mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-23 19:49:43 +00:00
972606c4db
extract_common_blockdev_options() uses qemu_opt_get_number() to parse
the bps/iops numbers to uint64_t, then converts to double and stores in
ThrottleConfig. The actual parsing is done by strtoull() in
parse_option_number(). Negative numbers are wrapped to large positive
ones, and stored.
We used to reject negative numbers since 7d81c1413c
, but this regressed
when the option parsing code was changed later. Now fix this again.
This time, define an arbitrary large upper limit (1e15), and check the
values so both negative and impractically big numbers are caught and
reported.
Signed-off-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
442 lines
12 KiB
C
442 lines
12 KiB
C
/*
|
|
* QEMU throttling infrastructure
|
|
*
|
|
* Copyright (C) Nodalink, EURL. 2013-2014
|
|
* Copyright (C) Igalia, S.L. 2015
|
|
*
|
|
* Authors:
|
|
* Benoît Canet <benoit.canet@nodalink.com>
|
|
* Alberto Garcia <berto@igalia.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 or
|
|
* (at your option) version 3 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/throttle.h"
|
|
#include "qemu/timer.h"
|
|
#include "block/aio.h"
|
|
|
|
/* This function make a bucket leak
|
|
*
|
|
* @bkt: the bucket to make leak
|
|
* @delta_ns: the time delta
|
|
*/
|
|
void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
|
|
{
|
|
double leak;
|
|
|
|
/* compute how much to leak */
|
|
leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
|
|
|
|
/* make the bucket leak */
|
|
bkt->level = MAX(bkt->level - leak, 0);
|
|
}
|
|
|
|
/* Calculate the time delta since last leak and make proportionals leaks
|
|
*
|
|
* @now: the current timestamp in ns
|
|
*/
|
|
static void throttle_do_leak(ThrottleState *ts, int64_t now)
|
|
{
|
|
/* compute the time elapsed since the last leak */
|
|
int64_t delta_ns = now - ts->previous_leak;
|
|
int i;
|
|
|
|
ts->previous_leak = now;
|
|
|
|
if (delta_ns <= 0) {
|
|
return;
|
|
}
|
|
|
|
/* make each bucket leak */
|
|
for (i = 0; i < BUCKETS_COUNT; i++) {
|
|
throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
|
|
}
|
|
}
|
|
|
|
/* do the real job of computing the time to wait
|
|
*
|
|
* @limit: the throttling limit
|
|
* @extra: the number of operation to delay
|
|
* @ret: the time to wait in ns
|
|
*/
|
|
static int64_t throttle_do_compute_wait(double limit, double extra)
|
|
{
|
|
double wait = extra * NANOSECONDS_PER_SECOND;
|
|
wait /= limit;
|
|
return wait;
|
|
}
|
|
|
|
/* This function compute the wait time in ns that a leaky bucket should trigger
|
|
*
|
|
* @bkt: the leaky bucket we operate on
|
|
* @ret: the resulting wait time in ns or 0 if the operation can go through
|
|
*/
|
|
int64_t throttle_compute_wait(LeakyBucket *bkt)
|
|
{
|
|
double extra; /* the number of extra units blocking the io */
|
|
|
|
if (!bkt->avg) {
|
|
return 0;
|
|
}
|
|
|
|
extra = bkt->level - bkt->max;
|
|
|
|
if (extra <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
return throttle_do_compute_wait(bkt->avg, extra);
|
|
}
|
|
|
|
/* This function compute the time that must be waited while this IO
|
|
*
|
|
* @is_write: true if the current IO is a write, false if it's a read
|
|
* @ret: time to wait
|
|
*/
|
|
static int64_t throttle_compute_wait_for(ThrottleState *ts,
|
|
bool is_write)
|
|
{
|
|
BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
|
|
THROTTLE_OPS_TOTAL,
|
|
THROTTLE_BPS_READ,
|
|
THROTTLE_OPS_READ},
|
|
{THROTTLE_BPS_TOTAL,
|
|
THROTTLE_OPS_TOTAL,
|
|
THROTTLE_BPS_WRITE,
|
|
THROTTLE_OPS_WRITE}, };
|
|
int64_t wait, max_wait = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
BucketType index = to_check[is_write][i];
|
|
wait = throttle_compute_wait(&ts->cfg.buckets[index]);
|
|
if (wait > max_wait) {
|
|
max_wait = wait;
|
|
}
|
|
}
|
|
|
|
return max_wait;
|
|
}
|
|
|
|
/* compute the timer for this type of operation
|
|
*
|
|
* @is_write: the type of operation
|
|
* @now: the current clock timestamp
|
|
* @next_timestamp: the resulting timer
|
|
* @ret: true if a timer must be set
|
|
*/
|
|
bool throttle_compute_timer(ThrottleState *ts,
|
|
bool is_write,
|
|
int64_t now,
|
|
int64_t *next_timestamp)
|
|
{
|
|
int64_t wait;
|
|
|
|
/* leak proportionally to the time elapsed */
|
|
throttle_do_leak(ts, now);
|
|
|
|
/* compute the wait time if any */
|
|
wait = throttle_compute_wait_for(ts, is_write);
|
|
|
|
/* if the code must wait compute when the next timer should fire */
|
|
if (wait) {
|
|
*next_timestamp = now + wait;
|
|
return true;
|
|
}
|
|
|
|
/* else no need to wait at all */
|
|
*next_timestamp = now;
|
|
return false;
|
|
}
|
|
|
|
/* Add timers to event loop */
|
|
void throttle_timers_attach_aio_context(ThrottleTimers *tt,
|
|
AioContext *new_context)
|
|
{
|
|
tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
|
|
tt->read_timer_cb, tt->timer_opaque);
|
|
tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
|
|
tt->write_timer_cb, tt->timer_opaque);
|
|
}
|
|
|
|
/* To be called first on the ThrottleState */
|
|
void throttle_init(ThrottleState *ts)
|
|
{
|
|
memset(ts, 0, sizeof(ThrottleState));
|
|
}
|
|
|
|
/* To be called first on the ThrottleTimers */
|
|
void throttle_timers_init(ThrottleTimers *tt,
|
|
AioContext *aio_context,
|
|
QEMUClockType clock_type,
|
|
QEMUTimerCB *read_timer_cb,
|
|
QEMUTimerCB *write_timer_cb,
|
|
void *timer_opaque)
|
|
{
|
|
memset(tt, 0, sizeof(ThrottleTimers));
|
|
|
|
tt->clock_type = clock_type;
|
|
tt->read_timer_cb = read_timer_cb;
|
|
tt->write_timer_cb = write_timer_cb;
|
|
tt->timer_opaque = timer_opaque;
|
|
throttle_timers_attach_aio_context(tt, aio_context);
|
|
}
|
|
|
|
/* destroy a timer */
|
|
static void throttle_timer_destroy(QEMUTimer **timer)
|
|
{
|
|
assert(*timer != NULL);
|
|
|
|
timer_del(*timer);
|
|
timer_free(*timer);
|
|
*timer = NULL;
|
|
}
|
|
|
|
/* Remove timers from event loop */
|
|
void throttle_timers_detach_aio_context(ThrottleTimers *tt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
throttle_timer_destroy(&tt->timers[i]);
|
|
}
|
|
}
|
|
|
|
/* To be called last on the ThrottleTimers */
|
|
void throttle_timers_destroy(ThrottleTimers *tt)
|
|
{
|
|
throttle_timers_detach_aio_context(tt);
|
|
}
|
|
|
|
/* is any throttling timer configured */
|
|
bool throttle_timers_are_initialized(ThrottleTimers *tt)
|
|
{
|
|
if (tt->timers[0]) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Does any throttling must be done
|
|
*
|
|
* @cfg: the throttling configuration to inspect
|
|
* @ret: true if throttling must be done else false
|
|
*/
|
|
bool throttle_enabled(ThrottleConfig *cfg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BUCKETS_COUNT; i++) {
|
|
if (cfg->buckets[i].avg > 0) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* return true if any two throttling parameters conflicts
|
|
*
|
|
* @cfg: the throttling configuration to inspect
|
|
* @ret: true if any conflict detected else false
|
|
*/
|
|
bool throttle_conflicting(ThrottleConfig *cfg)
|
|
{
|
|
bool bps_flag, ops_flag;
|
|
bool bps_max_flag, ops_max_flag;
|
|
|
|
bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
|
|
(cfg->buckets[THROTTLE_BPS_READ].avg ||
|
|
cfg->buckets[THROTTLE_BPS_WRITE].avg);
|
|
|
|
ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
|
|
(cfg->buckets[THROTTLE_OPS_READ].avg ||
|
|
cfg->buckets[THROTTLE_OPS_WRITE].avg);
|
|
|
|
bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
|
|
(cfg->buckets[THROTTLE_BPS_READ].max ||
|
|
cfg->buckets[THROTTLE_BPS_WRITE].max);
|
|
|
|
ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
|
|
(cfg->buckets[THROTTLE_OPS_READ].max ||
|
|
cfg->buckets[THROTTLE_OPS_WRITE].max);
|
|
|
|
return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
|
|
}
|
|
|
|
/* check if a throttling configuration is valid
|
|
* @cfg: the throttling configuration to inspect
|
|
* @ret: true if valid else false
|
|
*/
|
|
bool throttle_is_valid(ThrottleConfig *cfg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BUCKETS_COUNT; i++) {
|
|
if (cfg->buckets[i].avg < 0 ||
|
|
cfg->buckets[i].max < 0 ||
|
|
cfg->buckets[i].avg > THROTTLE_VALUE_MAX ||
|
|
cfg->buckets[i].max > THROTTLE_VALUE_MAX) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* check if bps_max/iops_max is used without bps/iops
|
|
* @cfg: the throttling configuration to inspect
|
|
*/
|
|
bool throttle_max_is_missing_limit(ThrottleConfig *cfg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BUCKETS_COUNT; i++) {
|
|
if (cfg->buckets[i].max && !cfg->buckets[i].avg) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* fix bucket parameters */
|
|
static void throttle_fix_bucket(LeakyBucket *bkt)
|
|
{
|
|
double min;
|
|
|
|
/* zero bucket level */
|
|
bkt->level = 0;
|
|
|
|
/* The following is done to cope with the Linux CFQ block scheduler
|
|
* which regroup reads and writes by block of 100ms in the guest.
|
|
* When they are two process one making reads and one making writes cfq
|
|
* make a pattern looking like the following:
|
|
* WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
|
|
* Having a max burst value of 100ms of the average will help smooth the
|
|
* throttling
|
|
*/
|
|
min = bkt->avg / 10;
|
|
if (bkt->avg && !bkt->max) {
|
|
bkt->max = min;
|
|
}
|
|
}
|
|
|
|
/* take care of canceling a timer */
|
|
static void throttle_cancel_timer(QEMUTimer *timer)
|
|
{
|
|
assert(timer != NULL);
|
|
|
|
timer_del(timer);
|
|
}
|
|
|
|
/* Used to configure the throttle
|
|
*
|
|
* @ts: the throttle state we are working on
|
|
* @tt: the throttle timers we use in this aio context
|
|
* @cfg: the config to set
|
|
*/
|
|
void throttle_config(ThrottleState *ts,
|
|
ThrottleTimers *tt,
|
|
ThrottleConfig *cfg)
|
|
{
|
|
int i;
|
|
|
|
ts->cfg = *cfg;
|
|
|
|
for (i = 0; i < BUCKETS_COUNT; i++) {
|
|
throttle_fix_bucket(&ts->cfg.buckets[i]);
|
|
}
|
|
|
|
ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
throttle_cancel_timer(tt->timers[i]);
|
|
}
|
|
}
|
|
|
|
/* used to get config
|
|
*
|
|
* @ts: the throttle state we are working on
|
|
* @cfg: the config to write
|
|
*/
|
|
void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
|
|
{
|
|
*cfg = ts->cfg;
|
|
}
|
|
|
|
|
|
/* Schedule the read or write timer if needed
|
|
*
|
|
* NOTE: this function is not unit tested due to it's usage of timer_mod
|
|
*
|
|
* @tt: the timers structure
|
|
* @is_write: the type of operation (read/write)
|
|
* @ret: true if the timer has been scheduled else false
|
|
*/
|
|
bool throttle_schedule_timer(ThrottleState *ts,
|
|
ThrottleTimers *tt,
|
|
bool is_write)
|
|
{
|
|
int64_t now = qemu_clock_get_ns(tt->clock_type);
|
|
int64_t next_timestamp;
|
|
bool must_wait;
|
|
|
|
must_wait = throttle_compute_timer(ts,
|
|
is_write,
|
|
now,
|
|
&next_timestamp);
|
|
|
|
/* request not throttled */
|
|
if (!must_wait) {
|
|
return false;
|
|
}
|
|
|
|
/* request throttled and timer pending -> do nothing */
|
|
if (timer_pending(tt->timers[is_write])) {
|
|
return true;
|
|
}
|
|
|
|
/* request throttled and timer not pending -> arm timer */
|
|
timer_mod(tt->timers[is_write], next_timestamp);
|
|
return true;
|
|
}
|
|
|
|
/* do the accounting for this operation
|
|
*
|
|
* @is_write: the type of operation (read/write)
|
|
* @size: the size of the operation
|
|
*/
|
|
void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
|
|
{
|
|
double units = 1.0;
|
|
|
|
/* if cfg.op_size is defined and smaller than size we compute unit count */
|
|
if (ts->cfg.op_size && size > ts->cfg.op_size) {
|
|
units = (double) size / ts->cfg.op_size;
|
|
}
|
|
|
|
ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
|
|
ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
|
|
|
|
if (is_write) {
|
|
ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
|
|
ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
|
|
} else {
|
|
ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
|
|
ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
|
|
}
|
|
}
|
|
|