xemu/target/ppc/kvm.c
Greg Kurz 9cbcfb5924 target/ppc/kvm: Cache timebase frequency
Each vCPU core exposes its timebase frequency in the DT. When running
under KVM, this means parsing /proc/cpuinfo in order to get the timebase
frequency of the host CPU.

The parsing appears to slow down the boot quite a bit with higher number
of cores:

# of cores     seconds spent in spapr_dt_cpus()
      8                  0.550122
     16                  1.342375
     32                  2.850316
     64                  5.922505
     96                  9.109224
    128                 12.245504
    256                 24.957236
    384                 37.389113

The timebase frequency of the host CPU is identical for all
cores and it is an invariant for the VM lifetime. Cache it
instead of doing the same expensive parsing again and again.

Rename kvmppc_get_tbfreq() to kvmppc_get_tbfreq_procfs() and
rename the 'retval' variable to make it clear it is used as
fallback only. Come up with a new version of kvmppc_get_tbfreq()
that calls kvmppc_get_tbfreq_procfs() only once and keep the
value in a static.

Zero is certainly not a valid value for the timebase frequency.
Treat atoi() returning zero as another parsing error and return
the fallback value instead. This allows kvmppc_get_tbfreq() to
use zero as an indicator that kvmppc_get_tbfreq_procfs() hasn't
been called yet.

With this patch applied:

    384                 0.518382

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <161600382766.1780699.6787739229984093959.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-03-31 11:10:50 +11:00

2950 lines
79 KiB
C

/*
* PowerPC implementation of KVM hooks
*
* Copyright IBM Corp. 2007
* Copyright (C) 2011 Freescale Semiconductor, Inc.
*
* Authors:
* Jerone Young <jyoung5@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
* Hollis Blanchard <hollisb@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <dirent.h>
#include <sys/ioctl.h>
#include <sys/vfs.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "cpu.h"
#include "cpu-models.h"
#include "qemu/timer.h"
#include "sysemu/hw_accel.h"
#include "kvm_ppc.h"
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
#include "mmu-hash64.h"
#include "hw/sysbus.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/hw.h"
#include "hw/ppc/ppc.h"
#include "migration/qemu-file-types.h"
#include "sysemu/watchdog.h"
#include "trace.h"
#include "exec/gdbstub.h"
#include "exec/memattrs.h"
#include "exec/ram_addr.h"
#include "sysemu/hostmem.h"
#include "qemu/cutils.h"
#include "qemu/main-loop.h"
#include "qemu/mmap-alloc.h"
#include "elf.h"
#include "sysemu/kvm_int.h"
#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
#define DEBUG_RETURN_GUEST 0
#define DEBUG_RETURN_GDB 1
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int cap_interrupt_unset;
static int cap_segstate;
static int cap_booke_sregs;
static int cap_ppc_smt;
static int cap_ppc_smt_possible;
static int cap_spapr_tce;
static int cap_spapr_tce_64;
static int cap_spapr_multitce;
static int cap_spapr_vfio;
static int cap_hior;
static int cap_one_reg;
static int cap_epr;
static int cap_ppc_watchdog;
static int cap_papr;
static int cap_htab_fd;
static int cap_fixup_hcalls;
static int cap_htm; /* Hardware transactional memory support */
static int cap_mmu_radix;
static int cap_mmu_hash_v3;
static int cap_xive;
static int cap_resize_hpt;
static int cap_ppc_pvr_compat;
static int cap_ppc_safe_cache;
static int cap_ppc_safe_bounds_check;
static int cap_ppc_safe_indirect_branch;
static int cap_ppc_count_cache_flush_assist;
static int cap_ppc_nested_kvm_hv;
static int cap_large_decr;
static int cap_fwnmi;
static uint32_t debug_inst_opcode;
/*
* Check whether we are running with KVM-PR (instead of KVM-HV). This
* should only be used for fallback tests - generally we should use
* explicit capabilities for the features we want, rather than
* assuming what is/isn't available depending on the KVM variant.
*/
static bool kvmppc_is_pr(KVMState *ks)
{
/* Assume KVM-PR if the GET_PVINFO capability is available */
return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
}
static int kvm_ppc_register_host_cpu_type(void);
static void kvmppc_get_cpu_characteristics(KVMState *s);
static int kvmppc_get_dec_bits(void);
int kvm_arch_init(MachineState *ms, KVMState *s)
{
cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
/*
* Note: we don't set cap_papr here, because this capability is
* only activated after this by kvmppc_set_papr()
*/
cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
kvmppc_get_cpu_characteristics(s);
cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
cap_large_decr = kvmppc_get_dec_bits();
cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
/*
* Note: setting it to false because there is not such capability
* in KVM at this moment.
*
* TODO: call kvm_vm_check_extension() with the right capability
* after the kernel starts implementing it.
*/
cap_ppc_pvr_compat = false;
if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
error_report("KVM: Host kernel doesn't have level irq capability");
exit(1);
}
kvm_ppc_register_host_cpu_type();
return 0;
}
int kvm_arch_irqchip_create(KVMState *s)
{
return 0;
}
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
{
CPUPPCState *cenv = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_sregs sregs;
int ret;
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
/*
* What we're really trying to say is "if we're on BookE, we
* use the native PVR for now". This is the only sane way to
* check it though, so we potentially confuse users that they
* can run BookE guests on BookS. Let's hope nobody dares
* enough :)
*/
return 0;
} else {
if (!cap_segstate) {
fprintf(stderr, "kvm error: missing PVR setting capability\n");
return -ENOSYS;
}
}
ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
if (ret) {
return ret;
}
sregs.pvr = cenv->spr[SPR_PVR];
return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
}
/* Set up a shared TLB array with KVM */
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_book3e_206_tlb_params params = {};
struct kvm_config_tlb cfg = {};
unsigned int entries = 0;
int ret, i;
if (!kvm_enabled() ||
!kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
return 0;
}
assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
params.tlb_sizes[i] = booke206_tlb_size(env, i);
params.tlb_ways[i] = booke206_tlb_ways(env, i);
entries += params.tlb_sizes[i];
}
assert(entries == env->nb_tlb);
assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
env->tlb_dirty = true;
cfg.array = (uintptr_t)env->tlb.tlbm;
cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
cfg.params = (uintptr_t)&params;
cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
if (ret < 0) {
fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
__func__, strerror(-ret));
return ret;
}
env->kvm_sw_tlb = true;
return 0;
}
#if defined(TARGET_PPC64)
static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
{
int ret;
assert(kvm_state != NULL);
if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
error_setg(errp, "KVM doesn't expose the MMU features it supports");
error_append_hint(errp, "Consider switching to a newer KVM\n");
return;
}
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
if (ret == 0) {
return;
}
error_setg_errno(errp, -ret,
"KVM failed to provide the MMU features it supports");
}
struct ppc_radix_page_info *kvm_get_radix_page_info(void)
{
KVMState *s = KVM_STATE(current_accel());
struct ppc_radix_page_info *radix_page_info;
struct kvm_ppc_rmmu_info rmmu_info;
int i;
if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
return NULL;
}
if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
return NULL;
}
radix_page_info = g_malloc0(sizeof(*radix_page_info));
radix_page_info->count = 0;
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
if (rmmu_info.ap_encodings[i]) {
radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
radix_page_info->count++;
}
}
return radix_page_info;
}
target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
bool radix, bool gtse,
uint64_t proc_tbl)
{
CPUState *cs = CPU(cpu);
int ret;
uint64_t flags = 0;
struct kvm_ppc_mmuv3_cfg cfg = {
.process_table = proc_tbl,
};
if (radix) {
flags |= KVM_PPC_MMUV3_RADIX;
}
if (gtse) {
flags |= KVM_PPC_MMUV3_GTSE;
}
cfg.flags = flags;
ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
switch (ret) {
case 0:
return H_SUCCESS;
case -EINVAL:
return H_PARAMETER;
case -ENODEV:
return H_NOT_AVAILABLE;
default:
return H_HARDWARE;
}
}
bool kvmppc_hpt_needs_host_contiguous_pages(void)
{
static struct kvm_ppc_smmu_info smmu_info;
if (!kvm_enabled()) {
return false;
}
kvm_get_smmu_info(&smmu_info, &error_fatal);
return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
}
void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
{
struct kvm_ppc_smmu_info smmu_info;
int iq, ik, jq, jk;
Error *local_err = NULL;
/* For now, we only have anything to check on hash64 MMUs */
if (!cpu->hash64_opts || !kvm_enabled()) {
return;
}
kvm_get_smmu_info(&smmu_info, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
&& !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
error_setg(errp,
"KVM does not support 1TiB segments which guest expects");
return;
}
if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
smmu_info.slb_size, cpu->hash64_opts->slb_size);
return;
}
/*
* Verify that every pagesize supported by the cpu model is
* supported by KVM with the same encodings
*/
for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
struct kvm_ppc_one_seg_page_size *ksps;
for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
break;
}
}
if (ik >= ARRAY_SIZE(smmu_info.sps)) {
error_setg(errp, "KVM doesn't support for base page shift %u",
qsps->page_shift);
return;
}
ksps = &smmu_info.sps[ik];
if (ksps->slb_enc != qsps->slb_enc) {
error_setg(errp,
"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
return;
}
for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
break;
}
}
if (jk >= ARRAY_SIZE(ksps->enc)) {
error_setg(errp, "KVM doesn't support page shift %u/%u",
qsps->enc[jq].page_shift, qsps->page_shift);
return;
}
if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
error_setg(errp,
"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
qsps->page_shift, qsps->enc[jq].pte_enc);
return;
}
}
}
if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
/*
* Mostly what guest pagesizes we can use are related to the
* host pages used to map guest RAM, which is handled in the
* platform code. Cache-Inhibited largepages (64k) however are
* used for I/O, so if they're mapped to the host at all it
* will be a normal mapping, not a special hugepage one used
* for RAM.
*/
if (qemu_real_host_page_size < 0x10000) {
error_setg(errp,
"KVM can't supply 64kiB CI pages, which guest expects");
}
}
}
#endif /* !defined (TARGET_PPC64) */
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return POWERPC_CPU(cpu)->vcpu_id;
}
/*
* e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
* only 1 watchpoint, so array size of 4 is sufficient for now.
*/
#define MAX_HW_BKPTS 4
static struct HWBreakpoint {
target_ulong addr;
int type;
} hw_debug_points[MAX_HW_BKPTS];
static CPUWatchpoint hw_watchpoint;
/* Default there is no breakpoint and watchpoint supported */
static int max_hw_breakpoint;
static int max_hw_watchpoint;
static int nb_hw_breakpoint;
static int nb_hw_watchpoint;
static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
{
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
max_hw_breakpoint = 2;
max_hw_watchpoint = 2;
}
if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
fprintf(stderr, "Error initializing h/w breakpoints\n");
return;
}
}
int kvm_arch_init_vcpu(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *cenv = &cpu->env;
int ret;
/* Synchronize sregs with kvm */
ret = kvm_arch_sync_sregs(cpu);
if (ret) {
if (ret == -EINVAL) {
error_report("Register sync failed... If you're using kvm-hv.ko,"
" only \"-cpu host\" is possible");
}
return ret;
}
switch (cenv->mmu_model) {
case POWERPC_MMU_BOOKE206:
/* This target supports access to KVM's guest TLB */
ret = kvm_booke206_tlb_init(cpu);
break;
case POWERPC_MMU_2_07:
if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
/*
* KVM-HV has transactional memory on POWER8 also without
* the KVM_CAP_PPC_HTM extension, so enable it here
* instead as long as it's available to userspace on the
* host.
*/
if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
cap_htm = true;
}
}
break;
default:
break;
}
kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
kvmppc_hw_debug_points_init(cenv);
return ret;
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_dirty_tlb dirty_tlb;
unsigned char *bitmap;
int ret;
if (!env->kvm_sw_tlb) {
return;
}
bitmap = g_malloc((env->nb_tlb + 7) / 8);
memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
dirty_tlb.bitmap = (uintptr_t)bitmap;
dirty_tlb.num_dirty = env->nb_tlb;
ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
if (ret) {
fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
__func__, strerror(-ret));
}
g_free(bitmap);
}
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
union {
uint32_t u32;
uint64_t u64;
} val;
struct kvm_one_reg reg = {
.id = id,
.addr = (uintptr_t) &val,
};
int ret;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
trace_kvm_failed_spr_get(spr, strerror(errno));
} else {
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
env->spr[spr] = val.u32;
break;
case KVM_REG_SIZE_U64:
env->spr[spr] = val.u64;
break;
default:
/* Don't handle this size yet */
abort();
}
}
}
static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
union {
uint32_t u32;
uint64_t u64;
} val;
struct kvm_one_reg reg = {
.id = id,
.addr = (uintptr_t) &val,
};
int ret;
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
val.u32 = env->spr[spr];
break;
case KVM_REG_SIZE_U64:
val.u64 = env->spr[spr];
break;
default:
/* Don't handle this size yet */
abort();
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret != 0) {
trace_kvm_failed_spr_set(spr, strerror(errno));
}
}
static int kvm_put_fp(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_one_reg reg;
int i;
int ret;
if (env->insns_flags & PPC_FLOAT) {
uint64_t fpscr = env->fpscr;
bool vsx = !!(env->insns_flags2 & PPC2_VSX);
reg.id = KVM_REG_PPC_FPSCR;
reg.addr = (uintptr_t)&fpscr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fpscr_set(strerror(errno));
return ret;
}
for (i = 0; i < 32; i++) {
uint64_t vsr[2];
uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
#ifdef HOST_WORDS_BIGENDIAN
vsr[0] = float64_val(*fpr);
vsr[1] = *vsrl;
#else
vsr[0] = *vsrl;
vsr[1] = float64_val(*fpr);
#endif
reg.addr = (uintptr_t) &vsr;
reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
strerror(errno));
return ret;
}
}
}
if (env->insns_flags & PPC_ALTIVEC) {
reg.id = KVM_REG_PPC_VSCR;
reg.addr = (uintptr_t)&env->vscr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vscr_set(strerror(errno));
return ret;
}
for (i = 0; i < 32; i++) {
reg.id = KVM_REG_PPC_VR(i);
reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vr_set(i, strerror(errno));
return ret;
}
}
}
return 0;
}
static int kvm_get_fp(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_one_reg reg;
int i;
int ret;
if (env->insns_flags & PPC_FLOAT) {
uint64_t fpscr;
bool vsx = !!(env->insns_flags2 & PPC2_VSX);
reg.id = KVM_REG_PPC_FPSCR;
reg.addr = (uintptr_t)&fpscr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fpscr_get(strerror(errno));
return ret;
} else {
env->fpscr = fpscr;
}
for (i = 0; i < 32; i++) {
uint64_t vsr[2];
uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
reg.addr = (uintptr_t) &vsr;
reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
strerror(errno));
return ret;
} else {
#ifdef HOST_WORDS_BIGENDIAN
*fpr = vsr[0];
if (vsx) {
*vsrl = vsr[1];
}
#else
*fpr = vsr[1];
if (vsx) {
*vsrl = vsr[0];
}
#endif
}
}
}
if (env->insns_flags & PPC_ALTIVEC) {
reg.id = KVM_REG_PPC_VSCR;
reg.addr = (uintptr_t)&env->vscr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vscr_get(strerror(errno));
return ret;
}
for (i = 0; i < 32; i++) {
reg.id = KVM_REG_PPC_VR(i);
reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vr_get(i, strerror(errno));
return ret;
}
}
}
return 0;
}
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
struct kvm_one_reg reg;
int ret;
reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vpa_addr_get(strerror(errno));
return ret;
}
assert((uintptr_t)&spapr_cpu->slb_shadow_size
== ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
reg.id = KVM_REG_PPC_VPA_SLB;
reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_slb_get(strerror(errno));
return ret;
}
assert((uintptr_t)&spapr_cpu->dtl_size
== ((uintptr_t)&spapr_cpu->dtl_addr + 8));
reg.id = KVM_REG_PPC_VPA_DTL;
reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_dtl_get(strerror(errno));
return ret;
}
return 0;
}
static int kvm_put_vpa(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
struct kvm_one_reg reg;
int ret;
/*
* SLB shadow or DTL can't be registered unless a master VPA is
* registered. That means when restoring state, if a VPA *is*
* registered, we need to set that up first. If not, we need to
* deregister the others before deregistering the master VPA
*/
assert(spapr_cpu->vpa_addr
|| !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
if (spapr_cpu->vpa_addr) {
reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vpa_addr_set(strerror(errno));
return ret;
}
}
assert((uintptr_t)&spapr_cpu->slb_shadow_size
== ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
reg.id = KVM_REG_PPC_VPA_SLB;
reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_slb_set(strerror(errno));
return ret;
}
assert((uintptr_t)&spapr_cpu->dtl_size
== ((uintptr_t)&spapr_cpu->dtl_addr + 8));
reg.id = KVM_REG_PPC_VPA_DTL;
reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_dtl_set(strerror(errno));
return ret;
}
if (!spapr_cpu->vpa_addr) {
reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_null_vpa_addr_set(strerror(errno));
return ret;
}
}
return 0;
}
#endif /* TARGET_PPC64 */
int kvmppc_put_books_sregs(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
struct kvm_sregs sregs;
int i;
sregs.pvr = env->spr[SPR_PVR];
if (cpu->vhyp) {
PPCVirtualHypervisorClass *vhc =
PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
} else {
sregs.u.s.sdr1 = env->spr[SPR_SDR1];
}
/* Sync SLB */
#ifdef TARGET_PPC64
for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
if (env->slb[i].esid & SLB_ESID_V) {
sregs.u.s.ppc64.slb[i].slbe |= i;
}
sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
}
#endif
/* Sync SRs */
for (i = 0; i < 16; i++) {
sregs.u.s.ppc32.sr[i] = env->sr[i];
}
/* Sync BATs */
for (i = 0; i < 8; i++) {
/* Beware. We have to swap upper and lower bits here */
sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
| env->DBAT[1][i];
sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
| env->IBAT[1][i];
}
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_regs regs;
int ret;
int i;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
regs.ctr = env->ctr;
regs.lr = env->lr;
regs.xer = cpu_read_xer(env);
regs.msr = env->msr;
regs.pc = env->nip;
regs.srr0 = env->spr[SPR_SRR0];
regs.srr1 = env->spr[SPR_SRR1];
regs.sprg0 = env->spr[SPR_SPRG0];
regs.sprg1 = env->spr[SPR_SPRG1];
regs.sprg2 = env->spr[SPR_SPRG2];
regs.sprg3 = env->spr[SPR_SPRG3];
regs.sprg4 = env->spr[SPR_SPRG4];
regs.sprg5 = env->spr[SPR_SPRG5];
regs.sprg6 = env->spr[SPR_SPRG6];
regs.sprg7 = env->spr[SPR_SPRG7];
regs.pid = env->spr[SPR_BOOKE_PID];
for (i = 0; i < 32; i++) {
regs.gpr[i] = env->gpr[i];
}
regs.cr = 0;
for (i = 0; i < 8; i++) {
regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
kvm_put_fp(cs);
if (env->tlb_dirty) {
kvm_sw_tlb_put(cpu);
env->tlb_dirty = false;
}
if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
ret = kvmppc_put_books_sregs(cpu);
if (ret < 0) {
return ret;
}
}
if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
}
if (cap_one_reg) {
int i;
/*
* We deliberately ignore errors here, for kernels which have
* the ONE_REG calls, but don't support the specific
* registers, there's a reasonable chance things will still
* work, at least until we try to migrate.
*/
for (i = 0; i < 1024; i++) {
uint64_t id = env->spr_cb[i].one_reg_id;
if (id != 0) {
kvm_put_one_spr(cs, id, i);
}
}
#ifdef TARGET_PPC64
if (msr_ts) {
for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
}
for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
}
kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
}
if (cap_papr) {
if (kvm_put_vpa(cs) < 0) {
trace_kvm_failed_put_vpa();
}
}
kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
if (level > KVM_PUT_RUNTIME_STATE) {
kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
}
#endif /* TARGET_PPC64 */
}
return ret;
}
static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
{
env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
}
static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
struct kvm_sregs sregs;
int ret;
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
if (sregs.u.e.features & KVM_SREGS_E_BASE) {
env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
env->spr[SPR_DECR] = sregs.u.e.dec;
env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
}
if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
}
if (sregs.u.e.features & KVM_SREGS_E_64) {
env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
}
if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
}
if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
if (sregs.u.e.features & KVM_SREGS_E_SPE) {
env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
}
if (sregs.u.e.features & KVM_SREGS_E_PM) {
env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
}
if (sregs.u.e.features & KVM_SREGS_E_PC) {
env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
}
}
if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
}
if (sregs.u.e.features & KVM_SREGS_EXP) {
env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
}
if (sregs.u.e.features & KVM_SREGS_E_PD) {
env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
}
if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
}
}
return 0;
}
static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
struct kvm_sregs sregs;
int ret;
int i;
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
if (!cpu->vhyp) {
ppc_store_sdr1(env, sregs.u.s.sdr1);
}
/* Sync SLB */
#ifdef TARGET_PPC64
/*
* The packed SLB array we get from KVM_GET_SREGS only contains
* information about valid entries. So we flush our internal copy
* to get rid of stale ones, then put all valid SLB entries back
* in.
*/
memset(env->slb, 0, sizeof(env->slb));
for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
/*
* Only restore valid entries
*/
if (rb & SLB_ESID_V) {
ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
}
}
#endif
/* Sync SRs */
for (i = 0; i < 16; i++) {
env->sr[i] = sregs.u.s.ppc32.sr[i];
}
/* Sync BATs */
for (i = 0; i < 8; i++) {
env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_regs regs;
uint32_t cr;
int i, ret;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
cr = regs.cr;
for (i = 7; i >= 0; i--) {
env->crf[i] = cr & 15;
cr >>= 4;
}
env->ctr = regs.ctr;
env->lr = regs.lr;
cpu_write_xer(env, regs.xer);
env->msr = regs.msr;
env->nip = regs.pc;
env->spr[SPR_SRR0] = regs.srr0;
env->spr[SPR_SRR1] = regs.srr1;
env->spr[SPR_SPRG0] = regs.sprg0;
env->spr[SPR_SPRG1] = regs.sprg1;
env->spr[SPR_SPRG2] = regs.sprg2;
env->spr[SPR_SPRG3] = regs.sprg3;
env->spr[SPR_SPRG4] = regs.sprg4;
env->spr[SPR_SPRG5] = regs.sprg5;
env->spr[SPR_SPRG6] = regs.sprg6;
env->spr[SPR_SPRG7] = regs.sprg7;
env->spr[SPR_BOOKE_PID] = regs.pid;
for (i = 0; i < 32; i++) {
env->gpr[i] = regs.gpr[i];
}
kvm_get_fp(cs);
if (cap_booke_sregs) {
ret = kvmppc_get_booke_sregs(cpu);
if (ret < 0) {
return ret;
}
}
if (cap_segstate) {
ret = kvmppc_get_books_sregs(cpu);
if (ret < 0) {
return ret;
}
}
if (cap_hior) {
kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
}
if (cap_one_reg) {
int i;
/*
* We deliberately ignore errors here, for kernels which have
* the ONE_REG calls, but don't support the specific
* registers, there's a reasonable chance things will still
* work, at least until we try to migrate.
*/
for (i = 0; i < 1024; i++) {
uint64_t id = env->spr_cb[i].one_reg_id;
if (id != 0) {
kvm_get_one_spr(cs, id, i);
}
}
#ifdef TARGET_PPC64
if (msr_ts) {
for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
}
for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
}
kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
}
if (cap_papr) {
if (kvm_get_vpa(cs) < 0) {
trace_kvm_failed_get_vpa();
}
}
kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
#endif
}
return 0;
}
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
{
unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
if (irq != PPC_INTERRUPT_EXT) {
return 0;
}
if (!kvm_enabled() || !cap_interrupt_unset) {
return 0;
}
kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
return 0;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
return;
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
return MEMTXATTRS_UNSPECIFIED;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
static int kvmppc_handle_halt(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
cs->halted = 1;
cs->exception_index = EXCP_HLT;
}
return 0;
}
/* map dcr access to existing qemu dcr emulation */
static int kvmppc_handle_dcr_read(CPUPPCState *env,
uint32_t dcrn, uint32_t *data)
{
if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
}
return 0;
}
static int kvmppc_handle_dcr_write(CPUPPCState *env,
uint32_t dcrn, uint32_t data)
{
if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
}
return 0;
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
/* Mixed endian case is not handled */
uint32_t sc = debug_inst_opcode;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sizeof(sc), 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint32_t sc;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
sc != debug_inst_opcode ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sizeof(sc), 1)) {
return -EINVAL;
}
return 0;
}
static int find_hw_breakpoint(target_ulong addr, int type)
{
int n;
assert((nb_hw_breakpoint + nb_hw_watchpoint)
<= ARRAY_SIZE(hw_debug_points));
for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
if (hw_debug_points[n].addr == addr &&
hw_debug_points[n].type == type) {
return n;
}
}
return -1;
}
static int find_hw_watchpoint(target_ulong addr, int *flag)
{
int n;
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
if (n >= 0) {
*flag = BP_MEM_ACCESS;
return n;
}
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
if (n >= 0) {
*flag = BP_MEM_WRITE;
return n;
}
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
if (n >= 0) {
*flag = BP_MEM_READ;
return n;
}
return -1;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
return -ENOBUFS;
}
hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
switch (type) {
case GDB_BREAKPOINT_HW:
if (nb_hw_breakpoint >= max_hw_breakpoint) {
return -ENOBUFS;
}
if (find_hw_breakpoint(addr, type) >= 0) {
return -EEXIST;
}
nb_hw_breakpoint++;
break;
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_ACCESS:
if (nb_hw_watchpoint >= max_hw_watchpoint) {
return -ENOBUFS;
}
if (find_hw_breakpoint(addr, type) >= 0) {
return -EEXIST;
}
nb_hw_watchpoint++;
break;
default:
return -ENOSYS;
}
return 0;
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
int n;
n = find_hw_breakpoint(addr, type);
if (n < 0) {
return -ENOENT;
}
switch (type) {
case GDB_BREAKPOINT_HW:
nb_hw_breakpoint--;
break;
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_ACCESS:
nb_hw_watchpoint--;
break;
default:
return -ENOSYS;
}
hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
return 0;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
nb_hw_breakpoint = nb_hw_watchpoint = 0;
}
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
int n;
/* Software Breakpoint updates */
if (kvm_sw_breakpoints_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
assert((nb_hw_breakpoint + nb_hw_watchpoint)
<= ARRAY_SIZE(hw_debug_points));
assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
switch (hw_debug_points[n].type) {
case GDB_BREAKPOINT_HW:
dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
break;
case GDB_WATCHPOINT_WRITE:
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
break;
case GDB_WATCHPOINT_READ:
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
break;
case GDB_WATCHPOINT_ACCESS:
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
KVMPPC_DEBUG_WATCH_READ;
break;
default:
cpu_abort(cs, "Unsupported breakpoint type\n");
}
dbg->arch.bp[n].addr = hw_debug_points[n].addr;
}
}
}
static int kvm_handle_hw_breakpoint(CPUState *cs,
struct kvm_debug_exit_arch *arch_info)
{
int handle = DEBUG_RETURN_GUEST;
int n;
int flag = 0;
if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
if (n >= 0) {
handle = DEBUG_RETURN_GDB;
}
} else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
KVMPPC_DEBUG_WATCH_WRITE)) {
n = find_hw_watchpoint(arch_info->address, &flag);
if (n >= 0) {
handle = DEBUG_RETURN_GDB;
cs->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_debug_points[n].addr;
hw_watchpoint.flags = flag;
}
}
}
return handle;
}
static int kvm_handle_singlestep(void)
{
return DEBUG_RETURN_GDB;
}
static int kvm_handle_sw_breakpoint(void)
{
return DEBUG_RETURN_GDB;
}
static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
if (cs->singlestep_enabled) {
return kvm_handle_singlestep();
}
if (arch_info->status) {
return kvm_handle_hw_breakpoint(cs, arch_info);
}
if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
return kvm_handle_sw_breakpoint();
}
/*
* QEMU is not able to handle debug exception, so inject
* program exception to guest;
* Yes program exception NOT debug exception !!
* When QEMU is using debug resources then debug exception must
* be always set. To achieve this we set MSR_DE and also set
* MSRP_DEP so guest cannot change MSR_DE.
* When emulating debug resource for guest we want guest
* to control MSR_DE (enable/disable debug interrupt on need).
* Supporting both configurations are NOT possible.
* So the result is that we cannot share debug resources
* between QEMU and Guest on BOOKE architecture.
* In the current design QEMU gets the priority over guest,
* this means that if QEMU is using debug resources then guest
* cannot use them;
* For software breakpoint QEMU uses a privileged instruction;
* So there cannot be any reason that we are here for guest
* set debug exception, only possibility is guest executed a
* privileged / illegal instruction and that's why we are
* injecting a program interrupt.
*/
cpu_synchronize_state(cs);
/*
* env->nip is PC, so increment this by 4 to use
* ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
*/
env->nip += 4;
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_INVAL;
ppc_cpu_do_interrupt(cs);
return DEBUG_RETURN_GUEST;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int ret;
qemu_mutex_lock_iothread();
switch (run->exit_reason) {
case KVM_EXIT_DCR:
if (run->dcr.is_write) {
trace_kvm_handle_dcr_write();
ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
} else {
trace_kvm_handle_dcr_read();
ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
}
break;
case KVM_EXIT_HLT:
trace_kvm_handle_halt();
ret = kvmppc_handle_halt(cpu);
break;
#if defined(TARGET_PPC64)
case KVM_EXIT_PAPR_HCALL:
trace_kvm_handle_papr_hcall();
run->papr_hcall.ret = spapr_hypercall(cpu,
run->papr_hcall.nr,
run->papr_hcall.args);
ret = 0;
break;
#endif
case KVM_EXIT_EPR:
trace_kvm_handle_epr();
run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
ret = 0;
break;
case KVM_EXIT_WATCHDOG:
trace_kvm_handle_watchdog_expiry();
watchdog_perform_action();
ret = 0;
break;
case KVM_EXIT_DEBUG:
trace_kvm_handle_debug_exception();
if (kvm_handle_debug(cpu, run)) {
ret = EXCP_DEBUG;
break;
}
/* re-enter, this exception was guest-internal */
ret = 0;
break;
#if defined(TARGET_PPC64)
case KVM_EXIT_NMI:
trace_kvm_handle_nmi_exception();
ret = kvm_handle_nmi(cpu, run);
break;
#endif
default:
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
ret = -1;
break;
}
qemu_mutex_unlock_iothread();
return ret;
}
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
CPUState *cs = CPU(cpu);
uint32_t bits = tsr_bits;
struct kvm_one_reg reg = {
.id = KVM_REG_PPC_OR_TSR,
.addr = (uintptr_t) &bits,
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
CPUState *cs = CPU(cpu);
uint32_t bits = tsr_bits;
struct kvm_one_reg reg = {
.id = KVM_REG_PPC_CLEAR_TSR,
.addr = (uintptr_t) &bits,
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
int kvmppc_set_tcr(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
uint32_t tcr = env->spr[SPR_BOOKE_TCR];
struct kvm_one_reg reg = {
.id = KVM_REG_PPC_TCR,
.addr = (uintptr_t) &tcr,
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
int ret;
if (!kvm_enabled()) {
return -1;
}
if (!cap_ppc_watchdog) {
printf("warning: KVM does not support watchdog");
return -1;
}
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
if (ret < 0) {
fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
__func__, strerror(-ret));
return ret;
}
return ret;
}
static int read_cpuinfo(const char *field, char *value, int len)
{
FILE *f;
int ret = -1;
int field_len = strlen(field);
char line[512];
f = fopen("/proc/cpuinfo", "r");
if (!f) {
return -1;
}
do {
if (!fgets(line, sizeof(line), f)) {
break;
}
if (!strncmp(line, field, field_len)) {
pstrcpy(value, len, line);
ret = 0;
break;
}
} while (*line);
fclose(f);
return ret;
}
static uint32_t kvmppc_get_tbfreq_procfs(void)
{
char line[512];
char *ns;
uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
uint32_t tbfreq_procfs;
if (read_cpuinfo("timebase", line, sizeof(line))) {
return tbfreq_fallback;
}
ns = strchr(line, ':');
if (!ns) {
return tbfreq_fallback;
}
tbfreq_procfs = atoi(++ns);
/* 0 is certainly not acceptable by the guest, return fallback value */
return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
}
uint32_t kvmppc_get_tbfreq(void)
{
static uint32_t cached_tbfreq;
if (!cached_tbfreq) {
cached_tbfreq = kvmppc_get_tbfreq_procfs();
}
return cached_tbfreq;
}
bool kvmppc_get_host_serial(char **value)
{
return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
NULL);
}
bool kvmppc_get_host_model(char **value)
{
return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
}
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
struct dirent *dirp;
DIR *dp;
dp = opendir(PROC_DEVTREE_CPU);
if (!dp) {
printf("Can't open directory " PROC_DEVTREE_CPU "\n");
return -1;
}
buf[0] = '\0';
while ((dirp = readdir(dp)) != NULL) {
FILE *f;
snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
dirp->d_name);
f = fopen(buf, "r");
if (f) {
snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
fclose(f);
break;
}
buf[0] = '\0';
}
closedir(dp);
if (buf[0] == '\0') {
printf("Unknown host!\n");
return -1;
}
return 0;
}
static uint64_t kvmppc_read_int_dt(const char *filename)
{
union {
uint32_t v32;
uint64_t v64;
} u;
FILE *f;
int len;
f = fopen(filename, "rb");
if (!f) {
return -1;
}
len = fread(&u, 1, sizeof(u), f);
fclose(f);
switch (len) {
case 4:
/* property is a 32-bit quantity */
return be32_to_cpu(u.v32);
case 8:
return be64_to_cpu(u.v64);
}
return 0;
}
/*
* Read a CPU node property from the host device tree that's a single
* integer (32-bit or 64-bit). Returns 0 if anything goes wrong
* (can't find or open the property, or doesn't understand the format)
*/
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
{
char buf[PATH_MAX], *tmp;
uint64_t val;
if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
return -1;
}
tmp = g_strdup_printf("%s/%s", buf, propname);
val = kvmppc_read_int_dt(tmp);
g_free(tmp);
return val;
}
uint64_t kvmppc_get_clockfreq(void)
{
return kvmppc_read_int_cpu_dt("clock-frequency");
}
static int kvmppc_get_dec_bits(void)
{
int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
if (nr_bits > 0) {
return nr_bits;
}
return 0;
}
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
{
CPUState *cs = env_cpu(env);
if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
!kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
return 0;
}
return 1;
}
int kvmppc_get_hasidle(CPUPPCState *env)
{
struct kvm_ppc_pvinfo pvinfo;
if (!kvmppc_get_pvinfo(env, &pvinfo) &&
(pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
return 1;
}
return 0;
}
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
{
uint32_t *hc = (uint32_t *)buf;
struct kvm_ppc_pvinfo pvinfo;
if (!kvmppc_get_pvinfo(env, &pvinfo)) {
memcpy(buf, pvinfo.hcall, buf_len);
return 0;
}
/*
* Fallback to always fail hypercalls regardless of endianness:
*
* tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
* li r3, -1
* b .+8 (becomes nop in wrong endian)
* bswap32(li r3, -1)
*/
hc[0] = cpu_to_be32(0x08000048);
hc[1] = cpu_to_be32(0x3860ffff);
hc[2] = cpu_to_be32(0x48000008);
hc[3] = cpu_to_be32(bswap32(0x3860ffff));
return 1;
}
static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
{
return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
}
void kvmppc_enable_logical_ci_hcalls(void)
{
/*
* FIXME: it would be nice if we could detect the cases where
* we're using a device which requires the in kernel
* implementation of these hcalls, but the kernel lacks them and
* produce a warning.
*/
kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
}
void kvmppc_enable_set_mode_hcall(void)
{
kvmppc_enable_hcall(kvm_state, H_SET_MODE);
}
void kvmppc_enable_clear_ref_mod_hcalls(void)
{
kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
}
void kvmppc_enable_h_page_init(void)
{
kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
}
void kvmppc_set_papr(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
int ret;
if (!kvm_enabled()) {
return;
}
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
if (ret) {
error_report("This vCPU type or KVM version does not support PAPR");
exit(1);
}
/*
* Update the capability flag so we sync the right information
* with kvm
*/
cap_papr = 1;
}
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
{
return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
}
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
CPUState *cs = CPU(cpu);
int ret;
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
if (ret && mpic_proxy) {
error_report("This KVM version does not support EPR");
exit(1);
}
}
bool kvmppc_get_fwnmi(void)
{
return cap_fwnmi;
}
int kvmppc_set_fwnmi(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
}
int kvmppc_smt_threads(void)
{
return cap_ppc_smt ? cap_ppc_smt : 1;
}
int kvmppc_set_smt_threads(int smt)
{
int ret;
ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
if (!ret) {
cap_ppc_smt = smt;
}
return ret;
}
void kvmppc_error_append_smt_possible_hint(Error *const *errp)
{
int i;
GString *g;
char *s;
assert(kvm_enabled());
if (cap_ppc_smt_possible) {
g = g_string_new("Available VSMT modes:");
for (i = 63; i >= 0; i--) {
if ((1UL << i) & cap_ppc_smt_possible) {
g_string_append_printf(g, " %lu", (1UL << i));
}
}
s = g_string_free(g, false);
error_append_hint(errp, "%s.\n", s);
g_free(s);
} else {
error_append_hint(errp,
"This KVM seems to be too old to support VSMT.\n");
}
}
#ifdef TARGET_PPC64
uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
{
struct kvm_ppc_smmu_info info;
long rampagesize, best_page_shift;
int i;
/*
* Find the largest hardware supported page size that's less than
* or equal to the (logical) backing page size of guest RAM
*/
kvm_get_smmu_info(&info, &error_fatal);
rampagesize = qemu_minrampagesize();
best_page_shift = 0;
for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
if (!sps->page_shift) {
continue;
}
if ((sps->page_shift > best_page_shift)
&& ((1UL << sps->page_shift) <= rampagesize)) {
best_page_shift = sps->page_shift;
}
}
return 1ULL << (best_page_shift + hash_shift - 7);
}
#endif
bool kvmppc_spapr_use_multitce(void)
{
return cap_spapr_multitce;
}
int kvmppc_spapr_enable_inkernel_multitce(void)
{
int ret;
ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
H_PUT_TCE_INDIRECT, 1);
if (!ret) {
ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
H_STUFF_TCE, 1);
}
return ret;
}
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
uint64_t bus_offset, uint32_t nb_table,
int *pfd, bool need_vfio)
{
long len;
int fd;
void *table;
/*
* Must set fd to -1 so we don't try to munmap when called for
* destroying the table, which the upper layers -will- do
*/
*pfd = -1;
if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
return NULL;
}
if (cap_spapr_tce_64) {
struct kvm_create_spapr_tce_64 args = {
.liobn = liobn,
.page_shift = page_shift,
.offset = bus_offset >> page_shift,
.size = nb_table,
.flags = 0
};
fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
if (fd < 0) {
fprintf(stderr,
"KVM: Failed to create TCE64 table for liobn 0x%x\n",
liobn);
return NULL;
}
} else if (cap_spapr_tce) {
uint64_t window_size = (uint64_t) nb_table << page_shift;
struct kvm_create_spapr_tce args = {
.liobn = liobn,
.window_size = window_size,
};
if ((window_size != args.window_size) || bus_offset) {
return NULL;
}
fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
if (fd < 0) {
fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
liobn);
return NULL;
}
} else {
return NULL;
}
len = nb_table * sizeof(uint64_t);
/* FIXME: round this up to page size */
table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (table == MAP_FAILED) {
fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
liobn);
close(fd);
return NULL;
}
*pfd = fd;
return table;
}
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
{
long len;
if (fd < 0) {
return -1;
}
len = nb_table * sizeof(uint64_t);
if ((munmap(table, len) < 0) ||
(close(fd) < 0)) {
fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
strerror(errno));
/* Leak the table */
}
return 0;
}
int kvmppc_reset_htab(int shift_hint)
{
uint32_t shift = shift_hint;
if (!kvm_enabled()) {
/* Full emulation, tell caller to allocate htab itself */
return 0;
}
if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
int ret;
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
if (ret == -ENOTTY) {
/*
* At least some versions of PR KVM advertise the
* capability, but don't implement the ioctl(). Oops.
* Return 0 so that we allocate the htab in qemu, as is
* correct for PR.
*/
return 0;
} else if (ret < 0) {
return ret;
}
return shift;
}
/*
* We have a kernel that predates the htab reset calls. For PR
* KVM, we need to allocate the htab ourselves, for an HV KVM of
* this era, it has allocated a 16MB fixed size hash table
* already.
*/
if (kvmppc_is_pr(kvm_state)) {
/* PR - tell caller to allocate htab */
return 0;
} else {
/* HV - assume 16MB kernel allocated htab */
return 24;
}
}
static inline uint32_t mfpvr(void)
{
uint32_t pvr;
asm ("mfpvr %0"
: "=r"(pvr));
return pvr;
}
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
if (on) {
*word |= flags;
} else {
*word &= ~flags;
}
}
static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
/* Now fix up the class with information we can query from the host */
pcc->pvr = mfpvr();
alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
alter_insns(&pcc->insns_flags2, PPC2_VSX,
qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
alter_insns(&pcc->insns_flags2, PPC2_DFP,
qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
if (dcache_size != -1) {
pcc->l1_dcache_size = dcache_size;
}
if (icache_size != -1) {
pcc->l1_icache_size = icache_size;
}
#if defined(TARGET_PPC64)
pcc->radix_page_info = kvm_get_radix_page_info();
if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
/*
* POWER9 DD1 has some bugs which make it not really ISA 3.00
* compliant. More importantly, advertising ISA 3.00
* architected mode may prevent guests from activating
* necessary DD1 workarounds.
*/
pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
| PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
}
#endif /* defined(TARGET_PPC64) */
}
bool kvmppc_has_cap_epr(void)
{
return cap_epr;
}
bool kvmppc_has_cap_fixup_hcalls(void)
{
return cap_fixup_hcalls;
}
bool kvmppc_has_cap_htm(void)
{
return cap_htm;
}
bool kvmppc_has_cap_mmu_radix(void)
{
return cap_mmu_radix;
}
bool kvmppc_has_cap_mmu_hash_v3(void)
{
return cap_mmu_hash_v3;
}
static bool kvmppc_power8_host(void)
{
bool ret = false;
#ifdef TARGET_PPC64
{
uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
(base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
(base_pvr == CPU_POWERPC_POWER8_BASE);
}
#endif /* TARGET_PPC64 */
return ret;
}
static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
{
bool l1d_thread_priv_req = !kvmppc_power8_host();
if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
return 2;
} else if ((!l1d_thread_priv_req ||
c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
(c.character & c.character_mask
& (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
return 1;
}
return 0;
}
static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
{
if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
return 2;
} else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
return 1;
}
return 0;
}
static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
{
if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
(~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
(~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
return SPAPR_CAP_FIXED_NA;
} else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
return SPAPR_CAP_WORKAROUND;
} else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
return SPAPR_CAP_FIXED_CCD;
} else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
return SPAPR_CAP_FIXED_IBS;
}
return 0;
}
static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
{
if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
return 1;
}
return 0;
}
bool kvmppc_has_cap_xive(void)
{
return cap_xive;
}
static void kvmppc_get_cpu_characteristics(KVMState *s)
{
struct kvm_ppc_cpu_char c;
int ret;
/* Assume broken */
cap_ppc_safe_cache = 0;
cap_ppc_safe_bounds_check = 0;
cap_ppc_safe_indirect_branch = 0;
ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
if (!ret) {
return;
}
ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
if (ret < 0) {
return;
}
cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
cap_ppc_count_cache_flush_assist =
parse_cap_ppc_count_cache_flush_assist(c);
}
int kvmppc_get_cap_safe_cache(void)
{
return cap_ppc_safe_cache;
}
int kvmppc_get_cap_safe_bounds_check(void)
{
return cap_ppc_safe_bounds_check;
}
int kvmppc_get_cap_safe_indirect_branch(void)
{
return cap_ppc_safe_indirect_branch;
}
int kvmppc_get_cap_count_cache_flush_assist(void)
{
return cap_ppc_count_cache_flush_assist;
}
bool kvmppc_has_cap_nested_kvm_hv(void)
{
return !!cap_ppc_nested_kvm_hv;
}
int kvmppc_set_cap_nested_kvm_hv(int enable)
{
return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
}
bool kvmppc_has_cap_spapr_vfio(void)
{
return cap_spapr_vfio;
}
int kvmppc_get_cap_large_decr(void)
{
return cap_large_decr;
}
int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
{
CPUState *cs = CPU(cpu);
uint64_t lpcr;
kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
/* Do we need to modify the LPCR? */
if (!!(lpcr & LPCR_LD) != !!enable) {
if (enable) {
lpcr |= LPCR_LD;
} else {
lpcr &= ~LPCR_LD;
}
kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
if (!!(lpcr & LPCR_LD) != !!enable) {
return -1;
}
}
return 0;
}
PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
{
uint32_t host_pvr = mfpvr();
PowerPCCPUClass *pvr_pcc;
pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
if (pvr_pcc == NULL) {
pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
}
return pvr_pcc;
}
static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
}
static int kvm_ppc_register_host_cpu_type(void)
{
TypeInfo type_info = {
.name = TYPE_HOST_POWERPC_CPU,
.class_init = kvmppc_host_cpu_class_init,
};
PowerPCCPUClass *pvr_pcc;
ObjectClass *oc;
DeviceClass *dc;
int i;
pvr_pcc = kvm_ppc_get_host_cpu_class();
if (pvr_pcc == NULL) {
return -1;
}
type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
type_register(&type_info);
/* override TCG default cpu type with 'host' cpu model */
object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
false, NULL);
oc = object_class_by_name(type_info.name);
g_assert(oc);
/*
* Update generic CPU family class alias (e.g. on a POWER8NVL host,
* we want "POWER8" to be a "family" alias that points to the current
* host CPU type, too)
*/
dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
char *suffix;
ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
if (suffix) {
*suffix = 0;
}
break;
}
}
return 0;
}
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
struct kvm_rtas_token_args args = {
.token = token,
};
if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
return -ENOENT;
}
strncpy(args.name, function, sizeof(args.name) - 1);
return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
{
struct kvm_get_htab_fd s = {
.flags = write ? KVM_GET_HTAB_WRITE : 0,
.start_index = index,
};
int ret;
if (!cap_htab_fd) {
error_setg(errp, "KVM version doesn't support %s the HPT",
write ? "writing" : "reading");
return -ENOTSUP;
}
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
if (ret < 0) {
error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
write ? "writing" : "reading", write ? "to" : "from",
strerror(errno));
return -errno;
}
return ret;
}
int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
uint8_t buf[bufsize];
ssize_t rc;
do {
rc = read(fd, buf, bufsize);
if (rc < 0) {
fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
strerror(errno));
return rc;
} else if (rc) {
uint8_t *buffer = buf;
ssize_t n = rc;
while (n) {
struct kvm_get_htab_header *head =
(struct kvm_get_htab_header *) buffer;
size_t chunksize = sizeof(*head) +
HASH_PTE_SIZE_64 * head->n_valid;
qemu_put_be32(f, head->index);
qemu_put_be16(f, head->n_valid);
qemu_put_be16(f, head->n_invalid);
qemu_put_buffer(f, (void *)(head + 1),
HASH_PTE_SIZE_64 * head->n_valid);
buffer += chunksize;
n -= chunksize;
}
}
} while ((rc != 0)
&& ((max_ns < 0) ||
((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
return (rc == 0) ? 1 : 0;
}
int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
uint16_t n_valid, uint16_t n_invalid, Error **errp)
{
struct kvm_get_htab_header *buf;
size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
ssize_t rc;
buf = alloca(chunksize);
buf->index = index;
buf->n_valid = n_valid;
buf->n_invalid = n_invalid;
qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
rc = write(fd, buf, chunksize);
if (rc < 0) {
error_setg_errno(errp, errno, "Error writing the KVM hash table");
return -errno;
}
if (rc != chunksize) {
/* We should never get a short write on a single chunk */
error_setg(errp, "Short write while restoring the KVM hash table");
return -ENOSPC;
}
return 0;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
return true;
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
{
int fd, rc;
int i;
fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
i = 0;
while (i < n) {
struct kvm_get_htab_header *hdr;
int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
rc = read(fd, buf, sizeof(buf));
if (rc < 0) {
hw_error("kvmppc_read_hptes: Unable to read HPTEs");
}
hdr = (struct kvm_get_htab_header *)buf;
while ((i < n) && ((char *)hdr < (buf + rc))) {
int invalid = hdr->n_invalid, valid = hdr->n_valid;
if (hdr->index != (ptex + i)) {
hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
" != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
}
if (n - i < valid) {
valid = n - i;
}
memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
i += valid;
if ((n - i) < invalid) {
invalid = n - i;
}
memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
i += invalid;
hdr = (struct kvm_get_htab_header *)
((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
}
}
close(fd);
}
void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
{
int fd, rc;
struct {
struct kvm_get_htab_header hdr;
uint64_t pte0;
uint64_t pte1;
} buf;
fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
buf.hdr.n_valid = 1;
buf.hdr.n_invalid = 0;
buf.hdr.index = ptex;
buf.pte0 = cpu_to_be64(pte0);
buf.pte1 = cpu_to_be64(pte1);
rc = write(fd, &buf, sizeof(buf));
if (rc != sizeof(buf)) {
hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
}
close(fd);
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
return 0;
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
return data & 0xffff;
}
#if defined(TARGET_PPC64)
int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
{
uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
cpu_synchronize_state(CPU(cpu));
spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
return 0;
}
#endif
int kvmppc_enable_hwrng(void)
{
if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
return -1;
}
return kvmppc_enable_hcall(kvm_state, H_RANDOM);
}
void kvmppc_check_papr_resize_hpt(Error **errp)
{
if (!kvm_enabled()) {
return; /* No KVM, we're good */
}
if (cap_resize_hpt) {
return; /* Kernel has explicit support, we're good */
}
/* Otherwise fallback on looking for PR KVM */
if (kvmppc_is_pr(kvm_state)) {
return;
}
error_setg(errp,
"Hash page table resizing not available with this KVM version");
}
int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
{
CPUState *cs = CPU(cpu);
struct kvm_ppc_resize_hpt rhpt = {
.flags = flags,
.shift = shift,
};
if (!cap_resize_hpt) {
return -ENOSYS;
}
return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
}
int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
{
CPUState *cs = CPU(cpu);
struct kvm_ppc_resize_hpt rhpt = {
.flags = flags,
.shift = shift,
};
if (!cap_resize_hpt) {
return -ENOSYS;
}
return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
}
/*
* This is a helper function to detect a post migration scenario
* in which a guest, running as KVM-HV, freezes in cpu_post_load because
* the guest kernel can't handle a PVR value other than the actual host
* PVR in KVM_SET_SREGS, even if pvr_match() returns true.
*
* If we don't have cap_ppc_pvr_compat and we're not running in PR
* (so, we're HV), return true. The workaround itself is done in
* cpu_post_load.
*
* The order here is important: we'll only check for KVM PR as a
* fallback if the guest kernel can't handle the situation itself.
* We need to avoid as much as possible querying the running KVM type
* in QEMU level.
*/
bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
if (!kvm_enabled()) {
return false;
}
if (cap_ppc_pvr_compat) {
return false;
}
return !kvmppc_is_pr(cs->kvm_state);
}
void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
{
CPUState *cs = CPU(cpu);
if (kvm_enabled()) {
kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
}
}
void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
{
CPUState *cs = CPU(cpu);
if (kvm_enabled()) {
kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
}
}
bool kvm_arch_cpu_check_are_resettable(void)
{
return true;
}