Sam Eiderman 98eb9733f4 vmdk: Add read-only support for seSparse snapshots
Until ESXi 6.5 VMware used the vmfsSparse format for snapshots (VMDK3 in
QEMU).

This format was lacking in the following:

    * Grain directory (L1) and grain table (L2) entries were 32-bit,
      allowing access to only 2TB (slightly less) of data.
    * The grain size (default) was 512 bytes - leading to data
      fragmentation and many grain tables.
    * For space reclamation purposes, it was necessary to find all the
      grains which are not pointed to by any grain table - so a reverse
      mapping of "offset of grain in vmdk" to "grain table" must be
      constructed - which takes large amounts of CPU/RAM.

The format specification can be found in VMware's documentation:
https://www.vmware.com/support/developer/vddk/vmdk_50_technote.pdf

In ESXi 6.5, to support snapshot files larger than 2TB, a new format was
introduced: SESparse (Space Efficient).

This format fixes the above issues:

    * All entries are now 64-bit.
    * The grain size (default) is 4KB.
    * Grain directory and grain tables are now located at the beginning
      of the file.
      + seSparse format reserves space for all grain tables.
      + Grain tables can be addressed using an index.
      + Grains are located in the end of the file and can also be
        addressed with an index.
      - seSparse vmdks of large disks (64TB) have huge preallocated
        headers - mainly due to L2 tables, even for empty snapshots.
    * The header contains a reverse mapping ("backmap") of "offset of
      grain in vmdk" to "grain table" and a bitmap ("free bitmap") which
      specifies for each grain - whether it is allocated or not.
      Using these data structures we can implement space reclamation
      efficiently.
    * Due to the fact that the header now maintains two mappings:
        * The regular one (grain directory & grain tables)
        * A reverse one (backmap and free bitmap)
      These data structures can lose consistency upon crash and result
      in a corrupted VMDK.
      Therefore, a journal is also added to the VMDK and is replayed
      when the VMware reopens the file after a crash.

Since ESXi 6.7 - SESparse is the only snapshot format available.

Unfortunately, VMware does not provide documentation regarding the new
seSparse format.

This commit is based on black-box research of the seSparse format.
Various in-guest block operations and their effect on the snapshot file
were tested.

The only VMware provided source of information (regarding the underlying
implementation) was a log file on the ESXi:

    /var/log/hostd.log

Whenever an seSparse snapshot is created - the log is being populated
with seSparse records.

Relevant log records are of the form:

[...] Const Header:
[...]  constMagic     = 0xcafebabe
[...]  version        = 2.1
[...]  capacity       = 204800
[...]  grainSize      = 8
[...]  grainTableSize = 64
[...]  flags          = 0
[...] Extents:
[...]  Header         : <1 : 1>
[...]  JournalHdr     : <2 : 2>
[...]  Journal        : <2048 : 2048>
[...]  GrainDirectory : <4096 : 2048>
[...]  GrainTables    : <6144 : 2048>
[...]  FreeBitmap     : <8192 : 2048>
[...]  BackMap        : <10240 : 2048>
[...]  Grain          : <12288 : 204800>
[...] Volatile Header:
[...] volatileMagic     = 0xcafecafe
[...] FreeGTNumber      = 0
[...] nextTxnSeqNumber  = 0
[...] replayJournal     = 0

The sizes that are seen in the log file are in sectors.
Extents are of the following format: <offset : size>

This commit is a strict implementation which enforces:
    * magics
    * version number 2.1
    * grain size of 8 sectors  (4KB)
    * grain table size of 64 sectors
    * zero flags
    * extent locations

Additionally, this commit proivdes only a subset of the functionality
offered by seSparse's format:
    * Read-only
    * No journal replay
    * No space reclamation
    * No unmap support

Hence, journal header, journal, free bitmap and backmap extents are
unused, only the "classic" (L1 -> L2 -> data) grain access is
implemented.

However there are several differences in the grain access itself.
Grain directory (L1):
    * Grain directory entries are indexes (not offsets) to grain
      tables.
    * Valid grain directory entries have their highest nibble set to
      0x1.
    * Since grain tables are always located in the beginning of the
      file - the index can fit into 32 bits - so we can use its low
      part if it's valid.
Grain table (L2):
    * Grain table entries are indexes (not offsets) to grains.
    * If the highest nibble of the entry is:
        0x0:
            The grain in not allocated.
            The rest of the bytes are 0.
        0x1:
            The grain is unmapped - guest sees a zero grain.
            The rest of the bits point to the previously mapped grain,
            see 0x3 case.
        0x2:
            The grain is zero.
        0x3:
            The grain is allocated - to get the index calculate:
            ((entry & 0x0fff000000000000) >> 48) |
            ((entry & 0x0000ffffffffffff) << 12)
    * The difference between 0x1 and 0x2 is that 0x1 is an unallocated
      grain which results from the guest using sg_unmap to unmap the
      grain - but the grain itself still exists in the grain extent - a
      space reclamation procedure should delete it.
      Unmapping a zero grain has no effect (0x2 will not change to 0x1)
      but unmapping an unallocated grain will (0x0 to 0x1) - naturally.

In order to implement seSparse some fields had to be changed to support
both 32-bit and 64-bit entry sizes.

Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Reviewed-by: Eyal Moscovici <eyal.moscovici@oracle.com>
Reviewed-by: Arbel Moshe <arbel.moshe@oracle.com>
Signed-off-by: Sam Eiderman <shmuel.eiderman@oracle.com>
Message-id: 20190620091057.47441-4-shmuel.eiderman@oracle.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
2019-06-24 15:53:02 +02:00
2019-06-12 13:20:20 +02:00
2019-03-19 05:13:24 -07:00
2019-05-09 09:58:57 +02:00
2019-06-21 15:40:50 +01:00
2019-06-12 13:20:21 +02:00
2012-09-07 09:02:44 +03:00
2018-12-11 18:35:54 +01:00
2019-06-18 16:41:10 +02:00
2016-02-04 17:41:30 +00:00
2019-06-21 02:29:38 +02:00
2019-06-17 15:35:31 +01:00
2019-06-17 20:36:56 +02:00
2016-02-04 17:41:30 +00:00
2019-05-03 13:03:04 +02:00
2019-06-13 08:50:47 -05:00
2019-06-13 08:50:47 -05:00
2019-05-29 06:30:45 +02:00
2019-06-17 20:36:56 +02:00
2019-04-24 10:12:22 +01:00

         QEMU README
         ===========

QEMU is a generic and open source machine & userspace emulator and
virtualizer.

QEMU is capable of emulating a complete machine in software without any
need for hardware virtualization support. By using dynamic translation,
it achieves very good performance. QEMU can also integrate with the Xen
and KVM hypervisors to provide emulated hardware while allowing the
hypervisor to manage the CPU. With hypervisor support, QEMU can achieve
near native performance for CPUs. When QEMU emulates CPUs directly it is
capable of running operating systems made for one machine (e.g. an ARMv7
board) on a different machine (e.g. an x86_64 PC board).

QEMU is also capable of providing userspace API virtualization for Linux
and BSD kernel interfaces. This allows binaries compiled against one
architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a
different architecture ABI (e.g. the Linux x86_64 ABI). This does not
involve any hardware emulation, simply CPU and syscall emulation.

QEMU aims to fit into a variety of use cases. It can be invoked directly
by users wishing to have full control over its behaviour and settings.
It also aims to facilitate integration into higher level management
layers, by providing a stable command line interface and monitor API.
It is commonly invoked indirectly via the libvirt library when using
open source applications such as oVirt, OpenStack and virt-manager.

QEMU as a whole is released under the GNU General Public License,
version 2. For full licensing details, consult the LICENSE file.


Building
========

QEMU is multi-platform software intended to be buildable on all modern
Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety
of other UNIX targets. The simple steps to build QEMU are:

  mkdir build
  cd build
  ../configure
  make

Additional information can also be found online via the QEMU website:

  https://qemu.org/Hosts/Linux
  https://qemu.org/Hosts/Mac
  https://qemu.org/Hosts/W32


Submitting patches
==================

The QEMU source code is maintained under the GIT version control system.

   git clone https://git.qemu.org/git/qemu.git

When submitting patches, one common approach is to use 'git
format-patch' and/or 'git send-email' to format & send the mail to the
qemu-devel@nongnu.org mailing list. All patches submitted must contain
a 'Signed-off-by' line from the author. Patches should follow the
guidelines set out in the HACKING and CODING_STYLE files.

Additional information on submitting patches can be found online via
the QEMU website

  https://qemu.org/Contribute/SubmitAPatch
  https://qemu.org/Contribute/TrivialPatches

The QEMU website is also maintained under source control.

  git clone https://git.qemu.org/git/qemu-web.git
  https://www.qemu.org/2017/02/04/the-new-qemu-website-is-up/

A 'git-publish' utility was created to make above process less
cumbersome, and is highly recommended for making regular contributions,
or even just for sending consecutive patch series revisions. It also
requires a working 'git send-email' setup, and by default doesn't
automate everything, so you may want to go through the above steps
manually for once.

For installation instructions, please go to

  https://github.com/stefanha/git-publish

The workflow with 'git-publish' is:

  $ git checkout master -b my-feature
  $ # work on new commits, add your 'Signed-off-by' lines to each
  $ git publish

Your patch series will be sent and tagged as my-feature-v1 if you need to refer
back to it in the future.

Sending v2:

  $ git checkout my-feature # same topic branch
  $ # making changes to the commits (using 'git rebase', for example)
  $ git publish

Your patch series will be sent with 'v2' tag in the subject and the git tip
will be tagged as my-feature-v2.

Bug reporting
=============

The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs
found when running code built from QEMU git or upstream released sources
should be reported via:

  https://bugs.launchpad.net/qemu/

If using QEMU via an operating system vendor pre-built binary package, it
is preferable to report bugs to the vendor's own bug tracker first. If
the bug is also known to affect latest upstream code, it can also be
reported via launchpad.

For additional information on bug reporting consult:

  https://qemu.org/Contribute/ReportABug


Contact
=======

The QEMU community can be contacted in a number of ways, with the two
main methods being email and IRC

 - qemu-devel@nongnu.org
   https://lists.nongnu.org/mailman/listinfo/qemu-devel
 - #qemu on irc.oftc.net

Information on additional methods of contacting the community can be
found online via the QEMU website:

  https://qemu.org/Contribute/StartHere

-- End
Description
Original Xbox Emulator for Windows, macOS, and Linux (Active Development)
Readme 652 MiB
Languages
C 82.5%
C++ 7%
Python 3.3%
Dylan 2.8%
Shell 1.5%
Other 2.6%