mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 03:59:52 +00:00
9cb4e398c2
The re-factoring of div_floats changed the order of checking meaning an operation like -inf/0 erroneously raises the divbyzero flag. IEEE-754 (2008) specifies this should only occur for operations on finite operands. We fix this by moving the check on the dividend being Inf/0 to before the divisor is zero check. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Message-id: 20180416135442.30606-1-alex.bennee@linaro.org Cc: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> Reviewed-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> Tested-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
7068 lines
244 KiB
C
7068 lines
244 KiB
C
/*
|
|
* QEMU float support
|
|
*
|
|
* The code in this source file is derived from release 2a of the SoftFloat
|
|
* IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
|
|
* some later contributions) are provided under that license, as detailed below.
|
|
* It has subsequently been modified by contributors to the QEMU Project,
|
|
* so some portions are provided under:
|
|
* the SoftFloat-2a license
|
|
* the BSD license
|
|
* GPL-v2-or-later
|
|
*
|
|
* Any future contributions to this file after December 1st 2014 will be
|
|
* taken to be licensed under the Softfloat-2a license unless specifically
|
|
* indicated otherwise.
|
|
*/
|
|
|
|
/*
|
|
===============================================================================
|
|
This C source file is part of the SoftFloat IEC/IEEE Floating-point
|
|
Arithmetic Package, Release 2a.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) they include prominent notice that the work is derivative, and (2) they
|
|
include prominent notice akin to these four paragraphs for those parts of
|
|
this code that are retained.
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
/* BSD licensing:
|
|
* Copyright (c) 2006, Fabrice Bellard
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Portions of this work are licensed under the terms of the GNU GPL,
|
|
* version 2 or later. See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
/* softfloat (and in particular the code in softfloat-specialize.h) is
|
|
* target-dependent and needs the TARGET_* macros.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
/* We only need stdlib for abort() */
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Primitive arithmetic functions, including multi-word arithmetic, and
|
|
| division and square root approximations. (Can be specialized to target if
|
|
| desired.)
|
|
*----------------------------------------------------------------------------*/
|
|
#include "fpu/softfloat-macros.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Functions and definitions to determine: (1) whether tininess for underflow
|
|
| is detected before or after rounding by default, (2) what (if anything)
|
|
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
|
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
|
|
| are propagated from function inputs to output. These details are target-
|
|
| specific.
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-specialize.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the fraction bits of the half-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline uint32_t extractFloat16Frac(float16 a)
|
|
{
|
|
return float16_val(a) & 0x3ff;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the half-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline int extractFloat16Exp(float16 a)
|
|
{
|
|
return (float16_val(a) >> 10) & 0x1f;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline flag extractFloat16Sign(float16 a)
|
|
{
|
|
return float16_val(a)>>15;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the fraction bits of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline uint32_t extractFloat32Frac(float32 a)
|
|
{
|
|
return float32_val(a) & 0x007FFFFF;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline int extractFloat32Exp(float32 a)
|
|
{
|
|
return (float32_val(a) >> 23) & 0xFF;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline flag extractFloat32Sign(float32 a)
|
|
{
|
|
return float32_val(a) >> 31;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the fraction bits of the double-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline uint64_t extractFloat64Frac(float64 a)
|
|
{
|
|
return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the double-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline int extractFloat64Exp(float64 a)
|
|
{
|
|
return (float64_val(a) >> 52) & 0x7FF;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the double-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline flag extractFloat64Sign(float64 a)
|
|
{
|
|
return float64_val(a) >> 63;
|
|
}
|
|
|
|
/*
|
|
* Classify a floating point number. Everything above float_class_qnan
|
|
* is a NaN so cls >= float_class_qnan is any NaN.
|
|
*/
|
|
|
|
typedef enum __attribute__ ((__packed__)) {
|
|
float_class_unclassified,
|
|
float_class_zero,
|
|
float_class_normal,
|
|
float_class_inf,
|
|
float_class_qnan, /* all NaNs from here */
|
|
float_class_snan,
|
|
float_class_dnan,
|
|
float_class_msnan, /* maybe silenced */
|
|
} FloatClass;
|
|
|
|
/*
|
|
* Structure holding all of the decomposed parts of a float. The
|
|
* exponent is unbiased and the fraction is normalized. All
|
|
* calculations are done with a 64 bit fraction and then rounded as
|
|
* appropriate for the final format.
|
|
*
|
|
* Thanks to the packed FloatClass a decent compiler should be able to
|
|
* fit the whole structure into registers and avoid using the stack
|
|
* for parameter passing.
|
|
*/
|
|
|
|
typedef struct {
|
|
uint64_t frac;
|
|
int32_t exp;
|
|
FloatClass cls;
|
|
bool sign;
|
|
} FloatParts;
|
|
|
|
#define DECOMPOSED_BINARY_POINT (64 - 2)
|
|
#define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT)
|
|
#define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1)
|
|
|
|
/* Structure holding all of the relevant parameters for a format.
|
|
* exp_size: the size of the exponent field
|
|
* exp_bias: the offset applied to the exponent field
|
|
* exp_max: the maximum normalised exponent
|
|
* frac_size: the size of the fraction field
|
|
* frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
|
|
* The following are computed based the size of fraction
|
|
* frac_lsb: least significant bit of fraction
|
|
* fram_lsbm1: the bit bellow the least significant bit (for rounding)
|
|
* round_mask/roundeven_mask: masks used for rounding
|
|
*/
|
|
typedef struct {
|
|
int exp_size;
|
|
int exp_bias;
|
|
int exp_max;
|
|
int frac_size;
|
|
int frac_shift;
|
|
uint64_t frac_lsb;
|
|
uint64_t frac_lsbm1;
|
|
uint64_t round_mask;
|
|
uint64_t roundeven_mask;
|
|
} FloatFmt;
|
|
|
|
/* Expand fields based on the size of exponent and fraction */
|
|
#define FLOAT_PARAMS(E, F) \
|
|
.exp_size = E, \
|
|
.exp_bias = ((1 << E) - 1) >> 1, \
|
|
.exp_max = (1 << E) - 1, \
|
|
.frac_size = F, \
|
|
.frac_shift = DECOMPOSED_BINARY_POINT - F, \
|
|
.frac_lsb = 1ull << (DECOMPOSED_BINARY_POINT - F), \
|
|
.frac_lsbm1 = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1), \
|
|
.round_mask = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1, \
|
|
.roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1
|
|
|
|
static const FloatFmt float16_params = {
|
|
FLOAT_PARAMS(5, 10)
|
|
};
|
|
|
|
static const FloatFmt float32_params = {
|
|
FLOAT_PARAMS(8, 23)
|
|
};
|
|
|
|
static const FloatFmt float64_params = {
|
|
FLOAT_PARAMS(11, 52)
|
|
};
|
|
|
|
/* Unpack a float to parts, but do not canonicalize. */
|
|
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
|
|
{
|
|
const int sign_pos = fmt.frac_size + fmt.exp_size;
|
|
|
|
return (FloatParts) {
|
|
.cls = float_class_unclassified,
|
|
.sign = extract64(raw, sign_pos, 1),
|
|
.exp = extract64(raw, fmt.frac_size, fmt.exp_size),
|
|
.frac = extract64(raw, 0, fmt.frac_size),
|
|
};
|
|
}
|
|
|
|
static inline FloatParts float16_unpack_raw(float16 f)
|
|
{
|
|
return unpack_raw(float16_params, f);
|
|
}
|
|
|
|
static inline FloatParts float32_unpack_raw(float32 f)
|
|
{
|
|
return unpack_raw(float32_params, f);
|
|
}
|
|
|
|
static inline FloatParts float64_unpack_raw(float64 f)
|
|
{
|
|
return unpack_raw(float64_params, f);
|
|
}
|
|
|
|
/* Pack a float from parts, but do not canonicalize. */
|
|
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
|
|
{
|
|
const int sign_pos = fmt.frac_size + fmt.exp_size;
|
|
uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
|
|
return deposit64(ret, sign_pos, 1, p.sign);
|
|
}
|
|
|
|
static inline float16 float16_pack_raw(FloatParts p)
|
|
{
|
|
return make_float16(pack_raw(float16_params, p));
|
|
}
|
|
|
|
static inline float32 float32_pack_raw(FloatParts p)
|
|
{
|
|
return make_float32(pack_raw(float32_params, p));
|
|
}
|
|
|
|
static inline float64 float64_pack_raw(FloatParts p)
|
|
{
|
|
return make_float64(pack_raw(float64_params, p));
|
|
}
|
|
|
|
/* Canonicalize EXP and FRAC, setting CLS. */
|
|
static FloatParts canonicalize(FloatParts part, const FloatFmt *parm,
|
|
float_status *status)
|
|
{
|
|
if (part.exp == parm->exp_max) {
|
|
if (part.frac == 0) {
|
|
part.cls = float_class_inf;
|
|
} else {
|
|
#ifdef NO_SIGNALING_NANS
|
|
part.cls = float_class_qnan;
|
|
#else
|
|
int64_t msb = part.frac << (parm->frac_shift + 2);
|
|
if ((msb < 0) == status->snan_bit_is_one) {
|
|
part.cls = float_class_snan;
|
|
} else {
|
|
part.cls = float_class_qnan;
|
|
}
|
|
#endif
|
|
}
|
|
} else if (part.exp == 0) {
|
|
if (likely(part.frac == 0)) {
|
|
part.cls = float_class_zero;
|
|
} else if (status->flush_inputs_to_zero) {
|
|
float_raise(float_flag_input_denormal, status);
|
|
part.cls = float_class_zero;
|
|
part.frac = 0;
|
|
} else {
|
|
int shift = clz64(part.frac) - 1;
|
|
part.cls = float_class_normal;
|
|
part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
|
|
part.frac <<= shift;
|
|
}
|
|
} else {
|
|
part.cls = float_class_normal;
|
|
part.exp -= parm->exp_bias;
|
|
part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
|
|
}
|
|
return part;
|
|
}
|
|
|
|
/* Round and uncanonicalize a floating-point number by parts. There
|
|
* are FRAC_SHIFT bits that may require rounding at the bottom of the
|
|
* fraction; these bits will be removed. The exponent will be biased
|
|
* by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
|
|
*/
|
|
|
|
static FloatParts round_canonical(FloatParts p, float_status *s,
|
|
const FloatFmt *parm)
|
|
{
|
|
const uint64_t frac_lsbm1 = parm->frac_lsbm1;
|
|
const uint64_t round_mask = parm->round_mask;
|
|
const uint64_t roundeven_mask = parm->roundeven_mask;
|
|
const int exp_max = parm->exp_max;
|
|
const int frac_shift = parm->frac_shift;
|
|
uint64_t frac, inc;
|
|
int exp, flags = 0;
|
|
bool overflow_norm;
|
|
|
|
frac = p.frac;
|
|
exp = p.exp;
|
|
|
|
switch (p.cls) {
|
|
case float_class_normal:
|
|
switch (s->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
overflow_norm = false;
|
|
inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
|
|
break;
|
|
case float_round_ties_away:
|
|
overflow_norm = false;
|
|
inc = frac_lsbm1;
|
|
break;
|
|
case float_round_to_zero:
|
|
overflow_norm = true;
|
|
inc = 0;
|
|
break;
|
|
case float_round_up:
|
|
inc = p.sign ? 0 : round_mask;
|
|
overflow_norm = p.sign;
|
|
break;
|
|
case float_round_down:
|
|
inc = p.sign ? round_mask : 0;
|
|
overflow_norm = !p.sign;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
exp += parm->exp_bias;
|
|
if (likely(exp > 0)) {
|
|
if (frac & round_mask) {
|
|
flags |= float_flag_inexact;
|
|
frac += inc;
|
|
if (frac & DECOMPOSED_OVERFLOW_BIT) {
|
|
frac >>= 1;
|
|
exp++;
|
|
}
|
|
}
|
|
frac >>= frac_shift;
|
|
|
|
if (unlikely(exp >= exp_max)) {
|
|
flags |= float_flag_overflow | float_flag_inexact;
|
|
if (overflow_norm) {
|
|
exp = exp_max - 1;
|
|
frac = -1;
|
|
} else {
|
|
p.cls = float_class_inf;
|
|
goto do_inf;
|
|
}
|
|
}
|
|
} else if (s->flush_to_zero) {
|
|
flags |= float_flag_output_denormal;
|
|
p.cls = float_class_zero;
|
|
goto do_zero;
|
|
} else {
|
|
bool is_tiny = (s->float_detect_tininess
|
|
== float_tininess_before_rounding)
|
|
|| (exp < 0)
|
|
|| !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);
|
|
|
|
shift64RightJamming(frac, 1 - exp, &frac);
|
|
if (frac & round_mask) {
|
|
/* Need to recompute round-to-even. */
|
|
if (s->float_rounding_mode == float_round_nearest_even) {
|
|
inc = ((frac & roundeven_mask) != frac_lsbm1
|
|
? frac_lsbm1 : 0);
|
|
}
|
|
flags |= float_flag_inexact;
|
|
frac += inc;
|
|
}
|
|
|
|
exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
|
|
frac >>= frac_shift;
|
|
|
|
if (is_tiny && (flags & float_flag_inexact)) {
|
|
flags |= float_flag_underflow;
|
|
}
|
|
if (exp == 0 && frac == 0) {
|
|
p.cls = float_class_zero;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case float_class_zero:
|
|
do_zero:
|
|
exp = 0;
|
|
frac = 0;
|
|
break;
|
|
|
|
case float_class_inf:
|
|
do_inf:
|
|
exp = exp_max;
|
|
frac = 0;
|
|
break;
|
|
|
|
case float_class_qnan:
|
|
case float_class_snan:
|
|
exp = exp_max;
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
float_raise(flags, s);
|
|
p.exp = exp;
|
|
p.frac = frac;
|
|
return p;
|
|
}
|
|
|
|
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
|
|
{
|
|
return canonicalize(float16_unpack_raw(f), &float16_params, s);
|
|
}
|
|
|
|
static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
|
|
{
|
|
switch (p.cls) {
|
|
case float_class_dnan:
|
|
return float16_default_nan(s);
|
|
case float_class_msnan:
|
|
return float16_maybe_silence_nan(float16_pack_raw(p), s);
|
|
default:
|
|
p = round_canonical(p, s, &float16_params);
|
|
return float16_pack_raw(p);
|
|
}
|
|
}
|
|
|
|
static FloatParts float32_unpack_canonical(float32 f, float_status *s)
|
|
{
|
|
return canonicalize(float32_unpack_raw(f), &float32_params, s);
|
|
}
|
|
|
|
static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
|
|
{
|
|
switch (p.cls) {
|
|
case float_class_dnan:
|
|
return float32_default_nan(s);
|
|
case float_class_msnan:
|
|
return float32_maybe_silence_nan(float32_pack_raw(p), s);
|
|
default:
|
|
p = round_canonical(p, s, &float32_params);
|
|
return float32_pack_raw(p);
|
|
}
|
|
}
|
|
|
|
static FloatParts float64_unpack_canonical(float64 f, float_status *s)
|
|
{
|
|
return canonicalize(float64_unpack_raw(f), &float64_params, s);
|
|
}
|
|
|
|
static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
|
|
{
|
|
switch (p.cls) {
|
|
case float_class_dnan:
|
|
return float64_default_nan(s);
|
|
case float_class_msnan:
|
|
return float64_maybe_silence_nan(float64_pack_raw(p), s);
|
|
default:
|
|
p = round_canonical(p, s, &float64_params);
|
|
return float64_pack_raw(p);
|
|
}
|
|
}
|
|
|
|
/* Simple helpers for checking if what NaN we have */
|
|
static bool is_nan(FloatClass c)
|
|
{
|
|
return unlikely(c >= float_class_qnan);
|
|
}
|
|
static bool is_snan(FloatClass c)
|
|
{
|
|
return c == float_class_snan;
|
|
}
|
|
static bool is_qnan(FloatClass c)
|
|
{
|
|
return c == float_class_qnan;
|
|
}
|
|
|
|
static FloatParts return_nan(FloatParts a, float_status *s)
|
|
{
|
|
switch (a.cls) {
|
|
case float_class_snan:
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
a.cls = float_class_msnan;
|
|
/* fall through */
|
|
case float_class_qnan:
|
|
if (s->default_nan_mode) {
|
|
a.cls = float_class_dnan;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return a;
|
|
}
|
|
|
|
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
|
|
{
|
|
if (is_snan(a.cls) || is_snan(b.cls)) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
}
|
|
|
|
if (s->default_nan_mode) {
|
|
a.cls = float_class_dnan;
|
|
} else {
|
|
if (pickNaN(is_qnan(a.cls), is_snan(a.cls),
|
|
is_qnan(b.cls), is_snan(b.cls),
|
|
a.frac > b.frac ||
|
|
(a.frac == b.frac && a.sign < b.sign))) {
|
|
a = b;
|
|
}
|
|
a.cls = float_class_msnan;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
|
|
bool inf_zero, float_status *s)
|
|
{
|
|
if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
}
|
|
|
|
if (s->default_nan_mode) {
|
|
a.cls = float_class_dnan;
|
|
} else {
|
|
switch (pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls),
|
|
is_qnan(b.cls), is_snan(b.cls),
|
|
is_qnan(c.cls), is_snan(c.cls),
|
|
inf_zero, s)) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
a = b;
|
|
break;
|
|
case 2:
|
|
a = c;
|
|
break;
|
|
case 3:
|
|
a.cls = float_class_dnan;
|
|
return a;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
a.cls = float_class_msnan;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Returns the result of adding or subtracting the values of the
|
|
* floating-point values `a' and `b'. The operation is performed
|
|
* according to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic.
|
|
*/
|
|
|
|
static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
|
|
float_status *s)
|
|
{
|
|
bool a_sign = a.sign;
|
|
bool b_sign = b.sign ^ subtract;
|
|
|
|
if (a_sign != b_sign) {
|
|
/* Subtraction */
|
|
|
|
if (a.cls == float_class_normal && b.cls == float_class_normal) {
|
|
if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
|
|
shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
|
|
a.frac = a.frac - b.frac;
|
|
} else {
|
|
shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
|
|
a.frac = b.frac - a.frac;
|
|
a.exp = b.exp;
|
|
a_sign ^= 1;
|
|
}
|
|
|
|
if (a.frac == 0) {
|
|
a.cls = float_class_zero;
|
|
a.sign = s->float_rounding_mode == float_round_down;
|
|
} else {
|
|
int shift = clz64(a.frac) - 1;
|
|
a.frac = a.frac << shift;
|
|
a.exp = a.exp - shift;
|
|
a.sign = a_sign;
|
|
}
|
|
return a;
|
|
}
|
|
if (is_nan(a.cls) || is_nan(b.cls)) {
|
|
return pick_nan(a, b, s);
|
|
}
|
|
if (a.cls == float_class_inf) {
|
|
if (b.cls == float_class_inf) {
|
|
float_raise(float_flag_invalid, s);
|
|
a.cls = float_class_dnan;
|
|
}
|
|
return a;
|
|
}
|
|
if (a.cls == float_class_zero && b.cls == float_class_zero) {
|
|
a.sign = s->float_rounding_mode == float_round_down;
|
|
return a;
|
|
}
|
|
if (a.cls == float_class_zero || b.cls == float_class_inf) {
|
|
b.sign = a_sign ^ 1;
|
|
return b;
|
|
}
|
|
if (b.cls == float_class_zero) {
|
|
return a;
|
|
}
|
|
} else {
|
|
/* Addition */
|
|
if (a.cls == float_class_normal && b.cls == float_class_normal) {
|
|
if (a.exp > b.exp) {
|
|
shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
|
|
} else if (a.exp < b.exp) {
|
|
shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
|
|
a.exp = b.exp;
|
|
}
|
|
a.frac += b.frac;
|
|
if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
|
|
a.frac >>= 1;
|
|
a.exp += 1;
|
|
}
|
|
return a;
|
|
}
|
|
if (is_nan(a.cls) || is_nan(b.cls)) {
|
|
return pick_nan(a, b, s);
|
|
}
|
|
if (a.cls == float_class_inf || b.cls == float_class_zero) {
|
|
return a;
|
|
}
|
|
if (b.cls == float_class_inf || a.cls == float_class_zero) {
|
|
b.sign = b_sign;
|
|
return b;
|
|
}
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Returns the result of adding or subtracting the floating-point
|
|
* values `a' and `b'. The operation is performed according to the
|
|
* IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*/
|
|
|
|
float16 __attribute__((flatten)) float16_add(float16 a, float16 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, status);
|
|
FloatParts pb = float16_unpack_canonical(b, status);
|
|
FloatParts pr = addsub_floats(pa, pb, false, status);
|
|
|
|
return float16_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float32 __attribute__((flatten)) float32_add(float32 a, float32 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, status);
|
|
FloatParts pb = float32_unpack_canonical(b, status);
|
|
FloatParts pr = addsub_floats(pa, pb, false, status);
|
|
|
|
return float32_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float64 __attribute__((flatten)) float64_add(float64 a, float64 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, status);
|
|
FloatParts pb = float64_unpack_canonical(b, status);
|
|
FloatParts pr = addsub_floats(pa, pb, false, status);
|
|
|
|
return float64_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float16 __attribute__((flatten)) float16_sub(float16 a, float16 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, status);
|
|
FloatParts pb = float16_unpack_canonical(b, status);
|
|
FloatParts pr = addsub_floats(pa, pb, true, status);
|
|
|
|
return float16_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float32 __attribute__((flatten)) float32_sub(float32 a, float32 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, status);
|
|
FloatParts pb = float32_unpack_canonical(b, status);
|
|
FloatParts pr = addsub_floats(pa, pb, true, status);
|
|
|
|
return float32_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float64 __attribute__((flatten)) float64_sub(float64 a, float64 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, status);
|
|
FloatParts pb = float64_unpack_canonical(b, status);
|
|
FloatParts pr = addsub_floats(pa, pb, true, status);
|
|
|
|
return float64_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
/*
|
|
* Returns the result of multiplying the floating-point values `a' and
|
|
* `b'. The operation is performed according to the IEC/IEEE Standard
|
|
* for Binary Floating-Point Arithmetic.
|
|
*/
|
|
|
|
static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
|
|
{
|
|
bool sign = a.sign ^ b.sign;
|
|
|
|
if (a.cls == float_class_normal && b.cls == float_class_normal) {
|
|
uint64_t hi, lo;
|
|
int exp = a.exp + b.exp;
|
|
|
|
mul64To128(a.frac, b.frac, &hi, &lo);
|
|
shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
|
|
if (lo & DECOMPOSED_OVERFLOW_BIT) {
|
|
shift64RightJamming(lo, 1, &lo);
|
|
exp += 1;
|
|
}
|
|
|
|
/* Re-use a */
|
|
a.exp = exp;
|
|
a.sign = sign;
|
|
a.frac = lo;
|
|
return a;
|
|
}
|
|
/* handle all the NaN cases */
|
|
if (is_nan(a.cls) || is_nan(b.cls)) {
|
|
return pick_nan(a, b, s);
|
|
}
|
|
/* Inf * Zero == NaN */
|
|
if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
|
|
(a.cls == float_class_zero && b.cls == float_class_inf)) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
a.cls = float_class_dnan;
|
|
a.sign = sign;
|
|
return a;
|
|
}
|
|
/* Multiply by 0 or Inf */
|
|
if (a.cls == float_class_inf || a.cls == float_class_zero) {
|
|
a.sign = sign;
|
|
return a;
|
|
}
|
|
if (b.cls == float_class_inf || b.cls == float_class_zero) {
|
|
b.sign = sign;
|
|
return b;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
float16 __attribute__((flatten)) float16_mul(float16 a, float16 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, status);
|
|
FloatParts pb = float16_unpack_canonical(b, status);
|
|
FloatParts pr = mul_floats(pa, pb, status);
|
|
|
|
return float16_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float32 __attribute__((flatten)) float32_mul(float32 a, float32 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, status);
|
|
FloatParts pb = float32_unpack_canonical(b, status);
|
|
FloatParts pr = mul_floats(pa, pb, status);
|
|
|
|
return float32_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
|
|
float_status *status)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, status);
|
|
FloatParts pb = float64_unpack_canonical(b, status);
|
|
FloatParts pr = mul_floats(pa, pb, status);
|
|
|
|
return float64_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
/*
|
|
* Returns the result of multiplying the floating-point values `a' and
|
|
* `b' then adding 'c', with no intermediate rounding step after the
|
|
* multiplication. The operation is performed according to the
|
|
* IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
|
|
* The flags argument allows the caller to select negation of the
|
|
* addend, the intermediate product, or the final result. (The
|
|
* difference between this and having the caller do a separate
|
|
* negation is that negating externally will flip the sign bit on
|
|
* NaNs.)
|
|
*/
|
|
|
|
static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
|
|
int flags, float_status *s)
|
|
{
|
|
bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
|
|
((1 << float_class_inf) | (1 << float_class_zero));
|
|
bool p_sign;
|
|
bool sign_flip = flags & float_muladd_negate_result;
|
|
FloatClass p_class;
|
|
uint64_t hi, lo;
|
|
int p_exp;
|
|
|
|
/* It is implementation-defined whether the cases of (0,inf,qnan)
|
|
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
|
|
* they return if they do), so we have to hand this information
|
|
* off to the target-specific pick-a-NaN routine.
|
|
*/
|
|
if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
|
|
return pick_nan_muladd(a, b, c, inf_zero, s);
|
|
}
|
|
|
|
if (inf_zero) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
a.cls = float_class_dnan;
|
|
return a;
|
|
}
|
|
|
|
if (flags & float_muladd_negate_c) {
|
|
c.sign ^= 1;
|
|
}
|
|
|
|
p_sign = a.sign ^ b.sign;
|
|
|
|
if (flags & float_muladd_negate_product) {
|
|
p_sign ^= 1;
|
|
}
|
|
|
|
if (a.cls == float_class_inf || b.cls == float_class_inf) {
|
|
p_class = float_class_inf;
|
|
} else if (a.cls == float_class_zero || b.cls == float_class_zero) {
|
|
p_class = float_class_zero;
|
|
} else {
|
|
p_class = float_class_normal;
|
|
}
|
|
|
|
if (c.cls == float_class_inf) {
|
|
if (p_class == float_class_inf && p_sign != c.sign) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
a.cls = float_class_dnan;
|
|
} else {
|
|
a.cls = float_class_inf;
|
|
a.sign = c.sign ^ sign_flip;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if (p_class == float_class_inf) {
|
|
a.cls = float_class_inf;
|
|
a.sign = p_sign ^ sign_flip;
|
|
return a;
|
|
}
|
|
|
|
if (p_class == float_class_zero) {
|
|
if (c.cls == float_class_zero) {
|
|
if (p_sign != c.sign) {
|
|
p_sign = s->float_rounding_mode == float_round_down;
|
|
}
|
|
c.sign = p_sign;
|
|
} else if (flags & float_muladd_halve_result) {
|
|
c.exp -= 1;
|
|
}
|
|
c.sign ^= sign_flip;
|
|
return c;
|
|
}
|
|
|
|
/* a & b should be normals now... */
|
|
assert(a.cls == float_class_normal &&
|
|
b.cls == float_class_normal);
|
|
|
|
p_exp = a.exp + b.exp;
|
|
|
|
/* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
|
|
* result.
|
|
*/
|
|
mul64To128(a.frac, b.frac, &hi, &lo);
|
|
/* binary point now at bit 124 */
|
|
|
|
/* check for overflow */
|
|
if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
|
|
shift128RightJamming(hi, lo, 1, &hi, &lo);
|
|
p_exp += 1;
|
|
}
|
|
|
|
/* + add/sub */
|
|
if (c.cls == float_class_zero) {
|
|
/* move binary point back to 62 */
|
|
shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
|
|
} else {
|
|
int exp_diff = p_exp - c.exp;
|
|
if (p_sign == c.sign) {
|
|
/* Addition */
|
|
if (exp_diff <= 0) {
|
|
shift128RightJamming(hi, lo,
|
|
DECOMPOSED_BINARY_POINT - exp_diff,
|
|
&hi, &lo);
|
|
lo += c.frac;
|
|
p_exp = c.exp;
|
|
} else {
|
|
uint64_t c_hi, c_lo;
|
|
/* shift c to the same binary point as the product (124) */
|
|
c_hi = c.frac >> 2;
|
|
c_lo = 0;
|
|
shift128RightJamming(c_hi, c_lo,
|
|
exp_diff,
|
|
&c_hi, &c_lo);
|
|
add128(hi, lo, c_hi, c_lo, &hi, &lo);
|
|
/* move binary point back to 62 */
|
|
shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
|
|
}
|
|
|
|
if (lo & DECOMPOSED_OVERFLOW_BIT) {
|
|
shift64RightJamming(lo, 1, &lo);
|
|
p_exp += 1;
|
|
}
|
|
|
|
} else {
|
|
/* Subtraction */
|
|
uint64_t c_hi, c_lo;
|
|
/* make C binary point match product at bit 124 */
|
|
c_hi = c.frac >> 2;
|
|
c_lo = 0;
|
|
|
|
if (exp_diff <= 0) {
|
|
shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
|
|
if (exp_diff == 0
|
|
&&
|
|
(hi > c_hi || (hi == c_hi && lo >= c_lo))) {
|
|
sub128(hi, lo, c_hi, c_lo, &hi, &lo);
|
|
} else {
|
|
sub128(c_hi, c_lo, hi, lo, &hi, &lo);
|
|
p_sign ^= 1;
|
|
p_exp = c.exp;
|
|
}
|
|
} else {
|
|
shift128RightJamming(c_hi, c_lo,
|
|
exp_diff,
|
|
&c_hi, &c_lo);
|
|
sub128(hi, lo, c_hi, c_lo, &hi, &lo);
|
|
}
|
|
|
|
if (hi == 0 && lo == 0) {
|
|
a.cls = float_class_zero;
|
|
a.sign = s->float_rounding_mode == float_round_down;
|
|
a.sign ^= sign_flip;
|
|
return a;
|
|
} else {
|
|
int shift;
|
|
if (hi != 0) {
|
|
shift = clz64(hi);
|
|
} else {
|
|
shift = clz64(lo) + 64;
|
|
}
|
|
/* Normalizing to a binary point of 124 is the
|
|
correct adjust for the exponent. However since we're
|
|
shifting, we might as well put the binary point back
|
|
at 62 where we really want it. Therefore shift as
|
|
if we're leaving 1 bit at the top of the word, but
|
|
adjust the exponent as if we're leaving 3 bits. */
|
|
shift -= 1;
|
|
if (shift >= 64) {
|
|
lo = lo << (shift - 64);
|
|
} else {
|
|
hi = (hi << shift) | (lo >> (64 - shift));
|
|
lo = hi | ((lo << shift) != 0);
|
|
}
|
|
p_exp -= shift - 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flags & float_muladd_halve_result) {
|
|
p_exp -= 1;
|
|
}
|
|
|
|
/* finally prepare our result */
|
|
a.cls = float_class_normal;
|
|
a.sign = p_sign ^ sign_flip;
|
|
a.exp = p_exp;
|
|
a.frac = lo;
|
|
|
|
return a;
|
|
}
|
|
|
|
float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c,
|
|
int flags, float_status *status)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, status);
|
|
FloatParts pb = float16_unpack_canonical(b, status);
|
|
FloatParts pc = float16_unpack_canonical(c, status);
|
|
FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
|
|
|
|
return float16_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c,
|
|
int flags, float_status *status)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, status);
|
|
FloatParts pb = float32_unpack_canonical(b, status);
|
|
FloatParts pc = float32_unpack_canonical(c, status);
|
|
FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
|
|
|
|
return float32_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c,
|
|
int flags, float_status *status)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, status);
|
|
FloatParts pb = float64_unpack_canonical(b, status);
|
|
FloatParts pc = float64_unpack_canonical(c, status);
|
|
FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
|
|
|
|
return float64_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
/*
|
|
* Returns the result of dividing the floating-point value `a' by the
|
|
* corresponding value `b'. The operation is performed according to
|
|
* the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*/
|
|
|
|
static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
|
|
{
|
|
bool sign = a.sign ^ b.sign;
|
|
|
|
if (a.cls == float_class_normal && b.cls == float_class_normal) {
|
|
uint64_t temp_lo, temp_hi;
|
|
int exp = a.exp - b.exp;
|
|
if (a.frac < b.frac) {
|
|
exp -= 1;
|
|
shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1,
|
|
&temp_hi, &temp_lo);
|
|
} else {
|
|
shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT,
|
|
&temp_hi, &temp_lo);
|
|
}
|
|
/* LSB of quot is set if inexact which roundandpack will use
|
|
* to set flags. Yet again we re-use a for the result */
|
|
a.frac = div128To64(temp_lo, temp_hi, b.frac);
|
|
a.sign = sign;
|
|
a.exp = exp;
|
|
return a;
|
|
}
|
|
/* handle all the NaN cases */
|
|
if (is_nan(a.cls) || is_nan(b.cls)) {
|
|
return pick_nan(a, b, s);
|
|
}
|
|
/* 0/0 or Inf/Inf */
|
|
if (a.cls == b.cls
|
|
&&
|
|
(a.cls == float_class_inf || a.cls == float_class_zero)) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
a.cls = float_class_dnan;
|
|
return a;
|
|
}
|
|
/* Inf / x or 0 / x */
|
|
if (a.cls == float_class_inf || a.cls == float_class_zero) {
|
|
a.sign = sign;
|
|
return a;
|
|
}
|
|
/* Div 0 => Inf */
|
|
if (b.cls == float_class_zero) {
|
|
s->float_exception_flags |= float_flag_divbyzero;
|
|
a.cls = float_class_inf;
|
|
a.sign = sign;
|
|
return a;
|
|
}
|
|
/* Div by Inf */
|
|
if (b.cls == float_class_inf) {
|
|
a.cls = float_class_zero;
|
|
a.sign = sign;
|
|
return a;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
float16 float16_div(float16 a, float16 b, float_status *status)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, status);
|
|
FloatParts pb = float16_unpack_canonical(b, status);
|
|
FloatParts pr = div_floats(pa, pb, status);
|
|
|
|
return float16_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float32 float32_div(float32 a, float32 b, float_status *status)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, status);
|
|
FloatParts pb = float32_unpack_canonical(b, status);
|
|
FloatParts pr = div_floats(pa, pb, status);
|
|
|
|
return float32_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float64 float64_div(float64 a, float64 b, float_status *status)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, status);
|
|
FloatParts pb = float64_unpack_canonical(b, status);
|
|
FloatParts pr = div_floats(pa, pb, status);
|
|
|
|
return float64_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
/*
|
|
* Rounds the floating-point value `a' to an integer, and returns the
|
|
* result as a floating-point value. The operation is performed
|
|
* according to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic.
|
|
*/
|
|
|
|
static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s)
|
|
{
|
|
if (is_nan(a.cls)) {
|
|
return return_nan(a, s);
|
|
}
|
|
|
|
switch (a.cls) {
|
|
case float_class_zero:
|
|
case float_class_inf:
|
|
case float_class_qnan:
|
|
/* already "integral" */
|
|
break;
|
|
case float_class_normal:
|
|
if (a.exp >= DECOMPOSED_BINARY_POINT) {
|
|
/* already integral */
|
|
break;
|
|
}
|
|
if (a.exp < 0) {
|
|
bool one;
|
|
/* all fractional */
|
|
s->float_exception_flags |= float_flag_inexact;
|
|
switch (rounding_mode) {
|
|
case float_round_nearest_even:
|
|
one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
|
|
break;
|
|
case float_round_ties_away:
|
|
one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
|
|
break;
|
|
case float_round_to_zero:
|
|
one = false;
|
|
break;
|
|
case float_round_up:
|
|
one = !a.sign;
|
|
break;
|
|
case float_round_down:
|
|
one = a.sign;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (one) {
|
|
a.frac = DECOMPOSED_IMPLICIT_BIT;
|
|
a.exp = 0;
|
|
} else {
|
|
a.cls = float_class_zero;
|
|
}
|
|
} else {
|
|
uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
|
|
uint64_t frac_lsbm1 = frac_lsb >> 1;
|
|
uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
|
|
uint64_t rnd_mask = rnd_even_mask >> 1;
|
|
uint64_t inc;
|
|
|
|
switch (rounding_mode) {
|
|
case float_round_nearest_even:
|
|
inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
|
|
break;
|
|
case float_round_ties_away:
|
|
inc = frac_lsbm1;
|
|
break;
|
|
case float_round_to_zero:
|
|
inc = 0;
|
|
break;
|
|
case float_round_up:
|
|
inc = a.sign ? 0 : rnd_mask;
|
|
break;
|
|
case float_round_down:
|
|
inc = a.sign ? rnd_mask : 0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (a.frac & rnd_mask) {
|
|
s->float_exception_flags |= float_flag_inexact;
|
|
a.frac += inc;
|
|
a.frac &= ~rnd_mask;
|
|
if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
|
|
a.frac >>= 1;
|
|
a.exp++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return a;
|
|
}
|
|
|
|
float16 float16_round_to_int(float16 a, float_status *s)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, s);
|
|
FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
|
|
return float16_round_pack_canonical(pr, s);
|
|
}
|
|
|
|
float32 float32_round_to_int(float32 a, float_status *s)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, s);
|
|
FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
|
|
return float32_round_pack_canonical(pr, s);
|
|
}
|
|
|
|
float64 float64_round_to_int(float64 a, float_status *s)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, s);
|
|
FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
|
|
return float64_round_pack_canonical(pr, s);
|
|
}
|
|
|
|
float64 float64_trunc_to_int(float64 a, float_status *s)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, s);
|
|
FloatParts pr = round_to_int(pa, float_round_to_zero, s);
|
|
return float64_round_pack_canonical(pr, s);
|
|
}
|
|
|
|
/*
|
|
* Returns the result of converting the floating-point value `a' to
|
|
* the two's complement integer format. The conversion is performed
|
|
* according to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic---which means in particular that the conversion is
|
|
* rounded according to the current rounding mode. If `a' is a NaN,
|
|
* the largest positive integer is returned. Otherwise, if the
|
|
* conversion overflows, the largest integer with the same sign as `a'
|
|
* is returned.
|
|
*/
|
|
|
|
static int64_t round_to_int_and_pack(FloatParts in, int rmode,
|
|
int64_t min, int64_t max,
|
|
float_status *s)
|
|
{
|
|
uint64_t r;
|
|
int orig_flags = get_float_exception_flags(s);
|
|
FloatParts p = round_to_int(in, rmode, s);
|
|
|
|
switch (p.cls) {
|
|
case float_class_snan:
|
|
case float_class_qnan:
|
|
case float_class_dnan:
|
|
case float_class_msnan:
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return max;
|
|
case float_class_inf:
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return p.sign ? min : max;
|
|
case float_class_zero:
|
|
return 0;
|
|
case float_class_normal:
|
|
if (p.exp < DECOMPOSED_BINARY_POINT) {
|
|
r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
|
|
} else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
|
|
r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
|
|
} else {
|
|
r = UINT64_MAX;
|
|
}
|
|
if (p.sign) {
|
|
if (r < -(uint64_t) min) {
|
|
return -r;
|
|
} else {
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return min;
|
|
}
|
|
} else {
|
|
if (r < max) {
|
|
return r;
|
|
} else {
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return max;
|
|
}
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
#define FLOAT_TO_INT(fsz, isz) \
|
|
int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a, \
|
|
float_status *s) \
|
|
{ \
|
|
FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
|
|
return round_to_int_and_pack(p, s->float_rounding_mode, \
|
|
INT ## isz ## _MIN, INT ## isz ## _MAX,\
|
|
s); \
|
|
} \
|
|
\
|
|
int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero \
|
|
(float ## fsz a, float_status *s) \
|
|
{ \
|
|
FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
|
|
return round_to_int_and_pack(p, float_round_to_zero, \
|
|
INT ## isz ## _MIN, INT ## isz ## _MAX,\
|
|
s); \
|
|
}
|
|
|
|
FLOAT_TO_INT(16, 16)
|
|
FLOAT_TO_INT(16, 32)
|
|
FLOAT_TO_INT(16, 64)
|
|
|
|
FLOAT_TO_INT(32, 16)
|
|
FLOAT_TO_INT(32, 32)
|
|
FLOAT_TO_INT(32, 64)
|
|
|
|
FLOAT_TO_INT(64, 16)
|
|
FLOAT_TO_INT(64, 32)
|
|
FLOAT_TO_INT(64, 64)
|
|
|
|
#undef FLOAT_TO_INT
|
|
|
|
/*
|
|
* Returns the result of converting the floating-point value `a' to
|
|
* the unsigned integer format. The conversion is performed according
|
|
* to the IEC/IEEE Standard for Binary Floating-Point
|
|
* Arithmetic---which means in particular that the conversion is
|
|
* rounded according to the current rounding mode. If `a' is a NaN,
|
|
* the largest unsigned integer is returned. Otherwise, if the
|
|
* conversion overflows, the largest unsigned integer is returned. If
|
|
* the 'a' is negative, the result is rounded and zero is returned;
|
|
* values that do not round to zero will raise the inexact exception
|
|
* flag.
|
|
*/
|
|
|
|
static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max,
|
|
float_status *s)
|
|
{
|
|
int orig_flags = get_float_exception_flags(s);
|
|
FloatParts p = round_to_int(in, rmode, s);
|
|
|
|
switch (p.cls) {
|
|
case float_class_snan:
|
|
case float_class_qnan:
|
|
case float_class_dnan:
|
|
case float_class_msnan:
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return max;
|
|
case float_class_inf:
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return p.sign ? 0 : max;
|
|
case float_class_zero:
|
|
return 0;
|
|
case float_class_normal:
|
|
{
|
|
uint64_t r;
|
|
if (p.sign) {
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return 0;
|
|
}
|
|
|
|
if (p.exp < DECOMPOSED_BINARY_POINT) {
|
|
r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
|
|
} else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
|
|
r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
|
|
} else {
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return max;
|
|
}
|
|
|
|
/* For uint64 this will never trip, but if p.exp is too large
|
|
* to shift a decomposed fraction we shall have exited via the
|
|
* 3rd leg above.
|
|
*/
|
|
if (r > max) {
|
|
s->float_exception_flags = orig_flags | float_flag_invalid;
|
|
return max;
|
|
} else {
|
|
return r;
|
|
}
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
#define FLOAT_TO_UINT(fsz, isz) \
|
|
uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a, \
|
|
float_status *s) \
|
|
{ \
|
|
FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
|
|
return round_to_uint_and_pack(p, s->float_rounding_mode, \
|
|
UINT ## isz ## _MAX, s); \
|
|
} \
|
|
\
|
|
uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero \
|
|
(float ## fsz a, float_status *s) \
|
|
{ \
|
|
FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
|
|
return round_to_uint_and_pack(p, float_round_to_zero, \
|
|
UINT ## isz ## _MAX, s); \
|
|
}
|
|
|
|
FLOAT_TO_UINT(16, 16)
|
|
FLOAT_TO_UINT(16, 32)
|
|
FLOAT_TO_UINT(16, 64)
|
|
|
|
FLOAT_TO_UINT(32, 16)
|
|
FLOAT_TO_UINT(32, 32)
|
|
FLOAT_TO_UINT(32, 64)
|
|
|
|
FLOAT_TO_UINT(64, 16)
|
|
FLOAT_TO_UINT(64, 32)
|
|
FLOAT_TO_UINT(64, 64)
|
|
|
|
#undef FLOAT_TO_UINT
|
|
|
|
/*
|
|
* Integer to float conversions
|
|
*
|
|
* Returns the result of converting the two's complement integer `a'
|
|
* to the floating-point format. The conversion is performed according
|
|
* to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*/
|
|
|
|
static FloatParts int_to_float(int64_t a, float_status *status)
|
|
{
|
|
FloatParts r;
|
|
if (a == 0) {
|
|
r.cls = float_class_zero;
|
|
r.sign = false;
|
|
} else if (a == (1ULL << 63)) {
|
|
r.cls = float_class_normal;
|
|
r.sign = true;
|
|
r.frac = DECOMPOSED_IMPLICIT_BIT;
|
|
r.exp = 63;
|
|
} else {
|
|
uint64_t f;
|
|
if (a < 0) {
|
|
f = -a;
|
|
r.sign = true;
|
|
} else {
|
|
f = a;
|
|
r.sign = false;
|
|
}
|
|
int shift = clz64(f) - 1;
|
|
r.cls = float_class_normal;
|
|
r.exp = (DECOMPOSED_BINARY_POINT - shift);
|
|
r.frac = f << shift;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
float16 int64_to_float16(int64_t a, float_status *status)
|
|
{
|
|
FloatParts pa = int_to_float(a, status);
|
|
return float16_round_pack_canonical(pa, status);
|
|
}
|
|
|
|
float16 int32_to_float16(int32_t a, float_status *status)
|
|
{
|
|
return int64_to_float16(a, status);
|
|
}
|
|
|
|
float16 int16_to_float16(int16_t a, float_status *status)
|
|
{
|
|
return int64_to_float16(a, status);
|
|
}
|
|
|
|
float32 int64_to_float32(int64_t a, float_status *status)
|
|
{
|
|
FloatParts pa = int_to_float(a, status);
|
|
return float32_round_pack_canonical(pa, status);
|
|
}
|
|
|
|
float32 int32_to_float32(int32_t a, float_status *status)
|
|
{
|
|
return int64_to_float32(a, status);
|
|
}
|
|
|
|
float32 int16_to_float32(int16_t a, float_status *status)
|
|
{
|
|
return int64_to_float32(a, status);
|
|
}
|
|
|
|
float64 int64_to_float64(int64_t a, float_status *status)
|
|
{
|
|
FloatParts pa = int_to_float(a, status);
|
|
return float64_round_pack_canonical(pa, status);
|
|
}
|
|
|
|
float64 int32_to_float64(int32_t a, float_status *status)
|
|
{
|
|
return int64_to_float64(a, status);
|
|
}
|
|
|
|
float64 int16_to_float64(int16_t a, float_status *status)
|
|
{
|
|
return int64_to_float64(a, status);
|
|
}
|
|
|
|
|
|
/*
|
|
* Unsigned Integer to float conversions
|
|
*
|
|
* Returns the result of converting the unsigned integer `a' to the
|
|
* floating-point format. The conversion is performed according to the
|
|
* IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*/
|
|
|
|
static FloatParts uint_to_float(uint64_t a, float_status *status)
|
|
{
|
|
FloatParts r = { .sign = false};
|
|
|
|
if (a == 0) {
|
|
r.cls = float_class_zero;
|
|
} else {
|
|
int spare_bits = clz64(a) - 1;
|
|
r.cls = float_class_normal;
|
|
r.exp = DECOMPOSED_BINARY_POINT - spare_bits;
|
|
if (spare_bits < 0) {
|
|
shift64RightJamming(a, -spare_bits, &a);
|
|
r.frac = a;
|
|
} else {
|
|
r.frac = a << spare_bits;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
float16 uint64_to_float16(uint64_t a, float_status *status)
|
|
{
|
|
FloatParts pa = uint_to_float(a, status);
|
|
return float16_round_pack_canonical(pa, status);
|
|
}
|
|
|
|
float16 uint32_to_float16(uint32_t a, float_status *status)
|
|
{
|
|
return uint64_to_float16(a, status);
|
|
}
|
|
|
|
float16 uint16_to_float16(uint16_t a, float_status *status)
|
|
{
|
|
return uint64_to_float16(a, status);
|
|
}
|
|
|
|
float32 uint64_to_float32(uint64_t a, float_status *status)
|
|
{
|
|
FloatParts pa = uint_to_float(a, status);
|
|
return float32_round_pack_canonical(pa, status);
|
|
}
|
|
|
|
float32 uint32_to_float32(uint32_t a, float_status *status)
|
|
{
|
|
return uint64_to_float32(a, status);
|
|
}
|
|
|
|
float32 uint16_to_float32(uint16_t a, float_status *status)
|
|
{
|
|
return uint64_to_float32(a, status);
|
|
}
|
|
|
|
float64 uint64_to_float64(uint64_t a, float_status *status)
|
|
{
|
|
FloatParts pa = uint_to_float(a, status);
|
|
return float64_round_pack_canonical(pa, status);
|
|
}
|
|
|
|
float64 uint32_to_float64(uint32_t a, float_status *status)
|
|
{
|
|
return uint64_to_float64(a, status);
|
|
}
|
|
|
|
float64 uint16_to_float64(uint16_t a, float_status *status)
|
|
{
|
|
return uint64_to_float64(a, status);
|
|
}
|
|
|
|
/* Float Min/Max */
|
|
/* min() and max() functions. These can't be implemented as
|
|
* 'compare and pick one input' because that would mishandle
|
|
* NaNs and +0 vs -0.
|
|
*
|
|
* minnum() and maxnum() functions. These are similar to the min()
|
|
* and max() functions but if one of the arguments is a QNaN and
|
|
* the other is numerical then the numerical argument is returned.
|
|
* SNaNs will get quietened before being returned.
|
|
* minnum() and maxnum correspond to the IEEE 754-2008 minNum()
|
|
* and maxNum() operations. min() and max() are the typical min/max
|
|
* semantics provided by many CPUs which predate that specification.
|
|
*
|
|
* minnummag() and maxnummag() functions correspond to minNumMag()
|
|
* and minNumMag() from the IEEE-754 2008.
|
|
*/
|
|
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
|
|
bool ieee, bool ismag, float_status *s)
|
|
{
|
|
if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
|
|
if (ieee) {
|
|
/* Takes two floating-point values `a' and `b', one of
|
|
* which is a NaN, and returns the appropriate NaN
|
|
* result. If either `a' or `b' is a signaling NaN,
|
|
* the invalid exception is raised.
|
|
*/
|
|
if (is_snan(a.cls) || is_snan(b.cls)) {
|
|
return pick_nan(a, b, s);
|
|
} else if (is_nan(a.cls) && !is_nan(b.cls)) {
|
|
return b;
|
|
} else if (is_nan(b.cls) && !is_nan(a.cls)) {
|
|
return a;
|
|
}
|
|
}
|
|
return pick_nan(a, b, s);
|
|
} else {
|
|
int a_exp, b_exp;
|
|
|
|
switch (a.cls) {
|
|
case float_class_normal:
|
|
a_exp = a.exp;
|
|
break;
|
|
case float_class_inf:
|
|
a_exp = INT_MAX;
|
|
break;
|
|
case float_class_zero:
|
|
a_exp = INT_MIN;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
break;
|
|
}
|
|
switch (b.cls) {
|
|
case float_class_normal:
|
|
b_exp = b.exp;
|
|
break;
|
|
case float_class_inf:
|
|
b_exp = INT_MAX;
|
|
break;
|
|
case float_class_zero:
|
|
b_exp = INT_MIN;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
break;
|
|
}
|
|
|
|
if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
|
|
bool a_less = a_exp < b_exp;
|
|
if (a_exp == b_exp) {
|
|
a_less = a.frac < b.frac;
|
|
}
|
|
return a_less ^ ismin ? b : a;
|
|
}
|
|
|
|
if (a.sign == b.sign) {
|
|
bool a_less = a_exp < b_exp;
|
|
if (a_exp == b_exp) {
|
|
a_less = a.frac < b.frac;
|
|
}
|
|
return a.sign ^ a_less ^ ismin ? b : a;
|
|
} else {
|
|
return a.sign ^ ismin ? b : a;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define MINMAX(sz, name, ismin, isiee, ismag) \
|
|
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b, \
|
|
float_status *s) \
|
|
{ \
|
|
FloatParts pa = float ## sz ## _unpack_canonical(a, s); \
|
|
FloatParts pb = float ## sz ## _unpack_canonical(b, s); \
|
|
FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \
|
|
\
|
|
return float ## sz ## _round_pack_canonical(pr, s); \
|
|
}
|
|
|
|
MINMAX(16, min, true, false, false)
|
|
MINMAX(16, minnum, true, true, false)
|
|
MINMAX(16, minnummag, true, true, true)
|
|
MINMAX(16, max, false, false, false)
|
|
MINMAX(16, maxnum, false, true, false)
|
|
MINMAX(16, maxnummag, false, true, true)
|
|
|
|
MINMAX(32, min, true, false, false)
|
|
MINMAX(32, minnum, true, true, false)
|
|
MINMAX(32, minnummag, true, true, true)
|
|
MINMAX(32, max, false, false, false)
|
|
MINMAX(32, maxnum, false, true, false)
|
|
MINMAX(32, maxnummag, false, true, true)
|
|
|
|
MINMAX(64, min, true, false, false)
|
|
MINMAX(64, minnum, true, true, false)
|
|
MINMAX(64, minnummag, true, true, true)
|
|
MINMAX(64, max, false, false, false)
|
|
MINMAX(64, maxnum, false, true, false)
|
|
MINMAX(64, maxnummag, false, true, true)
|
|
|
|
#undef MINMAX
|
|
|
|
/* Floating point compare */
|
|
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
|
|
float_status *s)
|
|
{
|
|
if (is_nan(a.cls) || is_nan(b.cls)) {
|
|
if (!is_quiet ||
|
|
a.cls == float_class_snan ||
|
|
b.cls == float_class_snan) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (a.cls == float_class_zero) {
|
|
if (b.cls == float_class_zero) {
|
|
return float_relation_equal;
|
|
}
|
|
return b.sign ? float_relation_greater : float_relation_less;
|
|
} else if (b.cls == float_class_zero) {
|
|
return a.sign ? float_relation_less : float_relation_greater;
|
|
}
|
|
|
|
/* The only really important thing about infinity is its sign. If
|
|
* both are infinities the sign marks the smallest of the two.
|
|
*/
|
|
if (a.cls == float_class_inf) {
|
|
if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
|
|
return float_relation_equal;
|
|
}
|
|
return a.sign ? float_relation_less : float_relation_greater;
|
|
} else if (b.cls == float_class_inf) {
|
|
return b.sign ? float_relation_greater : float_relation_less;
|
|
}
|
|
|
|
if (a.sign != b.sign) {
|
|
return a.sign ? float_relation_less : float_relation_greater;
|
|
}
|
|
|
|
if (a.exp == b.exp) {
|
|
if (a.frac == b.frac) {
|
|
return float_relation_equal;
|
|
}
|
|
if (a.sign) {
|
|
return a.frac > b.frac ?
|
|
float_relation_less : float_relation_greater;
|
|
} else {
|
|
return a.frac > b.frac ?
|
|
float_relation_greater : float_relation_less;
|
|
}
|
|
} else {
|
|
if (a.sign) {
|
|
return a.exp > b.exp ? float_relation_less : float_relation_greater;
|
|
} else {
|
|
return a.exp > b.exp ? float_relation_greater : float_relation_less;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define COMPARE(sz) \
|
|
int float ## sz ## _compare(float ## sz a, float ## sz b, \
|
|
float_status *s) \
|
|
{ \
|
|
FloatParts pa = float ## sz ## _unpack_canonical(a, s); \
|
|
FloatParts pb = float ## sz ## _unpack_canonical(b, s); \
|
|
return compare_floats(pa, pb, false, s); \
|
|
} \
|
|
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b, \
|
|
float_status *s) \
|
|
{ \
|
|
FloatParts pa = float ## sz ## _unpack_canonical(a, s); \
|
|
FloatParts pb = float ## sz ## _unpack_canonical(b, s); \
|
|
return compare_floats(pa, pb, true, s); \
|
|
}
|
|
|
|
COMPARE(16)
|
|
COMPARE(32)
|
|
COMPARE(64)
|
|
|
|
#undef COMPARE
|
|
|
|
/* Multiply A by 2 raised to the power N. */
|
|
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
|
|
{
|
|
if (unlikely(is_nan(a.cls))) {
|
|
return return_nan(a, s);
|
|
}
|
|
if (a.cls == float_class_normal) {
|
|
a.exp += n;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
float16 float16_scalbn(float16 a, int n, float_status *status)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, status);
|
|
FloatParts pr = scalbn_decomposed(pa, n, status);
|
|
return float16_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float32 float32_scalbn(float32 a, int n, float_status *status)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, status);
|
|
FloatParts pr = scalbn_decomposed(pa, n, status);
|
|
return float32_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float64 float64_scalbn(float64 a, int n, float_status *status)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, status);
|
|
FloatParts pr = scalbn_decomposed(pa, n, status);
|
|
return float64_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
/*
|
|
* Square Root
|
|
*
|
|
* The old softfloat code did an approximation step before zeroing in
|
|
* on the final result. However for simpleness we just compute the
|
|
* square root by iterating down from the implicit bit to enough extra
|
|
* bits to ensure we get a correctly rounded result.
|
|
*
|
|
* This does mean however the calculation is slower than before,
|
|
* especially for 64 bit floats.
|
|
*/
|
|
|
|
static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
|
|
{
|
|
uint64_t a_frac, r_frac, s_frac;
|
|
int bit, last_bit;
|
|
|
|
if (is_nan(a.cls)) {
|
|
return return_nan(a, s);
|
|
}
|
|
if (a.cls == float_class_zero) {
|
|
return a; /* sqrt(+-0) = +-0 */
|
|
}
|
|
if (a.sign) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
a.cls = float_class_dnan;
|
|
return a;
|
|
}
|
|
if (a.cls == float_class_inf) {
|
|
return a; /* sqrt(+inf) = +inf */
|
|
}
|
|
|
|
assert(a.cls == float_class_normal);
|
|
|
|
/* We need two overflow bits at the top. Adding room for that is a
|
|
* right shift. If the exponent is odd, we can discard the low bit
|
|
* by multiplying the fraction by 2; that's a left shift. Combine
|
|
* those and we shift right if the exponent is even.
|
|
*/
|
|
a_frac = a.frac;
|
|
if (!(a.exp & 1)) {
|
|
a_frac >>= 1;
|
|
}
|
|
a.exp >>= 1;
|
|
|
|
/* Bit-by-bit computation of sqrt. */
|
|
r_frac = 0;
|
|
s_frac = 0;
|
|
|
|
/* Iterate from implicit bit down to the 3 extra bits to compute a
|
|
* properly rounded result. Remember we've inserted one more bit
|
|
* at the top, so these positions are one less.
|
|
*/
|
|
bit = DECOMPOSED_BINARY_POINT - 1;
|
|
last_bit = MAX(p->frac_shift - 4, 0);
|
|
do {
|
|
uint64_t q = 1ULL << bit;
|
|
uint64_t t_frac = s_frac + q;
|
|
if (t_frac <= a_frac) {
|
|
s_frac = t_frac + q;
|
|
a_frac -= t_frac;
|
|
r_frac += q;
|
|
}
|
|
a_frac <<= 1;
|
|
} while (--bit >= last_bit);
|
|
|
|
/* Undo the right shift done above. If there is any remaining
|
|
* fraction, the result is inexact. Set the sticky bit.
|
|
*/
|
|
a.frac = (r_frac << 1) + (a_frac != 0);
|
|
|
|
return a;
|
|
}
|
|
|
|
float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status)
|
|
{
|
|
FloatParts pa = float16_unpack_canonical(a, status);
|
|
FloatParts pr = sqrt_float(pa, status, &float16_params);
|
|
return float16_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status)
|
|
{
|
|
FloatParts pa = float32_unpack_canonical(a, status);
|
|
FloatParts pr = sqrt_float(pa, status, &float32_params);
|
|
return float32_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status)
|
|
{
|
|
FloatParts pa = float64_unpack_canonical(a, status);
|
|
FloatParts pr = sqrt_float(pa, status, &float64_params);
|
|
return float64_round_pack_canonical(pr, status);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
|
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
|
| input. If `zSign' is 1, the input is negated before being converted to an
|
|
| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
|
|
| is simply rounded to an integer, with the inexact exception raised if the
|
|
| input cannot be represented exactly as an integer. However, if the fixed-
|
|
| point input is too large, the invalid exception is raised and the largest
|
|
| positive or negative integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
|
|
{
|
|
int8_t roundingMode;
|
|
flag roundNearestEven;
|
|
int8_t roundIncrement, roundBits;
|
|
int32_t z;
|
|
|
|
roundingMode = status->float_rounding_mode;
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
roundIncrement = 0x40;
|
|
break;
|
|
case float_round_to_zero:
|
|
roundIncrement = 0;
|
|
break;
|
|
case float_round_up:
|
|
roundIncrement = zSign ? 0 : 0x7f;
|
|
break;
|
|
case float_round_down:
|
|
roundIncrement = zSign ? 0x7f : 0;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
roundBits = absZ & 0x7F;
|
|
absZ = ( absZ + roundIncrement )>>7;
|
|
absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
|
z = absZ;
|
|
if ( zSign ) z = - z;
|
|
if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
|
|
float_raise(float_flag_invalid, status);
|
|
return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if (roundBits) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
|
|
| `absZ1', with binary point between bits 63 and 64 (between the input words),
|
|
| and returns the properly rounded 64-bit integer corresponding to the input.
|
|
| If `zSign' is 1, the input is negated before being converted to an integer.
|
|
| Ordinarily, the fixed-point input is simply rounded to an integer, with
|
|
| the inexact exception raised if the input cannot be represented exactly as
|
|
| an integer. However, if the fixed-point input is too large, the invalid
|
|
| exception is raised and the largest positive or negative integer is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
|
|
float_status *status)
|
|
{
|
|
int8_t roundingMode;
|
|
flag roundNearestEven, increment;
|
|
int64_t z;
|
|
|
|
roundingMode = status->float_rounding_mode;
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
increment = ((int64_t) absZ1 < 0);
|
|
break;
|
|
case float_round_to_zero:
|
|
increment = 0;
|
|
break;
|
|
case float_round_up:
|
|
increment = !zSign && absZ1;
|
|
break;
|
|
case float_round_down:
|
|
increment = zSign && absZ1;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if ( increment ) {
|
|
++absZ0;
|
|
if ( absZ0 == 0 ) goto overflow;
|
|
absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
|
|
}
|
|
z = absZ0;
|
|
if ( zSign ) z = - z;
|
|
if ( z && ( ( z < 0 ) ^ zSign ) ) {
|
|
overflow:
|
|
float_raise(float_flag_invalid, status);
|
|
return
|
|
zSign ? (int64_t) LIT64( 0x8000000000000000 )
|
|
: LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
if (absZ1) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
|
|
| `absZ1', with binary point between bits 63 and 64 (between the input words),
|
|
| and returns the properly rounded 64-bit unsigned integer corresponding to the
|
|
| input. Ordinarily, the fixed-point input is simply rounded to an integer,
|
|
| with the inexact exception raised if the input cannot be represented exactly
|
|
| as an integer. However, if the fixed-point input is too large, the invalid
|
|
| exception is raised and the largest unsigned integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
|
|
uint64_t absZ1, float_status *status)
|
|
{
|
|
int8_t roundingMode;
|
|
flag roundNearestEven, increment;
|
|
|
|
roundingMode = status->float_rounding_mode;
|
|
roundNearestEven = (roundingMode == float_round_nearest_even);
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
increment = ((int64_t)absZ1 < 0);
|
|
break;
|
|
case float_round_to_zero:
|
|
increment = 0;
|
|
break;
|
|
case float_round_up:
|
|
increment = !zSign && absZ1;
|
|
break;
|
|
case float_round_down:
|
|
increment = zSign && absZ1;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if (increment) {
|
|
++absZ0;
|
|
if (absZ0 == 0) {
|
|
float_raise(float_flag_invalid, status);
|
|
return LIT64(0xFFFFFFFFFFFFFFFF);
|
|
}
|
|
absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
|
|
}
|
|
|
|
if (zSign && absZ0) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
|
|
if (absZ1) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return absZ0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| If `a' is denormal and we are in flush-to-zero mode then set the
|
|
| input-denormal exception and return zero. Otherwise just return the value.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_squash_input_denormal(float32 a, float_status *status)
|
|
{
|
|
if (status->flush_inputs_to_zero) {
|
|
if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
|
|
float_raise(float_flag_input_denormal, status);
|
|
return make_float32(float32_val(a) & 0x80000000);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal single-precision floating-point value represented
|
|
| by the denormalized significand `aSig'. The normalized exponent and
|
|
| significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
|
|
{
|
|
int8_t shiftCount;
|
|
|
|
shiftCount = countLeadingZeros32( aSig ) - 8;
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper single-precision floating-
|
|
| point value corresponding to the abstract input. Ordinarily, the abstract
|
|
| value is simply rounded and packed into the single-precision format, with
|
|
| the inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal single-
|
|
| precision floating-point number.
|
|
| The input significand `zSig' has its binary point between bits 30
|
|
| and 29, which is 7 bits to the left of the usual location. This shifted
|
|
| significand must be normalized or smaller. If `zSig' is not normalized,
|
|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
| and it must not require rounding. In the usual case that `zSig' is
|
|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
|
|
float_status *status)
|
|
{
|
|
int8_t roundingMode;
|
|
flag roundNearestEven;
|
|
int8_t roundIncrement, roundBits;
|
|
flag isTiny;
|
|
|
|
roundingMode = status->float_rounding_mode;
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
roundIncrement = 0x40;
|
|
break;
|
|
case float_round_to_zero:
|
|
roundIncrement = 0;
|
|
break;
|
|
case float_round_up:
|
|
roundIncrement = zSign ? 0 : 0x7f;
|
|
break;
|
|
case float_round_down:
|
|
roundIncrement = zSign ? 0x7f : 0;
|
|
break;
|
|
default:
|
|
abort();
|
|
break;
|
|
}
|
|
roundBits = zSig & 0x7F;
|
|
if ( 0xFD <= (uint16_t) zExp ) {
|
|
if ( ( 0xFD < zExp )
|
|
|| ( ( zExp == 0xFD )
|
|
&& ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
|
|
) {
|
|
float_raise(float_flag_overflow | float_flag_inexact, status);
|
|
return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
|
|
}
|
|
if ( zExp < 0 ) {
|
|
if (status->flush_to_zero) {
|
|
float_raise(float_flag_output_denormal, status);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
isTiny =
|
|
(status->float_detect_tininess
|
|
== float_tininess_before_rounding)
|
|
|| ( zExp < -1 )
|
|
|| ( zSig + roundIncrement < 0x80000000 );
|
|
shift32RightJamming( zSig, - zExp, &zSig );
|
|
zExp = 0;
|
|
roundBits = zSig & 0x7F;
|
|
if (isTiny && roundBits) {
|
|
float_raise(float_flag_underflow, status);
|
|
}
|
|
}
|
|
}
|
|
if (roundBits) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
zSig = ( zSig + roundIncrement )>>7;
|
|
zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
|
if ( zSig == 0 ) zExp = 0;
|
|
return packFloat32( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper single-precision floating-
|
|
| point value corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
|
|
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
|
| floating-point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32
|
|
normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
|
|
float_status *status)
|
|
{
|
|
int8_t shiftCount;
|
|
|
|
shiftCount = countLeadingZeros32( zSig ) - 1;
|
|
return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
|
|
status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| If `a' is denormal and we are in flush-to-zero mode then set the
|
|
| input-denormal exception and return zero. Otherwise just return the value.
|
|
*----------------------------------------------------------------------------*/
|
|
float64 float64_squash_input_denormal(float64 a, float_status *status)
|
|
{
|
|
if (status->flush_inputs_to_zero) {
|
|
if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
|
|
float_raise(float_flag_input_denormal, status);
|
|
return make_float64(float64_val(a) & (1ULL << 63));
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal double-precision floating-point value represented
|
|
| by the denormalized significand `aSig'. The normalized exponent and
|
|
| significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
|
|
{
|
|
int8_t shiftCount;
|
|
|
|
shiftCount = countLeadingZeros64( aSig ) - 11;
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
|
| double-precision floating-point value, returning the result. After being
|
|
| shifted into the proper positions, the three fields are simply added
|
|
| together to form the result. This means that any integer portion of `zSig'
|
|
| will be added into the exponent. Since a properly normalized significand
|
|
| will have an integer portion equal to 1, the `zExp' input should be 1 less
|
|
| than the desired result exponent whenever `zSig' is a complete, normalized
|
|
| significand.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
|
|
{
|
|
|
|
return make_float64(
|
|
( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper double-precision floating-
|
|
| point value corresponding to the abstract input. Ordinarily, the abstract
|
|
| value is simply rounded and packed into the double-precision format, with
|
|
| the inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal double-
|
|
| precision floating-point number.
|
|
| The input significand `zSig' has its binary point between bits 62
|
|
| and 61, which is 10 bits to the left of the usual location. This shifted
|
|
| significand must be normalized or smaller. If `zSig' is not normalized,
|
|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
| and it must not require rounding. In the usual case that `zSig' is
|
|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
|
|
float_status *status)
|
|
{
|
|
int8_t roundingMode;
|
|
flag roundNearestEven;
|
|
int roundIncrement, roundBits;
|
|
flag isTiny;
|
|
|
|
roundingMode = status->float_rounding_mode;
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
roundIncrement = 0x200;
|
|
break;
|
|
case float_round_to_zero:
|
|
roundIncrement = 0;
|
|
break;
|
|
case float_round_up:
|
|
roundIncrement = zSign ? 0 : 0x3ff;
|
|
break;
|
|
case float_round_down:
|
|
roundIncrement = zSign ? 0x3ff : 0;
|
|
break;
|
|
case float_round_to_odd:
|
|
roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
roundBits = zSig & 0x3FF;
|
|
if ( 0x7FD <= (uint16_t) zExp ) {
|
|
if ( ( 0x7FD < zExp )
|
|
|| ( ( zExp == 0x7FD )
|
|
&& ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
|
|
) {
|
|
bool overflow_to_inf = roundingMode != float_round_to_odd &&
|
|
roundIncrement != 0;
|
|
float_raise(float_flag_overflow | float_flag_inexact, status);
|
|
return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
|
|
}
|
|
if ( zExp < 0 ) {
|
|
if (status->flush_to_zero) {
|
|
float_raise(float_flag_output_denormal, status);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
isTiny =
|
|
(status->float_detect_tininess
|
|
== float_tininess_before_rounding)
|
|
|| ( zExp < -1 )
|
|
|| ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
|
|
shift64RightJamming( zSig, - zExp, &zSig );
|
|
zExp = 0;
|
|
roundBits = zSig & 0x3FF;
|
|
if (isTiny && roundBits) {
|
|
float_raise(float_flag_underflow, status);
|
|
}
|
|
if (roundingMode == float_round_to_odd) {
|
|
/*
|
|
* For round-to-odd case, the roundIncrement depends on
|
|
* zSig which just changed.
|
|
*/
|
|
roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
|
|
}
|
|
}
|
|
}
|
|
if (roundBits) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
zSig = ( zSig + roundIncrement )>>10;
|
|
zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
|
|
if ( zSig == 0 ) zExp = 0;
|
|
return packFloat64( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper double-precision floating-
|
|
| point value corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
|
|
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
|
| floating-point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64
|
|
normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
|
|
float_status *status)
|
|
{
|
|
int8_t shiftCount;
|
|
|
|
shiftCount = countLeadingZeros64( zSig ) - 1;
|
|
return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
|
|
status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal extended double-precision floating-point value
|
|
| represented by the denormalized significand `aSig'. The normalized exponent
|
|
| and significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
|
|
uint64_t *zSigPtr)
|
|
{
|
|
int8_t shiftCount;
|
|
|
|
shiftCount = countLeadingZeros64( aSig );
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
|
|
| and returns the proper extended double-precision floating-point value
|
|
| corresponding to the abstract input. Ordinarily, the abstract value is
|
|
| rounded and packed into the extended double-precision format, with the
|
|
| inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal extended
|
|
| double-precision floating-point number.
|
|
| If `roundingPrecision' is 32 or 64, the result is rounded to the same
|
|
| number of bits as single or double precision, respectively. Otherwise, the
|
|
| result is rounded to the full precision of the extended double-precision
|
|
| format.
|
|
| The input significand must be normalized or smaller. If the input
|
|
| significand is not normalized, `zExp' must be 0; in that case, the result
|
|
| returned is a subnormal number, and it must not require rounding. The
|
|
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
|
|
int32_t zExp, uint64_t zSig0, uint64_t zSig1,
|
|
float_status *status)
|
|
{
|
|
int8_t roundingMode;
|
|
flag roundNearestEven, increment, isTiny;
|
|
int64_t roundIncrement, roundMask, roundBits;
|
|
|
|
roundingMode = status->float_rounding_mode;
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
if ( roundingPrecision == 80 ) goto precision80;
|
|
if ( roundingPrecision == 64 ) {
|
|
roundIncrement = LIT64( 0x0000000000000400 );
|
|
roundMask = LIT64( 0x00000000000007FF );
|
|
}
|
|
else if ( roundingPrecision == 32 ) {
|
|
roundIncrement = LIT64( 0x0000008000000000 );
|
|
roundMask = LIT64( 0x000000FFFFFFFFFF );
|
|
}
|
|
else {
|
|
goto precision80;
|
|
}
|
|
zSig0 |= ( zSig1 != 0 );
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
break;
|
|
case float_round_to_zero:
|
|
roundIncrement = 0;
|
|
break;
|
|
case float_round_up:
|
|
roundIncrement = zSign ? 0 : roundMask;
|
|
break;
|
|
case float_round_down:
|
|
roundIncrement = zSign ? roundMask : 0;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
roundBits = zSig0 & roundMask;
|
|
if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
|
|
if ( ( 0x7FFE < zExp )
|
|
|| ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
|
|
) {
|
|
goto overflow;
|
|
}
|
|
if ( zExp <= 0 ) {
|
|
if (status->flush_to_zero) {
|
|
float_raise(float_flag_output_denormal, status);
|
|
return packFloatx80(zSign, 0, 0);
|
|
}
|
|
isTiny =
|
|
(status->float_detect_tininess
|
|
== float_tininess_before_rounding)
|
|
|| ( zExp < 0 )
|
|
|| ( zSig0 <= zSig0 + roundIncrement );
|
|
shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
|
|
zExp = 0;
|
|
roundBits = zSig0 & roundMask;
|
|
if (isTiny && roundBits) {
|
|
float_raise(float_flag_underflow, status);
|
|
}
|
|
if (roundBits) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
zSig0 += roundIncrement;
|
|
if ( (int64_t) zSig0 < 0 ) zExp = 1;
|
|
roundIncrement = roundMask + 1;
|
|
if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
|
roundMask |= roundIncrement;
|
|
}
|
|
zSig0 &= ~ roundMask;
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
}
|
|
}
|
|
if (roundBits) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
zSig0 += roundIncrement;
|
|
if ( zSig0 < roundIncrement ) {
|
|
++zExp;
|
|
zSig0 = LIT64( 0x8000000000000000 );
|
|
}
|
|
roundIncrement = roundMask + 1;
|
|
if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
|
roundMask |= roundIncrement;
|
|
}
|
|
zSig0 &= ~ roundMask;
|
|
if ( zSig0 == 0 ) zExp = 0;
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
precision80:
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
increment = ((int64_t)zSig1 < 0);
|
|
break;
|
|
case float_round_to_zero:
|
|
increment = 0;
|
|
break;
|
|
case float_round_up:
|
|
increment = !zSign && zSig1;
|
|
break;
|
|
case float_round_down:
|
|
increment = zSign && zSig1;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
|
|
if ( ( 0x7FFE < zExp )
|
|
|| ( ( zExp == 0x7FFE )
|
|
&& ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
|
|
&& increment
|
|
)
|
|
) {
|
|
roundMask = 0;
|
|
overflow:
|
|
float_raise(float_flag_overflow | float_flag_inexact, status);
|
|
if ( ( roundingMode == float_round_to_zero )
|
|
|| ( zSign && ( roundingMode == float_round_up ) )
|
|
|| ( ! zSign && ( roundingMode == float_round_down ) )
|
|
) {
|
|
return packFloatx80( zSign, 0x7FFE, ~ roundMask );
|
|
}
|
|
return packFloatx80(zSign,
|
|
floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( zExp <= 0 ) {
|
|
isTiny =
|
|
(status->float_detect_tininess
|
|
== float_tininess_before_rounding)
|
|
|| ( zExp < 0 )
|
|
|| ! increment
|
|
|| ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
|
|
shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
|
|
zExp = 0;
|
|
if (isTiny && zSig1) {
|
|
float_raise(float_flag_underflow, status);
|
|
}
|
|
if (zSig1) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
increment = ((int64_t)zSig1 < 0);
|
|
break;
|
|
case float_round_to_zero:
|
|
increment = 0;
|
|
break;
|
|
case float_round_up:
|
|
increment = !zSign && zSig1;
|
|
break;
|
|
case float_round_down:
|
|
increment = zSign && zSig1;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if ( increment ) {
|
|
++zSig0;
|
|
zSig0 &=
|
|
~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
|
if ( (int64_t) zSig0 < 0 ) zExp = 1;
|
|
}
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
}
|
|
}
|
|
if (zSig1) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
if ( increment ) {
|
|
++zSig0;
|
|
if ( zSig0 == 0 ) {
|
|
++zExp;
|
|
zSig0 = LIT64( 0x8000000000000000 );
|
|
}
|
|
else {
|
|
zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
|
}
|
|
}
|
|
else {
|
|
if ( zSig0 == 0 ) zExp = 0;
|
|
}
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent
|
|
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
|
|
| and returns the proper extended double-precision floating-point value
|
|
| corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloatx80' except that the input significand does not have to be
|
|
| normalized.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
|
|
flag zSign, int32_t zExp,
|
|
uint64_t zSig0, uint64_t zSig1,
|
|
float_status *status)
|
|
{
|
|
int8_t shiftCount;
|
|
|
|
if ( zSig0 == 0 ) {
|
|
zSig0 = zSig1;
|
|
zSig1 = 0;
|
|
zExp -= 64;
|
|
}
|
|
shiftCount = countLeadingZeros64( zSig0 );
|
|
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
|
zExp -= shiftCount;
|
|
return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
|
|
zSig0, zSig1, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the least-significant 64 fraction bits of the quadruple-precision
|
|
| floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline uint64_t extractFloat128Frac1( float128 a )
|
|
{
|
|
|
|
return a.low;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the most-significant 48 fraction bits of the quadruple-precision
|
|
| floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline uint64_t extractFloat128Frac0( float128 a )
|
|
{
|
|
|
|
return a.high & LIT64( 0x0000FFFFFFFFFFFF );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the quadruple-precision floating-point value
|
|
| `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline int32_t extractFloat128Exp( float128 a )
|
|
{
|
|
|
|
return ( a.high>>48 ) & 0x7FFF;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the quadruple-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline flag extractFloat128Sign( float128 a )
|
|
{
|
|
|
|
return a.high>>63;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal quadruple-precision floating-point value
|
|
| represented by the denormalized significand formed by the concatenation of
|
|
| `aSig0' and `aSig1'. The normalized exponent is stored at the location
|
|
| pointed to by `zExpPtr'. The most significant 49 bits of the normalized
|
|
| significand are stored at the location pointed to by `zSig0Ptr', and the
|
|
| least significant 64 bits of the normalized significand are stored at the
|
|
| location pointed to by `zSig1Ptr'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat128Subnormal(
|
|
uint64_t aSig0,
|
|
uint64_t aSig1,
|
|
int32_t *zExpPtr,
|
|
uint64_t *zSig0Ptr,
|
|
uint64_t *zSig1Ptr
|
|
)
|
|
{
|
|
int8_t shiftCount;
|
|
|
|
if ( aSig0 == 0 ) {
|
|
shiftCount = countLeadingZeros64( aSig1 ) - 15;
|
|
if ( shiftCount < 0 ) {
|
|
*zSig0Ptr = aSig1>>( - shiftCount );
|
|
*zSig1Ptr = aSig1<<( shiftCount & 63 );
|
|
}
|
|
else {
|
|
*zSig0Ptr = aSig1<<shiftCount;
|
|
*zSig1Ptr = 0;
|
|
}
|
|
*zExpPtr = - shiftCount - 63;
|
|
}
|
|
else {
|
|
shiftCount = countLeadingZeros64( aSig0 ) - 15;
|
|
shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', the exponent `zExp', and the significand formed
|
|
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
|
|
| floating-point value, returning the result. After being shifted into the
|
|
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
|
|
| added together to form the most significant 32 bits of the result. This
|
|
| means that any integer portion of `zSig0' will be added into the exponent.
|
|
| Since a properly normalized significand will have an integer portion equal
|
|
| to 1, the `zExp' input should be 1 less than the desired result exponent
|
|
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
|
|
| significand.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static inline float128
|
|
packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
|
|
{
|
|
float128 z;
|
|
|
|
z.low = zSig1;
|
|
z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and extended significand formed by the concatenation of `zSig0', `zSig1',
|
|
| and `zSig2', and returns the proper quadruple-precision floating-point value
|
|
| corresponding to the abstract input. Ordinarily, the abstract value is
|
|
| simply rounded and packed into the quadruple-precision format, with the
|
|
| inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal quadruple-
|
|
| precision floating-point number.
|
|
| The input significand must be normalized or smaller. If the input
|
|
| significand is not normalized, `zExp' must be 0; in that case, the result
|
|
| returned is a subnormal number, and it must not require rounding. In the
|
|
| usual case that the input significand is normalized, `zExp' must be 1 less
|
|
| than the ``true'' floating-point exponent. The handling of underflow and
|
|
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
|
|
uint64_t zSig0, uint64_t zSig1,
|
|
uint64_t zSig2, float_status *status)
|
|
{
|
|
int8_t roundingMode;
|
|
flag roundNearestEven, increment, isTiny;
|
|
|
|
roundingMode = status->float_rounding_mode;
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
increment = ((int64_t)zSig2 < 0);
|
|
break;
|
|
case float_round_to_zero:
|
|
increment = 0;
|
|
break;
|
|
case float_round_up:
|
|
increment = !zSign && zSig2;
|
|
break;
|
|
case float_round_down:
|
|
increment = zSign && zSig2;
|
|
break;
|
|
case float_round_to_odd:
|
|
increment = !(zSig1 & 0x1) && zSig2;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if ( 0x7FFD <= (uint32_t) zExp ) {
|
|
if ( ( 0x7FFD < zExp )
|
|
|| ( ( zExp == 0x7FFD )
|
|
&& eq128(
|
|
LIT64( 0x0001FFFFFFFFFFFF ),
|
|
LIT64( 0xFFFFFFFFFFFFFFFF ),
|
|
zSig0,
|
|
zSig1
|
|
)
|
|
&& increment
|
|
)
|
|
) {
|
|
float_raise(float_flag_overflow | float_flag_inexact, status);
|
|
if ( ( roundingMode == float_round_to_zero )
|
|
|| ( zSign && ( roundingMode == float_round_up ) )
|
|
|| ( ! zSign && ( roundingMode == float_round_down ) )
|
|
|| (roundingMode == float_round_to_odd)
|
|
) {
|
|
return
|
|
packFloat128(
|
|
zSign,
|
|
0x7FFE,
|
|
LIT64( 0x0000FFFFFFFFFFFF ),
|
|
LIT64( 0xFFFFFFFFFFFFFFFF )
|
|
);
|
|
}
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( zExp < 0 ) {
|
|
if (status->flush_to_zero) {
|
|
float_raise(float_flag_output_denormal, status);
|
|
return packFloat128(zSign, 0, 0, 0);
|
|
}
|
|
isTiny =
|
|
(status->float_detect_tininess
|
|
== float_tininess_before_rounding)
|
|
|| ( zExp < -1 )
|
|
|| ! increment
|
|
|| lt128(
|
|
zSig0,
|
|
zSig1,
|
|
LIT64( 0x0001FFFFFFFFFFFF ),
|
|
LIT64( 0xFFFFFFFFFFFFFFFF )
|
|
);
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
|
|
zExp = 0;
|
|
if (isTiny && zSig2) {
|
|
float_raise(float_flag_underflow, status);
|
|
}
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
case float_round_ties_away:
|
|
increment = ((int64_t)zSig2 < 0);
|
|
break;
|
|
case float_round_to_zero:
|
|
increment = 0;
|
|
break;
|
|
case float_round_up:
|
|
increment = !zSign && zSig2;
|
|
break;
|
|
case float_round_down:
|
|
increment = zSign && zSig2;
|
|
break;
|
|
case float_round_to_odd:
|
|
increment = !(zSig1 & 0x1) && zSig2;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
if (zSig2) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
if ( increment ) {
|
|
add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
|
|
zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
|
|
}
|
|
else {
|
|
if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
|
|
}
|
|
return packFloat128( zSign, zExp, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand formed by the concatenation of `zSig0' and `zSig1', and
|
|
| returns the proper quadruple-precision floating-point value corresponding
|
|
| to the abstract input. This routine is just like `roundAndPackFloat128'
|
|
| except that the input significand has fewer bits and does not have to be
|
|
| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
|
|
| point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
|
|
uint64_t zSig0, uint64_t zSig1,
|
|
float_status *status)
|
|
{
|
|
int8_t shiftCount;
|
|
uint64_t zSig2;
|
|
|
|
if ( zSig0 == 0 ) {
|
|
zSig0 = zSig1;
|
|
zSig1 = 0;
|
|
zExp -= 64;
|
|
}
|
|
shiftCount = countLeadingZeros64( zSig0 ) - 15;
|
|
if ( 0 <= shiftCount ) {
|
|
zSig2 = 0;
|
|
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
|
}
|
|
else {
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
|
|
}
|
|
zExp -= shiftCount;
|
|
return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
|
|
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int32_to_floatx80(int32_t a, float_status *status)
|
|
{
|
|
flag zSign;
|
|
uint32_t absA;
|
|
int8_t shiftCount;
|
|
uint64_t zSig;
|
|
|
|
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros32( absA ) + 32;
|
|
zSig = absA;
|
|
return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a' to
|
|
| the quadruple-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 int32_to_float128(int32_t a, float_status *status)
|
|
{
|
|
flag zSign;
|
|
uint32_t absA;
|
|
int8_t shiftCount;
|
|
uint64_t zSig0;
|
|
|
|
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros32( absA ) + 17;
|
|
zSig0 = absA;
|
|
return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int64_to_floatx80(int64_t a, float_status *status)
|
|
{
|
|
flag zSign;
|
|
uint64_t absA;
|
|
int8_t shiftCount;
|
|
|
|
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros64( absA );
|
|
return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a' to
|
|
| the quadruple-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 int64_to_float128(int64_t a, float_status *status)
|
|
{
|
|
flag zSign;
|
|
uint64_t absA;
|
|
int8_t shiftCount;
|
|
int32_t zExp;
|
|
uint64_t zSig0, zSig1;
|
|
|
|
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros64( absA ) + 49;
|
|
zExp = 0x406E - shiftCount;
|
|
if ( 64 <= shiftCount ) {
|
|
zSig1 = 0;
|
|
zSig0 = absA;
|
|
shiftCount -= 64;
|
|
}
|
|
else {
|
|
zSig1 = absA;
|
|
zSig0 = 0;
|
|
}
|
|
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
|
return packFloat128( zSign, zExp, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit unsigned integer `a'
|
|
| to the quadruple-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 uint64_to_float128(uint64_t a, float_status *status)
|
|
{
|
|
if (a == 0) {
|
|
return float128_zero;
|
|
}
|
|
return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the double-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float32_to_float64(float32 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint32_t aSig;
|
|
a = float32_squash_input_denormal(a, status);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if (aSig) {
|
|
return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat64( aSign, 0x7FF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
--aExp;
|
|
}
|
|
return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float32_to_floatx80(float32 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint32_t aSig;
|
|
|
|
a = float32_squash_input_denormal(a, status);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if (aSig) {
|
|
return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloatx80(aSign,
|
|
floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
aSig |= 0x00800000;
|
|
return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the double-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float32_to_float128(float32 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint32_t aSig;
|
|
|
|
a = float32_squash_input_denormal(a, status);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if (aSig) {
|
|
return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat128( aSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
--aExp;
|
|
}
|
|
return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the single-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_rem(float32 a, float32 b, float_status *status)
|
|
{
|
|
flag aSign, zSign;
|
|
int aExp, bExp, expDiff;
|
|
uint32_t aSig, bSig;
|
|
uint32_t q;
|
|
uint64_t aSig64, bSig64, q64;
|
|
uint32_t alternateASig;
|
|
int32_t sigMean;
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
|
return propagateFloat32NaN(a, b, status);
|
|
}
|
|
float_raise(float_flag_invalid, status);
|
|
return float32_default_nan(status);
|
|
}
|
|
if ( bExp == 0xFF ) {
|
|
if (bSig) {
|
|
return propagateFloat32NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float32_default_nan(status);
|
|
}
|
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return a;
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig |= 0x00800000;
|
|
bSig |= 0x00800000;
|
|
if ( expDiff < 32 ) {
|
|
aSig <<= 8;
|
|
bSig <<= 8;
|
|
if ( expDiff < 0 ) {
|
|
if ( expDiff < -1 ) return a;
|
|
aSig >>= 1;
|
|
}
|
|
q = ( bSig <= aSig );
|
|
if ( q ) aSig -= bSig;
|
|
if ( 0 < expDiff ) {
|
|
q = ( ( (uint64_t) aSig )<<32 ) / bSig;
|
|
q >>= 32 - expDiff;
|
|
bSig >>= 2;
|
|
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
|
}
|
|
else {
|
|
aSig >>= 2;
|
|
bSig >>= 2;
|
|
}
|
|
}
|
|
else {
|
|
if ( bSig <= aSig ) aSig -= bSig;
|
|
aSig64 = ( (uint64_t) aSig )<<40;
|
|
bSig64 = ( (uint64_t) bSig )<<40;
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
|
q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
|
aSig64 = - ( ( bSig * q64 )<<38 );
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
|
q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
|
q = q64>>( 64 - expDiff );
|
|
bSig <<= 6;
|
|
aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
|
|
}
|
|
do {
|
|
alternateASig = aSig;
|
|
++q;
|
|
aSig -= bSig;
|
|
} while ( 0 <= (int32_t) aSig );
|
|
sigMean = aSig + alternateASig;
|
|
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
|
aSig = alternateASig;
|
|
}
|
|
zSign = ( (int32_t) aSig < 0 );
|
|
if ( zSign ) aSig = - aSig;
|
|
return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the binary exponential of the single-precision floating-point value
|
|
| `a'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
|
|
|
| Uses the following identities:
|
|
|
|
|
| 1. -------------------------------------------------------------------------
|
|
| x x*ln(2)
|
|
| 2 = e
|
|
|
|
|
| 2. -------------------------------------------------------------------------
|
|
| 2 3 4 5 n
|
|
| x x x x x x x
|
|
| e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|
|
| 1! 2! 3! 4! 5! n!
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static const float64 float32_exp2_coefficients[15] =
|
|
{
|
|
const_float64( 0x3ff0000000000000ll ), /* 1 */
|
|
const_float64( 0x3fe0000000000000ll ), /* 2 */
|
|
const_float64( 0x3fc5555555555555ll ), /* 3 */
|
|
const_float64( 0x3fa5555555555555ll ), /* 4 */
|
|
const_float64( 0x3f81111111111111ll ), /* 5 */
|
|
const_float64( 0x3f56c16c16c16c17ll ), /* 6 */
|
|
const_float64( 0x3f2a01a01a01a01all ), /* 7 */
|
|
const_float64( 0x3efa01a01a01a01all ), /* 8 */
|
|
const_float64( 0x3ec71de3a556c734ll ), /* 9 */
|
|
const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
|
|
const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
|
|
const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
|
|
const_float64( 0x3de6124613a86d09ll ), /* 13 */
|
|
const_float64( 0x3da93974a8c07c9dll ), /* 14 */
|
|
const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
|
|
};
|
|
|
|
float32 float32_exp2(float32 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint32_t aSig;
|
|
float64 r, x, xn;
|
|
int i;
|
|
a = float32_squash_input_denormal(a, status);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
|
|
if ( aExp == 0xFF) {
|
|
if (aSig) {
|
|
return propagateFloat32NaN(a, float32_zero, status);
|
|
}
|
|
return (aSign) ? float32_zero : a;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return float32_one;
|
|
}
|
|
|
|
float_raise(float_flag_inexact, status);
|
|
|
|
/* ******************************* */
|
|
/* using float64 for approximation */
|
|
/* ******************************* */
|
|
x = float32_to_float64(a, status);
|
|
x = float64_mul(x, float64_ln2, status);
|
|
|
|
xn = x;
|
|
r = float64_one;
|
|
for (i = 0 ; i < 15 ; i++) {
|
|
float64 f;
|
|
|
|
f = float64_mul(xn, float32_exp2_coefficients[i], status);
|
|
r = float64_add(r, f, status);
|
|
|
|
xn = float64_mul(xn, x, status);
|
|
}
|
|
|
|
return float64_to_float32(r, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the binary log of the single-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_log2(float32 a, float_status *status)
|
|
{
|
|
flag aSign, zSign;
|
|
int aExp;
|
|
uint32_t aSig, zSig, i;
|
|
|
|
a = float32_squash_input_denormal(a, status);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( aSign ) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float32_default_nan(status);
|
|
}
|
|
if ( aExp == 0xFF ) {
|
|
if (aSig) {
|
|
return propagateFloat32NaN(a, float32_zero, status);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
aExp -= 0x7F;
|
|
aSig |= 0x00800000;
|
|
zSign = aExp < 0;
|
|
zSig = aExp << 23;
|
|
|
|
for (i = 1 << 22; i > 0; i >>= 1) {
|
|
aSig = ( (uint64_t)aSig * aSig ) >> 23;
|
|
if ( aSig & 0x01000000 ) {
|
|
aSig >>= 1;
|
|
zSig |= i;
|
|
}
|
|
}
|
|
|
|
if ( zSign )
|
|
zSig = -zSig;
|
|
|
|
return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_eq(float32 a, float32 b, float_status *status)
|
|
{
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| or equal to the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_le(float32 a, float32 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. The comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_lt(float32 a, float32 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. The invalid exception is raised if either
|
|
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_unordered(float32 a, float32 b, float_status *status)
|
|
{
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. The comparison is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_eq_quiet(float32 a, float32 b, float_status *status)
|
|
{
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if (float32_is_signaling_nan(a, status)
|
|
|| float32_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
return ( float32_val(a) == float32_val(b) ) ||
|
|
( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_le_quiet(float32 a, float32 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if (float32_is_signaling_nan(a, status)
|
|
|| float32_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_lt_quiet(float32 a, float32 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if (float32_is_signaling_nan(a, status)
|
|
|| float32_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
|
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
|
|
{
|
|
a = float32_squash_input_denormal(a, status);
|
|
b = float32_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if (float32_is_signaling_nan(a, status)
|
|
|| float32_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the single-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float64_to_float32(float64 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint64_t aSig;
|
|
uint32_t zSig;
|
|
a = float64_squash_input_denormal(a, status);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if (aSig) {
|
|
return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat32( aSign, 0xFF, 0 );
|
|
}
|
|
shift64RightJamming( aSig, 22, &aSig );
|
|
zSig = aSig;
|
|
if ( aExp || zSig ) {
|
|
zSig |= 0x40000000;
|
|
aExp -= 0x381;
|
|
}
|
|
return roundAndPackFloat32(aSign, aExp, zSig, status);
|
|
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
|
| half-precision floating-point value, returning the result. After being
|
|
| shifted into the proper positions, the three fields are simply added
|
|
| together to form the result. This means that any integer portion of `zSig'
|
|
| will be added into the exponent. Since a properly normalized significand
|
|
| will have an integer portion equal to 1, the `zExp' input should be 1 less
|
|
| than the desired result exponent whenever `zSig' is a complete, normalized
|
|
| significand.
|
|
*----------------------------------------------------------------------------*/
|
|
static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
|
|
{
|
|
return make_float16(
|
|
(((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper half-precision floating-
|
|
| point value corresponding to the abstract input. Ordinarily, the abstract
|
|
| value is simply rounded and packed into the half-precision format, with
|
|
| the inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal half-
|
|
| precision floating-point number.
|
|
| The `ieee' flag indicates whether to use IEEE standard half precision, or
|
|
| ARM-style "alternative representation", which omits the NaN and Inf
|
|
| encodings in order to raise the maximum representable exponent by one.
|
|
| The input significand `zSig' has its binary point between bits 22
|
|
| and 23, which is 13 bits to the left of the usual location. This shifted
|
|
| significand must be normalized or smaller. If `zSig' is not normalized,
|
|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
| and it must not require rounding. In the usual case that `zSig' is
|
|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
| Note the slightly odd position of the binary point in zSig compared with the
|
|
| other roundAndPackFloat functions. This should probably be fixed if we
|
|
| need to implement more float16 routines than just conversion.
|
|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float16 roundAndPackFloat16(flag zSign, int zExp,
|
|
uint32_t zSig, flag ieee,
|
|
float_status *status)
|
|
{
|
|
int maxexp = ieee ? 29 : 30;
|
|
uint32_t mask;
|
|
uint32_t increment;
|
|
bool rounding_bumps_exp;
|
|
bool is_tiny = false;
|
|
|
|
/* Calculate the mask of bits of the mantissa which are not
|
|
* representable in half-precision and will be lost.
|
|
*/
|
|
if (zExp < 1) {
|
|
/* Will be denormal in halfprec */
|
|
mask = 0x00ffffff;
|
|
if (zExp >= -11) {
|
|
mask >>= 11 + zExp;
|
|
}
|
|
} else {
|
|
/* Normal number in halfprec */
|
|
mask = 0x00001fff;
|
|
}
|
|
|
|
switch (status->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
increment = (mask + 1) >> 1;
|
|
if ((zSig & mask) == increment) {
|
|
increment = zSig & (increment << 1);
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
increment = (mask + 1) >> 1;
|
|
break;
|
|
case float_round_up:
|
|
increment = zSign ? 0 : mask;
|
|
break;
|
|
case float_round_down:
|
|
increment = zSign ? mask : 0;
|
|
break;
|
|
default: /* round_to_zero */
|
|
increment = 0;
|
|
break;
|
|
}
|
|
|
|
rounding_bumps_exp = (zSig + increment >= 0x01000000);
|
|
|
|
if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
|
|
if (ieee) {
|
|
float_raise(float_flag_overflow | float_flag_inexact, status);
|
|
return packFloat16(zSign, 0x1f, 0);
|
|
} else {
|
|
float_raise(float_flag_invalid, status);
|
|
return packFloat16(zSign, 0x1f, 0x3ff);
|
|
}
|
|
}
|
|
|
|
if (zExp < 0) {
|
|
/* Note that flush-to-zero does not affect half-precision results */
|
|
is_tiny =
|
|
(status->float_detect_tininess == float_tininess_before_rounding)
|
|
|| (zExp < -1)
|
|
|| (!rounding_bumps_exp);
|
|
}
|
|
if (zSig & mask) {
|
|
float_raise(float_flag_inexact, status);
|
|
if (is_tiny) {
|
|
float_raise(float_flag_underflow, status);
|
|
}
|
|
}
|
|
|
|
zSig += increment;
|
|
if (rounding_bumps_exp) {
|
|
zSig >>= 1;
|
|
zExp++;
|
|
}
|
|
|
|
if (zExp < -10) {
|
|
return packFloat16(zSign, 0, 0);
|
|
}
|
|
if (zExp < 0) {
|
|
zSig >>= -zExp;
|
|
zExp = 0;
|
|
}
|
|
return packFloat16(zSign, zExp, zSig >> 13);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| If `a' is denormal and we are in flush-to-zero mode then set the
|
|
| input-denormal exception and return zero. Otherwise just return the value.
|
|
*----------------------------------------------------------------------------*/
|
|
float16 float16_squash_input_denormal(float16 a, float_status *status)
|
|
{
|
|
if (status->flush_inputs_to_zero) {
|
|
if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
|
|
float_raise(float_flag_input_denormal, status);
|
|
return make_float16(float16_val(a) & 0x8000);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
|
|
uint32_t *zSigPtr)
|
|
{
|
|
int8_t shiftCount = countLeadingZeros32(aSig) - 21;
|
|
*zSigPtr = aSig << shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
|
|
The latter gains extra exponent range by omitting the NaN/Inf encodings. */
|
|
|
|
float32 float16_to_float32(float16 a, flag ieee, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint32_t aSig;
|
|
|
|
aSign = extractFloat16Sign(a);
|
|
aExp = extractFloat16Exp(a);
|
|
aSig = extractFloat16Frac(a);
|
|
|
|
if (aExp == 0x1f && ieee) {
|
|
if (aSig) {
|
|
return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat32(aSign, 0xff, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
return packFloat32(aSign, 0, 0);
|
|
}
|
|
|
|
normalizeFloat16Subnormal(aSig, &aExp, &aSig);
|
|
aExp--;
|
|
}
|
|
return packFloat32( aSign, aExp + 0x70, aSig << 13);
|
|
}
|
|
|
|
float16 float32_to_float16(float32 a, flag ieee, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint32_t aSig;
|
|
|
|
a = float32_squash_input_denormal(a, status);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if (aSig) {
|
|
/* Input is a NaN */
|
|
if (!ieee) {
|
|
float_raise(float_flag_invalid, status);
|
|
return packFloat16(aSign, 0, 0);
|
|
}
|
|
return commonNaNToFloat16(
|
|
float32ToCommonNaN(a, status), status);
|
|
}
|
|
/* Infinity */
|
|
if (!ieee) {
|
|
float_raise(float_flag_invalid, status);
|
|
return packFloat16(aSign, 0x1f, 0x3ff);
|
|
}
|
|
return packFloat16(aSign, 0x1f, 0);
|
|
}
|
|
if (aExp == 0 && aSig == 0) {
|
|
return packFloat16(aSign, 0, 0);
|
|
}
|
|
/* Decimal point between bits 22 and 23. Note that we add the 1 bit
|
|
* even if the input is denormal; however this is harmless because
|
|
* the largest possible single-precision denormal is still smaller
|
|
* than the smallest representable half-precision denormal, and so we
|
|
* will end up ignoring aSig and returning via the "always return zero"
|
|
* codepath.
|
|
*/
|
|
aSig |= 0x00800000;
|
|
aExp -= 0x71;
|
|
|
|
return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
|
|
}
|
|
|
|
float64 float16_to_float64(float16 a, flag ieee, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint32_t aSig;
|
|
|
|
aSign = extractFloat16Sign(a);
|
|
aExp = extractFloat16Exp(a);
|
|
aSig = extractFloat16Frac(a);
|
|
|
|
if (aExp == 0x1f && ieee) {
|
|
if (aSig) {
|
|
return commonNaNToFloat64(
|
|
float16ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat64(aSign, 0x7ff, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
return packFloat64(aSign, 0, 0);
|
|
}
|
|
|
|
normalizeFloat16Subnormal(aSig, &aExp, &aSig);
|
|
aExp--;
|
|
}
|
|
return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
|
|
}
|
|
|
|
float16 float64_to_float16(float64 a, flag ieee, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint64_t aSig;
|
|
uint32_t zSig;
|
|
|
|
a = float64_squash_input_denormal(a, status);
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) {
|
|
/* Input is a NaN */
|
|
if (!ieee) {
|
|
float_raise(float_flag_invalid, status);
|
|
return packFloat16(aSign, 0, 0);
|
|
}
|
|
return commonNaNToFloat16(
|
|
float64ToCommonNaN(a, status), status);
|
|
}
|
|
/* Infinity */
|
|
if (!ieee) {
|
|
float_raise(float_flag_invalid, status);
|
|
return packFloat16(aSign, 0x1f, 0x3ff);
|
|
}
|
|
return packFloat16(aSign, 0x1f, 0);
|
|
}
|
|
shift64RightJamming(aSig, 29, &aSig);
|
|
zSig = aSig;
|
|
if (aExp == 0 && zSig == 0) {
|
|
return packFloat16(aSign, 0, 0);
|
|
}
|
|
/* Decimal point between bits 22 and 23. Note that we add the 1 bit
|
|
* even if the input is denormal; however this is harmless because
|
|
* the largest possible single-precision denormal is still smaller
|
|
* than the smallest representable half-precision denormal, and so we
|
|
* will end up ignoring aSig and returning via the "always return zero"
|
|
* codepath.
|
|
*/
|
|
zSig |= 0x00800000;
|
|
aExp -= 0x3F1;
|
|
|
|
return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float64_to_floatx80(float64 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint64_t aSig;
|
|
|
|
a = float64_squash_input_denormal(a, status);
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if (aSig) {
|
|
return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloatx80(aSign,
|
|
floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
return
|
|
packFloatx80(
|
|
aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the quadruple-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float64_to_float128(float64 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint64_t aSig, zSig0, zSig1;
|
|
|
|
a = float64_squash_input_denormal(a, status);
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if (aSig) {
|
|
return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat128( aSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
--aExp;
|
|
}
|
|
shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
|
|
return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the double-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_rem(float64 a, float64 b, float_status *status)
|
|
{
|
|
flag aSign, zSign;
|
|
int aExp, bExp, expDiff;
|
|
uint64_t aSig, bSig;
|
|
uint64_t q, alternateASig;
|
|
int64_t sigMean;
|
|
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
bSig = extractFloat64Frac( b );
|
|
bExp = extractFloat64Exp( b );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
|
|
return propagateFloat64NaN(a, b, status);
|
|
}
|
|
float_raise(float_flag_invalid, status);
|
|
return float64_default_nan(status);
|
|
}
|
|
if ( bExp == 0x7FF ) {
|
|
if (bSig) {
|
|
return propagateFloat64NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float64_default_nan(status);
|
|
}
|
|
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return a;
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
|
|
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
|
if ( expDiff < 0 ) {
|
|
if ( expDiff < -1 ) return a;
|
|
aSig >>= 1;
|
|
}
|
|
q = ( bSig <= aSig );
|
|
if ( q ) aSig -= bSig;
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig, 0, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
aSig = - ( ( bSig>>2 ) * q );
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
if ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig, 0, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
q >>= 64 - expDiff;
|
|
bSig >>= 2;
|
|
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
|
}
|
|
else {
|
|
aSig >>= 2;
|
|
bSig >>= 2;
|
|
}
|
|
do {
|
|
alternateASig = aSig;
|
|
++q;
|
|
aSig -= bSig;
|
|
} while ( 0 <= (int64_t) aSig );
|
|
sigMean = aSig + alternateASig;
|
|
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
|
aSig = alternateASig;
|
|
}
|
|
zSign = ( (int64_t) aSig < 0 );
|
|
if ( zSign ) aSig = - aSig;
|
|
return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the binary log of the double-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
float64 float64_log2(float64 a, float_status *status)
|
|
{
|
|
flag aSign, zSign;
|
|
int aExp;
|
|
uint64_t aSig, aSig0, aSig1, zSig, i;
|
|
a = float64_squash_input_denormal(a, status);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( aSign ) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float64_default_nan(status);
|
|
}
|
|
if ( aExp == 0x7FF ) {
|
|
if (aSig) {
|
|
return propagateFloat64NaN(a, float64_zero, status);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
aExp -= 0x3FF;
|
|
aSig |= LIT64( 0x0010000000000000 );
|
|
zSign = aExp < 0;
|
|
zSig = (uint64_t)aExp << 52;
|
|
for (i = 1LL << 51; i > 0; i >>= 1) {
|
|
mul64To128( aSig, aSig, &aSig0, &aSig1 );
|
|
aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
|
|
if ( aSig & LIT64( 0x0020000000000000 ) ) {
|
|
aSig >>= 1;
|
|
zSig |= i;
|
|
}
|
|
}
|
|
|
|
if ( zSign )
|
|
zSig = -zSig;
|
|
return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is equal to the
|
|
| corresponding value `b', and 0 otherwise. The invalid exception is raised
|
|
| if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_eq(float64 a, float64 b, float_status *status)
|
|
{
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_le(float64 a, float64 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. The comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_lt(float64 a, float64 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. The invalid exception is raised if either
|
|
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_unordered(float64 a, float64 b, float_status *status)
|
|
{
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is equal to the
|
|
| corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception.The comparison is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_eq_quiet(float64 a, float64 b, float_status *status)
|
|
{
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if (float64_is_signaling_nan(a, status)
|
|
|| float64_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_le_quiet(float64 a, float64 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if (float64_is_signaling_nan(a, status)
|
|
|| float64_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_lt_quiet(float64 a, float64 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if (float64_is_signaling_nan(a, status)
|
|
|| float64_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
|
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
|
|
{
|
|
a = float64_squash_input_denormal(a, status);
|
|
b = float64_squash_input_denormal(b, status);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if (float64_is_signaling_nan(a, status)
|
|
|| float64_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic---which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN, the
|
|
| largest positive integer is returned. Otherwise, if the conversion
|
|
| overflows, the largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32_t floatx80_to_int32(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1 << 31;
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
|
|
shiftCount = 0x4037 - aExp;
|
|
if ( shiftCount <= 0 ) shiftCount = 1;
|
|
shift64RightJamming( aSig, shiftCount, &aSig );
|
|
return roundAndPackInt32(aSign, aSig, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN, the largest positive integer is returned.
|
|
| Otherwise, if the conversion overflows, the largest integer with the same
|
|
| sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig, savedASig;
|
|
int32_t z;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1 << 31;
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( 0x401E < aExp ) {
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
else if ( aExp < 0x3FFF ) {
|
|
if (aExp || aSig) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return 0;
|
|
}
|
|
shiftCount = 0x403E - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = aSig;
|
|
if ( aSign ) z = - z;
|
|
if ( ( z < 0 ) ^ aSign ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( ( aSig<<shiftCount ) != savedASig ) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic---which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN,
|
|
| the largest positive integer is returned. Otherwise, if the conversion
|
|
| overflows, the largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64_t floatx80_to_int64(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig, aSigExtra;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1ULL << 63;
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
shiftCount = 0x403E - aExp;
|
|
if ( shiftCount <= 0 ) {
|
|
if ( shiftCount ) {
|
|
float_raise(float_flag_invalid, status);
|
|
if (!aSign || floatx80_is_any_nan(a)) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
aSigExtra = 0;
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
|
|
}
|
|
return roundAndPackInt64(aSign, aSig, aSigExtra, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN, the largest positive integer is returned.
|
|
| Otherwise, if the conversion overflows, the largest integer with the same
|
|
| sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig;
|
|
int64_t z;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1ULL << 63;
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
shiftCount = aExp - 0x403E;
|
|
if ( 0 <= shiftCount ) {
|
|
aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
if ( ( a.high != 0xC03E ) || aSig ) {
|
|
float_raise(float_flag_invalid, status);
|
|
if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
else if ( aExp < 0x3FFF ) {
|
|
if (aExp | aSig) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return 0;
|
|
}
|
|
z = aSig>>( - shiftCount );
|
|
if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the single-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 floatx80_to_float32(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float32_default_nan(status);
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 ) ) {
|
|
return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat32( aSign, 0xFF, 0 );
|
|
}
|
|
shift64RightJamming( aSig, 33, &aSig );
|
|
if ( aExp || aSig ) aExp -= 0x3F81;
|
|
return roundAndPackFloat32(aSign, aExp, aSig, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the double-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 floatx80_to_float64(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig, zSig;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float64_default_nan(status);
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 ) ) {
|
|
return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat64( aSign, 0x7FF, 0 );
|
|
}
|
|
shift64RightJamming( aSig, 1, &zSig );
|
|
if ( aExp || aSig ) aExp -= 0x3C01;
|
|
return roundAndPackFloat64(aSign, aExp, zSig, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the quadruple-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 floatx80_to_float128(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
uint64_t aSig, zSig0, zSig1;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float128_default_nan(status);
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
|
|
return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
|
|
}
|
|
shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
|
|
return packFloat128( aSign, aExp, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the extended double-precision floating-point value `a'
|
|
| to the precision provided by floatx80_rounding_precision and returns the
|
|
| result as an extended double-precision floating-point value.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_round(floatx80 a, float_status *status)
|
|
{
|
|
return roundAndPackFloatx80(status->floatx80_rounding_precision,
|
|
extractFloatx80Sign(a),
|
|
extractFloatx80Exp(a),
|
|
extractFloatx80Frac(a), 0, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the extended double-precision floating-point value `a' to an integer,
|
|
| and returns the result as an extended quadruple-precision floating-point
|
|
| value. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t lastBitMask, roundBitsMask;
|
|
floatx80 z;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aExp = extractFloatx80Exp( a );
|
|
if ( 0x403E <= aExp ) {
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
|
|
return propagateFloatx80NaN(a, a, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp < 0x3FFF ) {
|
|
if ( ( aExp == 0 )
|
|
&& ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
|
|
return a;
|
|
}
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
aSign = extractFloatx80Sign( a );
|
|
switch (status->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
|
|
) {
|
|
return
|
|
packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
if (aExp == 0x3FFE) {
|
|
return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return
|
|
aSign ?
|
|
packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
|
|
: packFloatx80( 0, 0, 0 );
|
|
case float_round_up:
|
|
return
|
|
aSign ? packFloatx80( 1, 0, 0 )
|
|
: packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
return packFloatx80( aSign, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x403E - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
switch (status->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
z.low += lastBitMask>>1;
|
|
if ((z.low & roundBitsMask) == 0) {
|
|
z.low &= ~lastBitMask;
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
z.low += lastBitMask >> 1;
|
|
break;
|
|
case float_round_to_zero:
|
|
break;
|
|
case float_round_up:
|
|
if (!extractFloatx80Sign(z)) {
|
|
z.low += roundBitsMask;
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
if (extractFloatx80Sign(z)) {
|
|
z.low += roundBitsMask;
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
z.low &= ~ roundBitsMask;
|
|
if ( z.low == 0 ) {
|
|
++z.high;
|
|
z.low = LIT64( 0x8000000000000000 );
|
|
}
|
|
if (z.low != a.low) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the extended double-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
|
|
| negated before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
|
|
float_status *status)
|
|
{
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
int32_t expDiff;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
expDiff = aExp - bExp;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0x7FFF ) {
|
|
if ((uint64_t)(aSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) --expDiff;
|
|
shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0x7FFF ) {
|
|
if ((uint64_t)(bSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return packFloatx80(zSign,
|
|
floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( aExp == 0 ) ++expDiff;
|
|
shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
zSig1 = 0;
|
|
zSig0 = aSig + bSig;
|
|
if ( aExp == 0 ) {
|
|
normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
|
|
goto roundAndPack;
|
|
}
|
|
zExp = aExp;
|
|
goto shiftRight1;
|
|
}
|
|
zSig0 = aSig + bSig;
|
|
if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
|
|
shiftRight1:
|
|
shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
|
zSig0 |= LIT64( 0x8000000000000000 );
|
|
++zExp;
|
|
roundAndPack:
|
|
return roundAndPackFloatx80(status->floatx80_rounding_precision,
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the extended
|
|
| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
|
|
float_status *status)
|
|
{
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
int32_t expDiff;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
expDiff = aExp - bExp;
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
zSig1 = 0;
|
|
if ( bSig < aSig ) goto aBigger;
|
|
if ( aSig < bSig ) goto bBigger;
|
|
return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
|
|
bExpBigger:
|
|
if ( bExp == 0x7FFF ) {
|
|
if ((uint64_t)(bSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return packFloatx80(zSign ^ 1, floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( aExp == 0 ) ++expDiff;
|
|
shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
|
bBigger:
|
|
sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0x7FFF ) {
|
|
if ((uint64_t)(aSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) --expDiff;
|
|
shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
|
aBigger:
|
|
sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the extended double-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return subFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return addFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
bSign = extractFloatx80Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 )
|
|
|| ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
if ( ( bExp | bSig ) == 0 ) goto invalid;
|
|
return packFloatx80(zSign, floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ((uint64_t)(bSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
return packFloatx80(zSign, floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
|
normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
|
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
zExp = aExp + bExp - 0x3FFE;
|
|
mul64To128( aSig, bSig, &zSig0, &zSig1 );
|
|
if ( 0 < (int64_t) zSig0 ) {
|
|
shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloatx80(status->floatx80_rounding_precision,
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the extended double-precision floating-point
|
|
| value `a' by the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
uint64_t rem0, rem1, rem2, term0, term1, term2;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
bSign = extractFloatx80Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ((uint64_t)(aSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ((uint64_t)(bSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
goto invalid;
|
|
}
|
|
return packFloatx80(zSign, floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ((uint64_t)(bSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return packFloatx80( zSign, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
float_raise(float_flag_divbyzero, status);
|
|
return packFloatx80(zSign, floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
|
normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = aExp - bExp + 0x3FFE;
|
|
rem1 = 0;
|
|
if ( bSig <= aSig ) {
|
|
shift128Right( aSig, 0, 1, &aSig, &rem1 );
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv128To64( aSig, rem1, bSig );
|
|
mul64To128( bSig, zSig0, &term0, &term1 );
|
|
sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, 0, bSig );
|
|
if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
|
|
mul64To128( bSig, zSig1, &term1, &term2 );
|
|
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 ) != 0 );
|
|
}
|
|
return roundAndPackFloatx80(status->floatx80_rounding_precision,
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the extended double-precision floating-point value
|
|
| `a' with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, zSign;
|
|
int32_t aExp, bExp, expDiff;
|
|
uint64_t aSig0, aSig1, bSig;
|
|
uint64_t q, term0, term1, alternateASig0, alternateASig1;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aSig0 = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig0<<1 )
|
|
|| ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
goto invalid;
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ((uint64_t)(bSig << 1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
|
|
normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
|
}
|
|
bSig |= LIT64( 0x8000000000000000 );
|
|
zSign = aSign;
|
|
expDiff = aExp - bExp;
|
|
aSig1 = 0;
|
|
if ( expDiff < 0 ) {
|
|
if ( expDiff < -1 ) return a;
|
|
shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
|
|
expDiff = 0;
|
|
}
|
|
q = ( bSig <= aSig0 );
|
|
if ( q ) aSig0 -= bSig;
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
mul64To128( bSig, q, &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
|
shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
if ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
q >>= 64 - expDiff;
|
|
mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
|
shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
|
|
while ( le128( term0, term1, aSig0, aSig1 ) ) {
|
|
++q;
|
|
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
|
}
|
|
}
|
|
else {
|
|
term1 = 0;
|
|
term0 = bSig;
|
|
}
|
|
sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
|
|
if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
|
|| ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
|
&& ( q & 1 ) )
|
|
) {
|
|
aSig0 = alternateASig0;
|
|
aSig1 = alternateASig1;
|
|
zSign = ! zSign;
|
|
}
|
|
return
|
|
normalizeRoundAndPackFloatx80(
|
|
80, zSign, bExp + expDiff, aSig0, aSig1, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the extended double-precision floating-point
|
|
| value `a'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, zExp;
|
|
uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
|
|
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aSig0 = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ((uint64_t)(aSig0 << 1)) {
|
|
return propagateFloatx80NaN(a, a, status);
|
|
}
|
|
if ( ! aSign ) return a;
|
|
goto invalid;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig0 ) == 0 ) return a;
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
|
|
normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
|
}
|
|
zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
|
|
zSig0 = estimateSqrt32( aExp, aSig0>>32 );
|
|
shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
|
|
zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
|
doubleZSig0 = zSig0<<1;
|
|
mul64To128( zSig0, zSig0, &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
doubleZSig0 -= 2;
|
|
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
|
if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
|
|
if ( zSig1 == 0 ) zSig1 = 1;
|
|
mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
|
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
|
mul64To128( zSig1, zSig1, &term2, &term3 );
|
|
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
|
term3 |= 1;
|
|
term2 |= doubleZSig0;
|
|
add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
|
|
zSig0 |= doubleZSig0;
|
|
return roundAndPackFloatx80(status->floatx80_rounding_precision,
|
|
0, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is equal
|
|
| to the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
|
|
|| (extractFloatx80Exp(a) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(a) << 1))
|
|
|| (extractFloatx80Exp(b) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(b) << 1))
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| less than or equal to the corresponding value `b', and 0 otherwise. The
|
|
| invalid exception is raised if either operand is a NaN. The comparison is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
|
|
|| (extractFloatx80Exp(a) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(a) << 1))
|
|
|| (extractFloatx80Exp(b) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(b) << 1))
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| less than the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
|
|
|| (extractFloatx80Exp(a) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(a) << 1))
|
|
|| (extractFloatx80Exp(b) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(b) << 1))
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point values `a' and `b'
|
|
| cannot be compared, and 0 otherwise. The invalid exception is raised if
|
|
| either operand is a NaN. The comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
|
|
|| (extractFloatx80Exp(a) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(a) << 1))
|
|
|| (extractFloatx80Exp(b) == 0x7FFF
|
|
&& (uint64_t) (extractFloatx80Frac(b) << 1))
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if (floatx80_is_signaling_nan(a, status)
|
|
|| floatx80_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is less
|
|
| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
|
|
| do not cause an exception. Otherwise, the comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if (floatx80_is_signaling_nan(a, status)
|
|
|| floatx80_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is less
|
|
| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
|
|
| an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if (floatx80_is_signaling_nan(a, status)
|
|
|| floatx80_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point values `a' and `b'
|
|
| cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
|
|
| The comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
}
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if (floatx80_is_signaling_nan(a, status)
|
|
|| floatx80_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 32-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32_t float128_to_int32(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
|
|
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
|
aSig0 |= ( aSig1 != 0 );
|
|
shiftCount = 0x4028 - aExp;
|
|
if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
|
|
return roundAndPackInt32(aSign, aSig0, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 32-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero. If
|
|
| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
|
| conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig0, aSig1, savedASig;
|
|
int32_t z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
aSig0 |= ( aSig1 != 0 );
|
|
if ( 0x401E < aExp ) {
|
|
if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
else if ( aExp < 0x3FFF ) {
|
|
if (aExp || aSig0) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return 0;
|
|
}
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
shiftCount = 0x402F - aExp;
|
|
savedASig = aSig0;
|
|
aSig0 >>= shiftCount;
|
|
z = aSig0;
|
|
if ( aSign ) z = - z;
|
|
if ( ( z < 0 ) ^ aSign ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( ( aSig0<<shiftCount ) != savedASig ) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 64-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64_t float128_to_int64(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
|
shiftCount = 0x402F - aExp;
|
|
if ( shiftCount <= 0 ) {
|
|
if ( 0x403E < aExp ) {
|
|
float_raise(float_flag_invalid, status);
|
|
if ( ! aSign
|
|
|| ( ( aExp == 0x7FFF )
|
|
&& ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
|
|
)
|
|
) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
|
|
}
|
|
return roundAndPackInt64(aSign, aSig0, aSig1, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 64-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, shiftCount;
|
|
uint64_t aSig0, aSig1;
|
|
int64_t z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
|
shiftCount = aExp - 0x402F;
|
|
if ( 0 < shiftCount ) {
|
|
if ( 0x403E <= aExp ) {
|
|
aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
|
|
if ( ( a.high == LIT64( 0xC03E000000000000 ) )
|
|
&& ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
|
|
if (aSig1) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
}
|
|
else {
|
|
float_raise(float_flag_invalid, status);
|
|
if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
|
|
if ( (uint64_t) ( aSig1<<shiftCount ) ) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
}
|
|
else {
|
|
if ( aExp < 0x3FFF ) {
|
|
if ( aExp | aSig0 | aSig1 ) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return 0;
|
|
}
|
|
z = aSig0>>( - shiftCount );
|
|
if ( aSig1
|
|
|| ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point value
|
|
| `a' to the 64-bit unsigned integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. If the conversion overflows, the
|
|
| largest unsigned integer is returned. If 'a' is negative, the value is
|
|
| rounded and zero is returned; negative values that do not round to zero
|
|
| will raise the inexact exception.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
uint64_t float128_to_uint64(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int aExp;
|
|
int shiftCount;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig0 = extractFloat128Frac0(a);
|
|
aSig1 = extractFloat128Frac1(a);
|
|
aExp = extractFloat128Exp(a);
|
|
aSign = extractFloat128Sign(a);
|
|
if (aSign && (aExp > 0x3FFE)) {
|
|
float_raise(float_flag_invalid, status);
|
|
if (float128_is_any_nan(a)) {
|
|
return LIT64(0xFFFFFFFFFFFFFFFF);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
if (aExp) {
|
|
aSig0 |= LIT64(0x0001000000000000);
|
|
}
|
|
shiftCount = 0x402F - aExp;
|
|
if (shiftCount <= 0) {
|
|
if (0x403E < aExp) {
|
|
float_raise(float_flag_invalid, status);
|
|
return LIT64(0xFFFFFFFFFFFFFFFF);
|
|
}
|
|
shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
|
|
} else {
|
|
shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
|
|
}
|
|
return roundAndPackUint64(aSign, aSig0, aSig1, status);
|
|
}
|
|
|
|
uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
|
|
{
|
|
uint64_t v;
|
|
signed char current_rounding_mode = status->float_rounding_mode;
|
|
|
|
set_float_rounding_mode(float_round_to_zero, status);
|
|
v = float128_to_uint64(a, status);
|
|
set_float_rounding_mode(current_rounding_mode, status);
|
|
|
|
return v;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 32-bit unsigned integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise,
|
|
| if the conversion overflows, the largest unsigned integer is returned.
|
|
| If 'a' is negative, the value is rounded and zero is returned; negative
|
|
| values that do not round to zero will raise the inexact exception.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
|
|
{
|
|
uint64_t v;
|
|
uint32_t res;
|
|
int old_exc_flags = get_float_exception_flags(status);
|
|
|
|
v = float128_to_uint64_round_to_zero(a, status);
|
|
if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
} else {
|
|
return v;
|
|
}
|
|
set_float_exception_flags(old_exc_flags, status);
|
|
float_raise(float_flag_invalid, status);
|
|
return res;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the single-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float128_to_float32(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig0, aSig1;
|
|
uint32_t zSig;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat32( aSign, 0xFF, 0 );
|
|
}
|
|
aSig0 |= ( aSig1 != 0 );
|
|
shift64RightJamming( aSig0, 18, &aSig0 );
|
|
zSig = aSig0;
|
|
if ( aExp || zSig ) {
|
|
zSig |= 0x40000000;
|
|
aExp -= 0x3F81;
|
|
}
|
|
return roundAndPackFloat32(aSign, aExp, zSig, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float128_to_float64(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloat64( aSign, 0x7FF, 0 );
|
|
}
|
|
shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
|
aSig0 |= ( aSig1 != 0 );
|
|
if ( aExp || aSig0 ) {
|
|
aSig0 |= LIT64( 0x4000000000000000 );
|
|
aExp -= 0x3C01;
|
|
}
|
|
return roundAndPackFloat64(aSign, aExp, aSig0, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the extended double-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float128_to_floatx80(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
|
|
}
|
|
return packFloatx80(aSign, floatx80_infinity_high,
|
|
floatx80_infinity_low);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
}
|
|
shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
|
|
return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the quadruple-precision floating-point value `a' to an integer, and
|
|
| returns the result as a quadruple-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_round_to_int(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t lastBitMask, roundBitsMask;
|
|
float128 z;
|
|
|
|
aExp = extractFloat128Exp( a );
|
|
if ( 0x402F <= aExp ) {
|
|
if ( 0x406F <= aExp ) {
|
|
if ( ( aExp == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
|
|
) {
|
|
return propagateFloat128NaN(a, a, status);
|
|
}
|
|
return a;
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
switch (status->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
if ( lastBitMask ) {
|
|
add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
|
|
if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
|
}
|
|
else {
|
|
if ( (int64_t) z.low < 0 ) {
|
|
++z.high;
|
|
if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
|
|
}
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
if (lastBitMask) {
|
|
add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
|
|
} else {
|
|
if ((int64_t) z.low < 0) {
|
|
++z.high;
|
|
}
|
|
}
|
|
break;
|
|
case float_round_to_zero:
|
|
break;
|
|
case float_round_up:
|
|
if (!extractFloat128Sign(z)) {
|
|
add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
if (extractFloat128Sign(z)) {
|
|
add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
z.low &= ~ roundBitsMask;
|
|
}
|
|
else {
|
|
if ( aExp < 0x3FFF ) {
|
|
if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
aSign = extractFloat128Sign( a );
|
|
switch (status->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x3FFE )
|
|
&& ( extractFloat128Frac0( a )
|
|
| extractFloat128Frac1( a ) )
|
|
) {
|
|
return packFloat128( aSign, 0x3FFF, 0, 0 );
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
if (aExp == 0x3FFE) {
|
|
return packFloat128(aSign, 0x3FFF, 0, 0);
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return
|
|
aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
|
|
: packFloat128( 0, 0, 0, 0 );
|
|
case float_round_up:
|
|
return
|
|
aSign ? packFloat128( 1, 0, 0, 0 )
|
|
: packFloat128( 0, 0x3FFF, 0, 0 );
|
|
}
|
|
return packFloat128( aSign, 0, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x402F - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z.low = 0;
|
|
z.high = a.high;
|
|
switch (status->float_rounding_mode) {
|
|
case float_round_nearest_even:
|
|
z.high += lastBitMask>>1;
|
|
if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
|
|
z.high &= ~ lastBitMask;
|
|
}
|
|
break;
|
|
case float_round_ties_away:
|
|
z.high += lastBitMask>>1;
|
|
break;
|
|
case float_round_to_zero:
|
|
break;
|
|
case float_round_up:
|
|
if (!extractFloat128Sign(z)) {
|
|
z.high |= ( a.low != 0 );
|
|
z.high += roundBitsMask;
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
if (extractFloat128Sign(z)) {
|
|
z.high |= (a.low != 0);
|
|
z.high += roundBitsMask;
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
z.high &= ~ roundBitsMask;
|
|
}
|
|
if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
|
|
status->float_exception_flags |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the quadruple-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
|
|
float_status *status)
|
|
{
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
int32_t expDiff;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
expDiff = aExp - bExp;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0x7FFF ) {
|
|
if (aSig0 | aSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig0 |= LIT64( 0x0001000000000000 );
|
|
}
|
|
shift128ExtraRightJamming(
|
|
bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0x7FFF ) {
|
|
if (bSig0 | bSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
}
|
|
shift128ExtraRightJamming(
|
|
aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
if ( aExp == 0 ) {
|
|
if (status->flush_to_zero) {
|
|
if (zSig0 | zSig1) {
|
|
float_raise(float_flag_output_denormal, status);
|
|
}
|
|
return packFloat128(zSign, 0, 0, 0);
|
|
}
|
|
return packFloat128( zSign, 0, zSig0, zSig1 );
|
|
}
|
|
zSig2 = 0;
|
|
zSig0 |= LIT64( 0x0002000000000000 );
|
|
zExp = aExp;
|
|
goto shiftRight1;
|
|
}
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
--zExp;
|
|
if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
|
|
++zExp;
|
|
shiftRight1:
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
|
roundAndPack:
|
|
return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the quadruple-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
|
|
float_status *status)
|
|
{
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
|
|
int32_t expDiff;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
expDiff = aExp - bExp;
|
|
shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
|
shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
float_raise(float_flag_invalid, status);
|
|
return float128_default_nan(status);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if ( bSig0 < aSig0 ) goto aBigger;
|
|
if ( aSig0 < bSig0 ) goto bBigger;
|
|
if ( bSig1 < aSig1 ) goto aBigger;
|
|
if ( aSig1 < bSig1 ) goto bBigger;
|
|
return packFloat128(status->float_rounding_mode == float_round_down,
|
|
0, 0, 0);
|
|
bExpBigger:
|
|
if ( bExp == 0x7FFF ) {
|
|
if (bSig0 | bSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig0 |= LIT64( 0x4000000000000000 );
|
|
}
|
|
shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
|
bSig0 |= LIT64( 0x4000000000000000 );
|
|
bBigger:
|
|
sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0x7FFF ) {
|
|
if (aSig0 | aSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig0 |= LIT64( 0x4000000000000000 );
|
|
}
|
|
shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
|
|
aSig0 |= LIT64( 0x4000000000000000 );
|
|
aBigger:
|
|
sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
|
|
status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the quadruple-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_add(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return subFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the quadruple-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_sub(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return addFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the quadruple-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_mul(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
bSign = extractFloat128Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( ( aSig0 | aSig1 )
|
|
|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if (bSig0 | bSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return float128_default_nan(status);
|
|
}
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
zExp = aExp + bExp - 0x4000;
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
|
|
mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
|
|
add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
|
zSig2 |= ( zSig3 != 0 );
|
|
if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
|
++zExp;
|
|
}
|
|
return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the quadruple-precision floating-point value
|
|
| `a' by the corresponding value `b'. The operation is performed according to
|
|
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_div(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32_t aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
bSign = extractFloat128Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if (aSig0 | aSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if (bSig0 | bSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
goto invalid;
|
|
}
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if (bSig0 | bSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
return packFloat128( zSign, 0, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) {
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return float128_default_nan(status);
|
|
}
|
|
float_raise(float_flag_divbyzero, status);
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
zExp = aExp - bExp + 0x3FFD;
|
|
shortShift128Left(
|
|
aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
|
|
shortShift128Left(
|
|
bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
|
if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
|
|
shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
|
mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
|
|
sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
|
|
if ( ( zSig1 & 0x3FFF ) <= 4 ) {
|
|
mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
|
|
sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
|
|
return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the quadruple-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_rem(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, zSign;
|
|
int32_t aExp, bExp, expDiff;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
|
|
uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
|
|
int64_t sigMean0;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( ( aSig0 | aSig1 )
|
|
|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
goto invalid;
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if (bSig0 | bSig1) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return float128_default_nan(status);
|
|
}
|
|
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return a;
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
if ( expDiff < -1 ) return a;
|
|
shortShift128Left(
|
|
aSig0 | LIT64( 0x0001000000000000 ),
|
|
aSig1,
|
|
15 - ( expDiff < 0 ),
|
|
&aSig0,
|
|
&aSig1
|
|
);
|
|
shortShift128Left(
|
|
bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
|
q = le128( bSig0, bSig1, aSig0, aSig1 );
|
|
if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
|
q = ( 4 < q ) ? q - 4 : 0;
|
|
mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
|
shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
|
|
shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
|
|
sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
|
|
expDiff -= 61;
|
|
}
|
|
if ( -64 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
|
q = ( 4 < q ) ? q - 4 : 0;
|
|
q >>= - expDiff;
|
|
shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
|
expDiff += 52;
|
|
if ( expDiff < 0 ) {
|
|
shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
|
|
}
|
|
mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
|
sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
|
|
shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
|
}
|
|
do {
|
|
alternateASig0 = aSig0;
|
|
alternateASig1 = aSig1;
|
|
++q;
|
|
sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
|
} while ( 0 <= (int64_t) aSig0 );
|
|
add128(
|
|
aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
|
|
if ( ( sigMean0 < 0 )
|
|
|| ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
|
|
aSig0 = alternateASig0;
|
|
aSig1 = alternateASig1;
|
|
}
|
|
zSign = ( (int64_t) aSig0 < 0 );
|
|
if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
|
|
return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
|
|
status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the quadruple-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_sqrt(float128 a, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp, zExp;
|
|
uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
|
|
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if (aSig0 | aSig1) {
|
|
return propagateFloat128NaN(a, a, status);
|
|
}
|
|
if ( ! aSign ) return a;
|
|
goto invalid;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
|
|
invalid:
|
|
float_raise(float_flag_invalid, status);
|
|
return float128_default_nan(status);
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
zSig0 = estimateSqrt32( aExp, aSig0>>17 );
|
|
shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
|
|
zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
|
doubleZSig0 = zSig0<<1;
|
|
mul64To128( zSig0, zSig0, &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
doubleZSig0 -= 2;
|
|
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
|
if ( ( zSig1 & 0x1FFF ) <= 5 ) {
|
|
if ( zSig1 == 0 ) zSig1 = 1;
|
|
mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
|
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
|
mul64To128( zSig1, zSig1, &term2, &term3 );
|
|
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
|
term3 |= 1;
|
|
term2 |= doubleZSig0;
|
|
add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
|
|
return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_eq(float128 a, float128 b, float_status *status)
|
|
{
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| or equal to the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_le(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. The comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_lt(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. The invalid exception is raised if either
|
|
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_unordered(float128 a, float128 b, float_status *status)
|
|
{
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. The comparison is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_eq_quiet(float128 a, float128 b, float_status *status)
|
|
{
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if (float128_is_signaling_nan(a, status)
|
|
|| float128_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_le_quiet(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if (float128_is_signaling_nan(a, status)
|
|
|| float128_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_lt_quiet(float128 a, float128 b, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if (float128_is_signaling_nan(a, status)
|
|
|| float128_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
|
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
|
|
{
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if (float128_is_signaling_nan(a, status)
|
|
|| float128_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
|
|
int is_quiet, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return float_relation_unordered;
|
|
}
|
|
if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
|
|
( extractFloatx80Frac( a )<<1 ) ) ||
|
|
( ( extractFloatx80Exp( b ) == 0x7fff ) &&
|
|
( extractFloatx80Frac( b )<<1 ) )) {
|
|
if (!is_quiet ||
|
|
floatx80_is_signaling_nan(a, status) ||
|
|
floatx80_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
|
|
if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
|
|
( ( a.low | b.low ) == 0 ) ) {
|
|
/* zero case */
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - (2 * aSign);
|
|
}
|
|
} else {
|
|
if (a.low == b.low && a.high == b.high) {
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
|
|
}
|
|
}
|
|
}
|
|
|
|
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
return floatx80_compare_internal(a, b, 0, status);
|
|
}
|
|
|
|
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
|
|
{
|
|
return floatx80_compare_internal(a, b, 1, status);
|
|
}
|
|
|
|
static inline int float128_compare_internal(float128 a, float128 b,
|
|
int is_quiet, float_status *status)
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
|
|
( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
|
|
( ( extractFloat128Exp( b ) == 0x7fff ) &&
|
|
( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
|
|
if (!is_quiet ||
|
|
float128_is_signaling_nan(a, status) ||
|
|
float128_is_signaling_nan(b, status)) {
|
|
float_raise(float_flag_invalid, status);
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
|
|
/* zero case */
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - (2 * aSign);
|
|
}
|
|
} else {
|
|
if (a.low == b.low && a.high == b.high) {
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
|
|
}
|
|
}
|
|
}
|
|
|
|
int float128_compare(float128 a, float128 b, float_status *status)
|
|
{
|
|
return float128_compare_internal(a, b, 0, status);
|
|
}
|
|
|
|
int float128_compare_quiet(float128 a, float128 b, float_status *status)
|
|
{
|
|
return float128_compare_internal(a, b, 1, status);
|
|
}
|
|
|
|
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig;
|
|
|
|
if (floatx80_invalid_encoding(a)) {
|
|
float_raise(float_flag_invalid, status);
|
|
return floatx80_default_nan(status);
|
|
}
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig<<1 ) {
|
|
return propagateFloatx80NaN(a, a, status);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
return a;
|
|
}
|
|
aExp++;
|
|
}
|
|
|
|
if (n > 0x10000) {
|
|
n = 0x10000;
|
|
} else if (n < -0x10000) {
|
|
n = -0x10000;
|
|
}
|
|
|
|
aExp += n;
|
|
return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
|
|
aSign, aExp, aSig, 0, status);
|
|
}
|
|
|
|
float128 float128_scalbn(float128 a, int n, float_status *status)
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return propagateFloat128NaN(a, a, status);
|
|
}
|
|
return a;
|
|
}
|
|
if (aExp != 0) {
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
} else if (aSig0 == 0 && aSig1 == 0) {
|
|
return a;
|
|
} else {
|
|
aExp++;
|
|
}
|
|
|
|
if (n > 0x10000) {
|
|
n = 0x10000;
|
|
} else if (n < -0x10000) {
|
|
n = -0x10000;
|
|
}
|
|
|
|
aExp += n - 1;
|
|
return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
|
|
, status);
|
|
|
|
}
|