mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-30 15:00:34 +00:00
d73415a315
clang's C11 atomic_fetch_*() functions only take a C11 atomic type pointer argument. QEMU uses direct types (int, etc) and this causes a compiler error when a QEMU code calls these functions in a source file that also included <stdatomic.h> via a system header file: $ CC=clang CXX=clang++ ./configure ... && make ../util/async.c:79:17: error: address argument to atomic operation must be a pointer to _Atomic type ('unsigned int *' invalid) Avoid using atomic_*() names in QEMU's atomic.h since that namespace is used by <stdatomic.h>. Prefix QEMU's APIs with 'q' so that atomic.h and <stdatomic.h> can co-exist. I checked /usr/include on my machine and searched GitHub for existing "qatomic_" users but there seem to be none. This patch was generated using: $ git grep -h -o '\<atomic\(64\)\?_[a-z0-9_]\+' include/qemu/atomic.h | \ sort -u >/tmp/changed_identifiers $ for identifier in $(</tmp/changed_identifiers); do sed -i "s%\<$identifier\>%q$identifier%g" \ $(git grep -I -l "\<$identifier\>") done I manually fixed line-wrap issues and misaligned rST tables. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200923105646.47864-1-stefanha@redhat.com>
490 lines
12 KiB
C
490 lines
12 KiB
C
/*
|
|
* Bitmap Module
|
|
*
|
|
* Stolen from linux/src/lib/bitmap.c
|
|
*
|
|
* Copyright (C) 2010 Corentin Chary
|
|
*
|
|
* This source code is licensed under the GNU General Public License,
|
|
* Version 2.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/atomic.h"
|
|
|
|
/*
|
|
* bitmaps provide an array of bits, implemented using an
|
|
* array of unsigned longs. The number of valid bits in a
|
|
* given bitmap does _not_ need to be an exact multiple of
|
|
* BITS_PER_LONG.
|
|
*
|
|
* The possible unused bits in the last, partially used word
|
|
* of a bitmap are 'don't care'. The implementation makes
|
|
* no particular effort to keep them zero. It ensures that
|
|
* their value will not affect the results of any operation.
|
|
* The bitmap operations that return Boolean (bitmap_empty,
|
|
* for example) or scalar (bitmap_weight, for example) results
|
|
* carefully filter out these unused bits from impacting their
|
|
* results.
|
|
*
|
|
* These operations actually hold to a slightly stronger rule:
|
|
* if you don't input any bitmaps to these ops that have some
|
|
* unused bits set, then they won't output any set unused bits
|
|
* in output bitmaps.
|
|
*
|
|
* The byte ordering of bitmaps is more natural on little
|
|
* endian architectures.
|
|
*/
|
|
|
|
int slow_bitmap_empty(const unsigned long *bitmap, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
if (bits % BITS_PER_LONG) {
|
|
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int slow_bitmap_full(const unsigned long *bitmap, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (~bitmap[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int slow_bitmap_equal(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap1[k] != bitmap2[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
|
|
long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
dst[k] = ~src[k];
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
|
|
}
|
|
}
|
|
|
|
int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
unsigned long result = 0;
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
|
|
}
|
|
return result != 0;
|
|
}
|
|
|
|
void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
dst[k] = bitmap1[k] | bitmap2[k];
|
|
}
|
|
}
|
|
|
|
void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
dst[k] = bitmap1[k] ^ bitmap2[k];
|
|
}
|
|
}
|
|
|
|
int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
unsigned long result = 0;
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
|
|
}
|
|
return result != 0;
|
|
}
|
|
|
|
void bitmap_set(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
while (nr - bits_to_set >= 0) {
|
|
*p |= mask_to_set;
|
|
nr -= bits_to_set;
|
|
bits_to_set = BITS_PER_LONG;
|
|
mask_to_set = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
|
*p |= mask_to_set;
|
|
}
|
|
}
|
|
|
|
void bitmap_set_atomic(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
/* First word */
|
|
if (nr - bits_to_set > 0) {
|
|
qatomic_or(p, mask_to_set);
|
|
nr -= bits_to_set;
|
|
bits_to_set = BITS_PER_LONG;
|
|
mask_to_set = ~0UL;
|
|
p++;
|
|
}
|
|
|
|
/* Full words */
|
|
if (bits_to_set == BITS_PER_LONG) {
|
|
while (nr >= BITS_PER_LONG) {
|
|
*p = ~0UL;
|
|
nr -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Last word */
|
|
if (nr) {
|
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
|
qatomic_or(p, mask_to_set);
|
|
} else {
|
|
/* If we avoided the full barrier in qatomic_or(), issue a
|
|
* barrier to account for the assignments in the while loop.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
void bitmap_clear(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
while (nr - bits_to_clear >= 0) {
|
|
*p &= ~mask_to_clear;
|
|
nr -= bits_to_clear;
|
|
bits_to_clear = BITS_PER_LONG;
|
|
mask_to_clear = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
|
*p &= ~mask_to_clear;
|
|
}
|
|
}
|
|
|
|
bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
|
unsigned long dirty = 0;
|
|
unsigned long old_bits;
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
/* First word */
|
|
if (nr - bits_to_clear > 0) {
|
|
old_bits = qatomic_fetch_and(p, ~mask_to_clear);
|
|
dirty |= old_bits & mask_to_clear;
|
|
nr -= bits_to_clear;
|
|
bits_to_clear = BITS_PER_LONG;
|
|
mask_to_clear = ~0UL;
|
|
p++;
|
|
}
|
|
|
|
/* Full words */
|
|
if (bits_to_clear == BITS_PER_LONG) {
|
|
while (nr >= BITS_PER_LONG) {
|
|
if (*p) {
|
|
old_bits = qatomic_xchg(p, 0);
|
|
dirty |= old_bits;
|
|
}
|
|
nr -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Last word */
|
|
if (nr) {
|
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
|
old_bits = qatomic_fetch_and(p, ~mask_to_clear);
|
|
dirty |= old_bits & mask_to_clear;
|
|
} else {
|
|
if (!dirty) {
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
return dirty != 0;
|
|
}
|
|
|
|
void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src,
|
|
long nr)
|
|
{
|
|
while (nr > 0) {
|
|
*dst = qatomic_xchg(src, 0);
|
|
dst++;
|
|
src++;
|
|
nr -= BITS_PER_LONG;
|
|
}
|
|
}
|
|
|
|
#define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
|
|
|
|
/**
|
|
* bitmap_find_next_zero_area - find a contiguous aligned zero area
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @align_mask: Alignment mask for zero area
|
|
*
|
|
* The @align_mask should be one less than a power of 2; the effect is that
|
|
* the bit offset of all zero areas this function finds is multiples of that
|
|
* power of 2. A @align_mask of 0 means no alignment is required.
|
|
*/
|
|
unsigned long bitmap_find_next_zero_area(unsigned long *map,
|
|
unsigned long size,
|
|
unsigned long start,
|
|
unsigned long nr,
|
|
unsigned long align_mask)
|
|
{
|
|
unsigned long index, end, i;
|
|
again:
|
|
index = find_next_zero_bit(map, size, start);
|
|
|
|
/* Align allocation */
|
|
index = ALIGN_MASK(index, align_mask);
|
|
|
|
end = index + nr;
|
|
if (end > size) {
|
|
return end;
|
|
}
|
|
i = find_next_bit(map, end, index);
|
|
if (i < end) {
|
|
start = i + 1;
|
|
goto again;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int slow_bitmap_intersects(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap1[k] & bitmap2[k]) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
long slow_bitmap_count_one(const unsigned long *bitmap, long nbits)
|
|
{
|
|
long k, lim = nbits / BITS_PER_LONG, result = 0;
|
|
|
|
for (k = 0; k < lim; k++) {
|
|
result += ctpopl(bitmap[k]);
|
|
}
|
|
|
|
if (nbits % BITS_PER_LONG) {
|
|
result += ctpopl(bitmap[k] & BITMAP_LAST_WORD_MASK(nbits));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void bitmap_to_from_le(unsigned long *dst,
|
|
const unsigned long *src, long nbits)
|
|
{
|
|
long len = BITS_TO_LONGS(nbits);
|
|
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
long index;
|
|
|
|
for (index = 0; index < len; index++) {
|
|
# if HOST_LONG_BITS == 64
|
|
dst[index] = bswap64(src[index]);
|
|
# else
|
|
dst[index] = bswap32(src[index]);
|
|
# endif
|
|
}
|
|
#else
|
|
memcpy(dst, src, len * sizeof(unsigned long));
|
|
#endif
|
|
}
|
|
|
|
void bitmap_from_le(unsigned long *dst, const unsigned long *src,
|
|
long nbits)
|
|
{
|
|
bitmap_to_from_le(dst, src, nbits);
|
|
}
|
|
|
|
void bitmap_to_le(unsigned long *dst, const unsigned long *src,
|
|
long nbits)
|
|
{
|
|
bitmap_to_from_le(dst, src, nbits);
|
|
}
|
|
|
|
/*
|
|
* Copy "src" bitmap with a positive offset and put it into the "dst"
|
|
* bitmap. The caller needs to make sure the bitmap size of "src"
|
|
* is bigger than (shift + nbits).
|
|
*/
|
|
void bitmap_copy_with_src_offset(unsigned long *dst, const unsigned long *src,
|
|
unsigned long shift, unsigned long nbits)
|
|
{
|
|
unsigned long left_mask, right_mask, last_mask;
|
|
|
|
/* Proper shift src pointer to the first word to copy from */
|
|
src += BIT_WORD(shift);
|
|
shift %= BITS_PER_LONG;
|
|
|
|
if (!shift) {
|
|
/* Fast path */
|
|
bitmap_copy(dst, src, nbits);
|
|
return;
|
|
}
|
|
|
|
right_mask = (1ul << shift) - 1;
|
|
left_mask = ~right_mask;
|
|
|
|
while (nbits >= BITS_PER_LONG) {
|
|
*dst = (*src & left_mask) >> shift;
|
|
*dst |= (src[1] & right_mask) << (BITS_PER_LONG - shift);
|
|
dst++;
|
|
src++;
|
|
nbits -= BITS_PER_LONG;
|
|
}
|
|
|
|
if (nbits > BITS_PER_LONG - shift) {
|
|
*dst = (*src & left_mask) >> shift;
|
|
nbits -= BITS_PER_LONG - shift;
|
|
last_mask = (1ul << nbits) - 1;
|
|
*dst |= (src[1] & last_mask) << (BITS_PER_LONG - shift);
|
|
} else if (nbits) {
|
|
last_mask = (1ul << nbits) - 1;
|
|
*dst = (*src >> shift) & last_mask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy "src" bitmap into the "dst" bitmap with an offset in the
|
|
* "dst". The caller needs to make sure the bitmap size of "dst" is
|
|
* bigger than (shift + nbits).
|
|
*/
|
|
void bitmap_copy_with_dst_offset(unsigned long *dst, const unsigned long *src,
|
|
unsigned long shift, unsigned long nbits)
|
|
{
|
|
unsigned long left_mask, right_mask, last_mask;
|
|
|
|
/* Proper shift dst pointer to the first word to copy from */
|
|
dst += BIT_WORD(shift);
|
|
shift %= BITS_PER_LONG;
|
|
|
|
if (!shift) {
|
|
/* Fast path */
|
|
bitmap_copy(dst, src, nbits);
|
|
return;
|
|
}
|
|
|
|
right_mask = (1ul << (BITS_PER_LONG - shift)) - 1;
|
|
left_mask = ~right_mask;
|
|
|
|
*dst &= (1ul << shift) - 1;
|
|
while (nbits >= BITS_PER_LONG) {
|
|
*dst |= (*src & right_mask) << shift;
|
|
dst[1] = (*src & left_mask) >> (BITS_PER_LONG - shift);
|
|
dst++;
|
|
src++;
|
|
nbits -= BITS_PER_LONG;
|
|
}
|
|
|
|
if (nbits > BITS_PER_LONG - shift) {
|
|
*dst |= (*src & right_mask) << shift;
|
|
nbits -= BITS_PER_LONG - shift;
|
|
last_mask = ((1ul << nbits) - 1) << (BITS_PER_LONG - shift);
|
|
dst[1] = (*src & last_mask) >> (BITS_PER_LONG - shift);
|
|
} else if (nbits) {
|
|
last_mask = (1ul << nbits) - 1;
|
|
*dst |= (*src & last_mask) << shift;
|
|
}
|
|
}
|