|
||
bool finished;
|
||
QemuCoSleepState *sleep_state;
|
||
bool cancelled;
|
||
|
||
/* OUT parameters */
|
||
bool error_is_read;
|
||
} BlockCopyCallState;
|
||
|
||
typedef struct BlockCopyTask {
|
||
AioTask task;
|
||
|
||
BlockCopyState *s;
|
||
BlockCopyCallState *call_state;
|
||
int64_t offset;
|
||
int64_t bytes;
|
||
bool zeroes;
|
||
QLIST_ENTRY(BlockCopyTask) list;
|
||
CoQueue wait_queue; /* coroutines blocked on this task */
|
||
} BlockCopyTask;
|
||
|
||
static int64_t task_end(BlockCopyTask *task)
|
||
{
|
||
return task->offset + task->bytes;
|
||
}
|
||
|
||
typedef struct BlockCopyState {
|
||
/*
|
||
* BdrvChild objects are not owned or managed by block-copy. They are
|
||
* provided by block-copy user and user is responsible for appropriate
|
||
* permissions on these children.
|
||
*/
|
||
BdrvChild *source;
|
||
BdrvChild *target;
|
||
BdrvDirtyBitmap *copy_bitmap;
|
||
int64_t in_flight_bytes;
|
||
int64_t cluster_size;
|
||
bool use_copy_range;
|
||
int64_t copy_size;
|
||
uint64_t len;
|
||
QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
|
||
QLIST_HEAD(, BlockCopyCallState) calls;
|
||
|
||
BdrvRequestFlags write_flags;
|
||
|
||
/*
|
||
* skip_unallocated:
|
||
*
|
||
* Used by sync=top jobs, which first scan the source node for unallocated
|
||
* areas and clear them in the copy_bitmap. During this process, the bitmap
|
||
* is thus not fully initialized: It may still have bits set for areas that
|
||
* are unallocated and should actually not be copied.
|
||
*
|
||
* This is indicated by skip_unallocated.
|
||
*
|
||
* In this case, block_copy() will query the source’s allocation status,
|
||
* skip unallocated regions, clear them in the copy_bitmap, and invoke
|
||
* block_copy_reset_unallocated() every time it does.
|
||
*/
|
||
bool skip_unallocated;
|
||
|
||
ProgressMeter *progress;
|
||
|
||
SharedResource *mem;
|
||
|
||
uint64_t speed;
|
||
RateLimit rate_limit;
|
||
} BlockCopyState;
|
||
|
||
static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
|
||
int64_t offset, int64_t bytes)
|
||
{
|
||
BlockCopyTask *t;
|
||
|
||
QLIST_FOREACH(t, &s->tasks, list) {
|
||
if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
|
||
return t;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
* If there are no intersecting tasks return false. Otherwise, wait for the
|
||
* first found intersecting tasks to finish and return true.
|
||
*/
|
||
static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
|
||
int64_t bytes)
|
||
{
|
||
BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
|
||
|
||
if (!task) {
|
||
return false;
|
||
}
|
||
|
||
qemu_co_queue_wait(&task->wait_queue, NULL);
|
||
|
||
return true;
|
||
}
|
||
|
||
/*
|
||
* Search for the first dirty area in offset/bytes range and create task at
|
||
* the beginning of it.
|
||
*/
|
||
static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
|
||
BlockCopyCallState *call_state,
|
||
int64_t offset, int64_t bytes)
|
||
{
|
||
BlockCopyTask *task;
|
||
int64_t max_chunk = MIN_NON_ZERO(s->copy_size, call_state->max_chunk);
|
||
|
||
if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
|
||
offset, offset + bytes,
|
||
max_chunk, &offset, &bytes))
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
||
bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
|
||
|
||
/* region is dirty, so no existent tasks possible in it */
|
||
assert(!find_conflicting_task(s, offset, bytes));
|
||
|
||
bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
|
||
s->in_flight_bytes += bytes;
|
||
|
||
task = g_new(BlockCopyTask, 1);
|
||
*task = (BlockCopyTask) {
|
||
.task.func = block_copy_task_entry,
|
||
.s = s,
|
||
.call_state = call_state,
|
||
.offset = offset,
|
||
.bytes = bytes,
|
||
};
|
||
qemu_co_queue_init(&task->wait_queue);
|
||
QLIST_INSERT_HEAD(&s->tasks, task, list);
|
||
|
||
return task;
|
||
}
|
||
|
||
/*
|
||
* block_copy_task_shrink
|
||
*
|
||
* Drop the tail of the task to be handled later. Set dirty bits back and
|
||
* wake up all tasks waiting for us (may be some of them are not intersecting
|
||
* with shrunk task)
|
||
*/
|
||
static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
|
||
int64_t new_bytes)
|
||
{
|
||
if (new_bytes == task->bytes) {
|
||
return;
|
||
}
|
||
|
||
assert(new_bytes > 0 && new_bytes < task->bytes);
|
||
|
||
task->s->in_flight_bytes -= task->bytes - new_bytes;
|
||
bdrv_set_dirty_bitmap(task->s->copy_bitmap,
|
||
task->offset + new_bytes, task->bytes - new_bytes);
|
||
|
||
task->bytes = new_bytes;
|
||
qemu_co_queue_restart_all(&task->wait_queue);
|
||
}
|
||
|
||
static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
|
||
{
|
||
task->s->in_flight_bytes -= task->bytes;
|
||
if (ret < 0) {
|
||
bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
|
||
}
|
||
QLIST_REMOVE(task, list);
|
||
qemu_co_queue_restart_all(&task->wait_queue);
|
||
}
|
||
|
||
void block_copy_state_free(BlockCopyState *s)
|
||
{
|
||
if (!s) {
|
||
return;
|
||
}
|
||
|
||
ratelimit_destroy(&s->rate_limit);
|
||
bdrv_release_dirty_bitmap(s->copy_bitmap);
|
||
shres_destroy(s->mem);
|
||
g_free(s);
|
||
}
|
||
|
||
static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
|
||
{
|
||
return MIN_NON_ZERO(INT_MAX,
|
||
MIN_NON_ZERO(source->bs->bl.max_transfer,
|
||
target->bs->bl.max_transfer));
|
||
}
|
||
|
||
BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
|
||
int64_t cluster_size, bool use_copy_range,
|
||
BdrvRequestFlags write_flags, Error **errp)
|
||
{
|
||
BlockCopyState *s;
|
||
BdrvDirtyBitmap *copy_bitmap;
|
||
|
||
copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
|
||
errp);
|
||
if (!copy_bitmap) {
|
||
return NULL;
|
||
}
|
||
bdrv_disable_dirty_bitmap(copy_bitmap);
|
||
|
||
s = g_new(BlockCopyState, 1);
|
||
*s = (BlockCopyState) {
|
||
.source = source,
|
||
.target = target,
|
||
.copy_bitmap = copy_bitmap,
|
||
.cluster_size = cluster_size,
|
||
.len = bdrv_dirty_bitmap_size(copy_bitmap),
|
||
.write_flags = write_flags,
|
||
.mem = shres_create(BLOCK_COPY_MAX_MEM),
|
||
};
|
||
|
||
if (block_copy_max_transfer(source, target) < cluster_size) {
|
||
/*
|
||
* copy_range does not respect max_transfer. We don't want to bother
|
||
* with requests smaller than block-copy cluster size, so fallback to
|
||
* buffered copying (read and write respect max_transfer on their
|
||
* behalf).
|
||
*/
|
||
s->use_copy_range = false;
|
||
s->copy_size = cluster_size;
|
||
} else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
|
||
/* Compression supports only cluster-size writes and no copy-range. */
|
||
s->use_copy_range = false;
|
||
s->copy_size = cluster_size;
|
||
} else {
|
||
/*
|
||
* We enable copy-range, but keep small copy_size, until first
|
||
* successful copy_range (look at block_copy_do_copy).
|
||
*/
|
||
s->use_copy_range = use_copy_range;
|
||
s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
|
||
}
|
||
|
||
ratelimit_init(&s->rate_limit);
|
||
QLIST_INIT(&s->tasks);
|
||
QLIST_INIT(&s->calls);
|
||
|
||
return s;
|
||
}
|
||
|
||
void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
|
||
{
|
||
s->progress = pm;
|
||
}
|
||
|
||
/*
|
||
* Takes ownership of @task
|
||
*
|
||
* If pool is NULL directly run the task, otherwise schedule it into the pool.
|
||
*
|
||
* Returns: task.func return code if pool is NULL
|
||
* otherwise -ECANCELED if pool status is bad
|
||
* otherwise 0 (successfully scheduled)
|
||
*/
|
||
static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
|
||
BlockCopyTask *task)
|
||
{
|
||
if (!pool) {
|
||
int ret = task->task.func(&task->task);
|
||
|
||
g_free(task);
|
||
return ret;
|
||
}
|
||
|
||
aio_task_pool_wait_slot(pool);
|
||
if (aio_task_pool_status(pool) < 0) {
|
||
co_put_to_shres(task->s->mem, task->bytes);
|
||
block_copy_task_end(task, -ECANCELED);
|
||
g_free(task);
|
||
return -ECANCELED;
|
||
}
|
||
|
||
aio_task_pool_start_task(pool, &task->task);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* block_copy_do_copy
|
||
*
|
||
* Do copy of cluster-aligned chunk. Requested region is allowed to exceed
|
||
* s->len only to cover last cluster when s->len is not aligned to clusters.
|
||
*
|
||
* No sync here: nor bitmap neighter intersecting requests handling, only copy.
|
||
*
|
||
* Returns 0 on success.
|
||
*/
|
||
static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
|
||
int64_t offset, int64_t bytes,
|
||
bool zeroes, bool *error_is_read)
|
||
{
|
||
int ret;
|
||
int64_t nbytes = MIN(offset + bytes, s->len) - offset;
|
||
void *bounce_buffer = NULL;
|
||
|
||
assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
|
||
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
||
assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
|
||
assert(offset < s->len);
|
||
assert(offset + bytes <= s->len ||
|
||
offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
|
||
assert(nbytes < INT_MAX);
|
||
|
||
if (zeroes) {
|
||
ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
|
||
~BDRV_REQ_WRITE_COMPRESSED);
|
||
if (ret < 0) {
|
||
trace_block_copy_write_zeroes_fail(s, offset, ret);
|
||
*error_is_read = false;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
if (s->use_copy_range) {
|
||
ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
|
||
0, s->write_flags);
|
||
if (ret < 0) {
|
||
trace_block_copy_copy_range_fail(s, offset, ret);
|
||
s->use_copy_range = false;
|
||
s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
|
||
/* Fallback to read+write with allocated buffer */
|
||
} else {
|
||
if (s->use_copy_range) {
|
||
/*
|
||
* Successful copy-range. Now increase copy_size. copy_range
|
||
* does not respect max_transfer (it's a TODO), so we factor
|
||
* that in here.
|
||
*
|
||
* Note: we double-check s->use_copy_range for the case when
|
||
* parallel block-copy request unsets it during previous
|
||
* bdrv_co_copy_range call.
|
||
*/
|
||
s->copy_size =
|
||
MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
|
||
QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
|
||
s->target),
|
||
s->cluster_size));
|
||
}
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* In case of failed copy_range request above, we may proceed with buffered
|
||
* request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
|
||
* be properly limited, so don't care too much. Moreover the most likely
|
||
* case (copy_range is unsupported for the configuration, so the very first
|
||
* copy_range request fails) is handled by setting large copy_size only
|
||
* after first successful copy_range.
|
||
*/
|
||
|
||
bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
|
||
|
||
ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
|
||
if (ret < 0) {
|
||
trace_block_copy_read_fail(s, offset, ret);
|
||
*error_is_read = true;
|
||
goto out;
|
||
}
|
||
|
||
ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
|
||
s->write_flags);
|
||
if (ret < 0) {
|
||
trace_block_copy_write_fail(s, offset, ret);
|
||
*error_is_read = false;
|
||
goto out;
|
||
}
|
||
|
||
out:
|
||
qemu_vfree(bounce_buffer);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static coroutine_fn int block_copy_task_entry(AioTask *task)
|
||
{
|
||
BlockCopyTask *t = container_of(task, BlockCopyTask, task);
|
||
bool error_is_read = false;
|
||
int ret;
|
||
|
||
ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
|
||
&error_is_read);
|
||
if (ret < 0 && !t->call_state->ret) {
|
||
t->call_state->ret = ret;
|
||
t->call_state->error_is_read = error_is_read;
|
||
} else {
|
||
progress_work_done(t->s->progress, t->bytes);
|
||
}
|
||
co_put_to_shres(t->s->mem, t->bytes);
|
||
block_copy_task_end(t, ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int block_copy_block_status(BlockCopyState *s, int64_t offset,
|
||
int64_t bytes, int64_t *pnum)
|
||
{
|
||
int64_t num;
|
||
BlockDriverState *base;
|
||
int ret;
|
||
|
||
if (s->skip_unallocated) {
|
||
base = bdrv_backing_chain_next(s->source->bs);
|
||
} else {
|
||
base = NULL;
|
||
}
|
||
|
||
ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
|
||
NULL, NULL);
|
||
if (ret < 0 || num < s->cluster_size) {
|
||
/*
|
||
* On error or if failed to obtain large enough chunk just fallback to
|
||
* copy one cluster.
|
||
*/
|
||
num = s->cluster_size;
|
||
ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
|
||
} else if (offset + num == s->len) {
|
||
num = QEMU_ALIGN_UP(num, s->cluster_size);
|
||
} else {
|
||
num = QEMU_ALIGN_DOWN(num, s->cluster_size);
|
||
}
|
||
|
||
*pnum = num;
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Check if the cluster starting at offset is allocated or not.
|
||
* return via pnum the number of contiguous clusters sharing this allocation.
|
||
*/
|
||
static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
|
||
int64_t *pnum)
|
||
{
|
||
BlockDriverState *bs = s->source->bs;
|
||
int64_t count, total_count = 0;
|
||
int64_t bytes = s->len - offset;
|
||
int ret;
|
||
|
||
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
||
|
||
while (true) {
|
||
ret = bdrv_is_allocated(bs, offset, bytes, &count);
|
||
if (ret < 0) {
|
||
return ret;
|
||
}
|
||
|
||
total_count += count;
|
||
|
||
if (ret || count == 0) {
|
||
/*
|
||
* ret: partial segment(s) are considered allocated.
|
||
* otherwise: unallocated tail is treated as an entire segment.
|
||
*/
|
||
*pnum = DIV_ROUND_UP(total_count, s->cluster_size);
|
||
return ret;
|
||
}
|
||
|
||
/* Unallocated segment(s) with uncertain following segment(s) */
|
||
if (total_count >= s->cluster_size) {
|
||
*pnum = total_count / s->cluster_size;
|
||
return 0;
|
||
}
|
||
|
||
offset += count;
|
||
bytes -= count;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Reset bits in copy_bitmap starting at offset if they represent unallocated
|
||
* data in the image. May reset subsequent contiguous bits.
|
||
* @return 0 when the cluster at @offset was unallocated,
|
||
* 1 otherwise, and -ret on error.
|
||
*/
|
||
int64_t block_copy_reset_unallocated(BlockCopyState *s,
|
||
int64_t offset, int64_t *count)
|
||
{
|
||
int ret;
|
||
int64_t clusters, bytes;
|
||
|
||
ret = block_copy_is_cluster_allocated(s, offset, &clusters);
|
||
if (ret < 0) {
|
||
return ret;
|
||
}
|
||
|
||
bytes = clusters * s->cluster_size;
|
||
|
||
if (!ret) {
|
||
bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
|
||
progress_set_remaining(s->progress,
|
||
bdrv_get_dirty_count(s->copy_bitmap) +
|
||
s->in_flight_bytes);
|
||
}
|
||
|
||
*count = bytes;
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* block_copy_dirty_clusters
|
||
*
|
||
* Copy dirty clusters in @offset/@bytes range.
|
||
* Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
|
||
* clusters found and -errno on failure.
|
||
*/
|
||
static int coroutine_fn
|
||
block_copy_dirty_clusters(BlockCopyCallState *call_state)
|
||
{
|
||
BlockCopyState *s = call_state->s;
|
||
int64_t offset = call_state->offset;
|
||
int64_t bytes = call_state->bytes;
|
||
|
||
int ret = 0;
|
||
bool found_dirty = false;
|
||
int64_t end = offset + bytes;
|
||
AioTaskPool *aio = NULL;
|
||
|
||
/*
|
||
* block_copy() user is responsible for keeping source and target in same
|
||
* aio context
|
||
*/
|
||
assert(bdrv_get_aio_context(s->source->bs) ==
|
||
bdrv_get_aio_context(s->target->bs));
|
||
|
||
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
||
assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
|
||
|
||
while (bytes && aio_task_pool_status(aio) == 0 && !call_state->cancelled) {
|
||
BlockCopyTask *task;
|
||
int64_t status_bytes;
|
||
|
||
task = block_copy_task_create(s, call_state, offset, bytes);
|
||
if (!task) {
|
||
/* No more dirty bits in the bitmap */
|
||
trace_block_copy_skip_range(s, offset, bytes);
|
||
break;
|
||
}
|
||
if (task->offset > offset) {
|
||
trace_block_copy_skip_range(s, offset, task->offset - offset);
|
||
}
|
||
|
||
found_dirty = true;
|
||
|
||
ret = block_copy_block_status(s, task->offset, task->bytes,
|
||
&status_bytes);
|
||
assert(ret >= 0); /* never fail */
|
||
if (status_bytes < task->bytes) {
|
||
block_copy_task_shrink(task, status_bytes);
|
||
}
|
||
if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
|
||
block_copy_task_end(task, 0);
|
||
progress_set_remaining(s->progress,
|
||
bdrv_get_dirty_count(s->copy_bitmap) +
|
||
s->in_flight_bytes);
|
||
trace_block_copy_skip_range(s, task->offset, task->bytes);
|
||
offset = task_end(task);
|
||
bytes = end - offset;
|
||
g_free(task);
|
||
continue;
|
||
}
|
||
task->zeroes = ret & BDRV_BLOCK_ZERO;
|
||
|
||
if (s->speed) {
|
||
if (!call_state->ignore_ratelimit) {
|
||
uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
|
||
if (ns > 0) {
|
||
block_copy_task_end(task, -EAGAIN);
|
||
g_free(task);
|
||
qemu_co_sleep_ns_wakeable(QEMU_CLOCK_REALTIME, ns,
|
||
&call_state->sleep_state);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
ratelimit_calculate_delay(&s->rate_limit, task->bytes);
|
||
}
|
||
|
||
trace_block_copy_process(s, task->offset);
|
||
|
||
co_get_from_shres(s->mem, task->bytes);
|
||
|
||
offset = task_end(task);
|
||
bytes = end - offset;
|
||
|
||
if (!aio && bytes) {
|
||
aio = aio_task_pool_new(call_state->max_workers);
|
||
}
|
||
|
||
ret = block_copy_task_run(aio, task);
|
||
if (ret < 0) {
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
out:
|
||
if (aio) {
|
||
aio_task_pool_wait_all(aio);
|
||
|
||
/*
|
||
* We are not really interested in -ECANCELED returned from
|
||
* block_copy_task_run. If it fails, it means some task already failed
|
||
* for real reason, let's return first failure.
|
||
* Still, assert that we don't rewrite failure by success.
|
||
*
|
||
* Note: ret may be positive here because of block-status result.
|
||
*/
|
||
assert(ret >= 0 || aio_task_pool_status(aio) < 0);
|
||
ret = aio_task_pool_status(aio);
|
||
|
||
aio_task_pool_free(aio);
|
||
}
|
||
|
||
return ret < 0 ? ret : found_dirty;
|
||
}
|
||
|
||
void block_copy_kick(BlockCopyCallState *call_state)
|
||
{
|
||
if (call_state->sleep_state) {
|
||
qemu_co_sleep_wake(call_state->sleep_state);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* block_copy_common
|
||
*
|
||
* Copy requested region, accordingly to dirty bitmap.
|
||
* Collaborate with parallel block_copy requests: if they succeed it will help
|
||
* us. If they fail, we will retry not-copied regions. So, if we return error,
|
||
* it means that some I/O operation failed in context of _this_ block_copy call,
|
||
* not some parallel operation.
|
||
*/
|
||
static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
|
||
{
|
||
int ret;
|
||
|
||
QLIST_INSERT_HEAD(&call_state->s->calls, call_state, list);
|
||
|
||
do {
|
||
ret = block_copy_dirty_clusters(call_state);
|
||
|
||
if (ret == 0 && !call_state->cancelled) {
|
||
ret = block_copy_wait_one(call_state->s, call_state->offset,
|
||
call_state->bytes);
|
||
}
|
||
|
||
/*
|
||
* We retry in two cases:
|
||
* 1. Some progress done
|
||
* Something was copied, which means that there were yield points
|
||
* and some new dirty bits may have appeared (due to failed parallel
|
||
* block-copy requests).
|
||
* 2. We have waited for some intersecting block-copy request
|
||
* It may have failed and produced new dirty bits.
|
||
*/
|
||
} while (ret > 0 && !call_state->cancelled);
|
||
|
||
call_state->finished = true;
|
||
|
||
if (call_state->cb) {
|
||
call_state->cb(call_state->cb_opaque);
|
||
}
|
||
|
||
QLIST_REMOVE(call_state, list);
|
||
|
||
return ret;
|
||
}
|
||
|
||
int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
|
||
bool ignore_ratelimit)
|
||
{
|
||
BlockCopyCallState call_state = {
|
||
.s = s,
|
||
.offset = start,
|
||
.bytes = bytes,
|
||
.ignore_ratelimit = ignore_ratelimit,
|
||
.max_workers = BLOCK_COPY_MAX_WORKERS,
|
||
};
|
||
|
||
return block_copy_common(&call_state);
|
||
}
|
||
|
||
static void coroutine_fn block_copy_async_co_entry(void *opaque)
|
||
{
|
||
block_copy_common(opaque);
|
||
}
|
||
|
||
BlockCopyCallState *block_copy_async(BlockCopyState *s,
|
||
int64_t offset, int64_t bytes,
|
||
int max_workers, int64_t max_chunk,
|
||
BlockCopyAsyncCallbackFunc cb,
|
||
void *cb_opaque)
|
||
{
|
||
BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
|
||
|
||
*call_state = (BlockCopyCallState) {
|
||
.s = s,
|
||
.offset = offset,
|
||
.bytes = bytes,
|
||
.max_workers = max_workers,
|
||
.max_chunk = max_chunk,
|
||
.cb = cb,
|
||
.cb_opaque = cb_opaque,
|
||
|
||
.co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
|
||
};
|
||
|
||
qemu_coroutine_enter(call_state->co);
|
||
|
||
return call_state;
|
||
}
|
||
|
||
void block_copy_call_free(BlockCopyCallState *call_state)
|
||
{
|
||
if (!call_state) {
|
||
return;
|
||
}
|
||
|
||
assert(call_state->finished);
|
||
g_free(call_state);
|
||
}
|
||
|
||
bool block_copy_call_finished(BlockCopyCallState *call_state)
|
||
{
|
||
return call_state->finished;
|
||
}
|
||
|
||
bool block_copy_call_succeeded(BlockCopyCallState *call_state)
|
||
{
|
||
return call_state->finished && !call_state->cancelled &&
|
||
call_state->ret == 0;
|
||
}
|
||
|
||
bool block_copy_call_failed(BlockCopyCallState *call_state)
|
||
{
|
||
return call_state->finished && !call_state->cancelled &&
|
||
call_state->ret < 0;
|
||
}
|
||
|
||
bool block_copy_call_cancelled(BlockCopyCallState *call_state)
|
||
{
|
||
return call_state->cancelled;
|
||
}
|
||
|
||
int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
|
||
{
|
||
assert(call_state->finished);
|
||
if (error_is_read) {
|
||
*error_is_read = call_state->error_is_read;
|
||
}
|
||
return call_state->ret;
|
||
}
|
||
|
||
void block_copy_call_cancel(BlockCopyCallState *call_state)
|
||
{
|
||
call_state->cancelled = true;
|
||
block_copy_kick(call_state);
|
||
}
|
||
|
||
BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
|
||
{
|
||
return s->copy_bitmap;
|
||
}
|
||
|
||
void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
|
||
{
|
||
s->skip_unallocated = skip;
|
||
}
|
||
|
||
void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
|
||
{
|
||
s->speed = speed;
|
||
if (speed > 0) {
|
||
ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
|
||
}
|
||
|
||
/*
|
||
* Note: it's good to kick all call states from here, but it should be done
|
||
* only from a coroutine, to not crash if s->calls list changed while
|
||
* entering one call. So for now, the only user of this function kicks its
|
||
* only one call_state by hand.
|
||
*/
|
||
}
|