xemu/target-i386/kvm.c
Eduardo Habkost 9e9d3863ad target-i386: Move CPUX86State.cpuid_apic_id to X86CPU.apic_id
The field doesn't need to be inside CPUState, and it is not specific for
the CPUID instruction, so move and rename it.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2015-02-25 15:00:07 -03:00

2768 lines
81 KiB
C

/*
* QEMU KVM support
*
* Copyright (C) 2006-2008 Qumranet Technologies
* Copyright IBM, Corp. 2008
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include <linux/kvm.h>
#include <linux/kvm_para.h>
#include "qemu-common.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_i386.h"
#include "cpu.h"
#include "exec/gdbstub.h"
#include "qemu/host-utils.h"
#include "qemu/config-file.h"
#include "hw/i386/pc.h"
#include "hw/i386/apic.h"
#include "hw/i386/apic_internal.h"
#include "hw/i386/apic-msidef.h"
#include "exec/ioport.h"
#include <asm/hyperv.h>
#include "hw/pci/pci.h"
#include "migration/migration.h"
#include "qapi/qmp/qerror.h"
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#define MSR_KVM_WALL_CLOCK 0x11
#define MSR_KVM_SYSTEM_TIME 0x12
#ifndef BUS_MCEERR_AR
#define BUS_MCEERR_AR 4
#endif
#ifndef BUS_MCEERR_AO
#define BUS_MCEERR_AO 5
#endif
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_INFO(SET_TSS_ADDR),
KVM_CAP_INFO(EXT_CPUID),
KVM_CAP_INFO(MP_STATE),
KVM_CAP_LAST_INFO
};
static bool has_msr_star;
static bool has_msr_hsave_pa;
static bool has_msr_tsc_adjust;
static bool has_msr_tsc_deadline;
static bool has_msr_feature_control;
static bool has_msr_async_pf_en;
static bool has_msr_pv_eoi_en;
static bool has_msr_misc_enable;
static bool has_msr_bndcfgs;
static bool has_msr_kvm_steal_time;
static int lm_capable_kernel;
static bool has_msr_hv_hypercall;
static bool has_msr_hv_vapic;
static bool has_msr_hv_tsc;
static bool has_msr_mtrr;
static bool has_msr_xss;
static bool has_msr_architectural_pmu;
static uint32_t num_architectural_pmu_counters;
bool kvm_allows_irq0_override(void)
{
return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
}
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
{
struct kvm_cpuid2 *cpuid;
int r, size;
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
cpuid = g_malloc0(size);
cpuid->nent = max;
r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
if (r == 0 && cpuid->nent >= max) {
r = -E2BIG;
}
if (r < 0) {
if (r == -E2BIG) {
g_free(cpuid);
return NULL;
} else {
fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
strerror(-r));
exit(1);
}
}
return cpuid;
}
/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
* for all entries.
*/
static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
{
struct kvm_cpuid2 *cpuid;
int max = 1;
while ((cpuid = try_get_cpuid(s, max)) == NULL) {
max *= 2;
}
return cpuid;
}
static const struct kvm_para_features {
int cap;
int feature;
} para_features[] = {
{ KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
{ KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
{ KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
{ KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
};
static int get_para_features(KVMState *s)
{
int i, features = 0;
for (i = 0; i < ARRAY_SIZE(para_features); i++) {
if (kvm_check_extension(s, para_features[i].cap)) {
features |= (1 << para_features[i].feature);
}
}
return features;
}
/* Returns the value for a specific register on the cpuid entry
*/
static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
{
uint32_t ret = 0;
switch (reg) {
case R_EAX:
ret = entry->eax;
break;
case R_EBX:
ret = entry->ebx;
break;
case R_ECX:
ret = entry->ecx;
break;
case R_EDX:
ret = entry->edx;
break;
}
return ret;
}
/* Find matching entry for function/index on kvm_cpuid2 struct
*/
static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
uint32_t function,
uint32_t index)
{
int i;
for (i = 0; i < cpuid->nent; ++i) {
if (cpuid->entries[i].function == function &&
cpuid->entries[i].index == index) {
return &cpuid->entries[i];
}
}
/* not found: */
return NULL;
}
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
uint32_t index, int reg)
{
struct kvm_cpuid2 *cpuid;
uint32_t ret = 0;
uint32_t cpuid_1_edx;
bool found = false;
cpuid = get_supported_cpuid(s);
struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
if (entry) {
found = true;
ret = cpuid_entry_get_reg(entry, reg);
}
/* Fixups for the data returned by KVM, below */
if (function == 1 && reg == R_EDX) {
/* KVM before 2.6.30 misreports the following features */
ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
} else if (function == 1 && reg == R_ECX) {
/* We can set the hypervisor flag, even if KVM does not return it on
* GET_SUPPORTED_CPUID
*/
ret |= CPUID_EXT_HYPERVISOR;
/* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
* can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
* and the irqchip is in the kernel.
*/
if (kvm_irqchip_in_kernel() &&
kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
}
/* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
* without the in-kernel irqchip
*/
if (!kvm_irqchip_in_kernel()) {
ret &= ~CPUID_EXT_X2APIC;
}
} else if (function == 0x80000001 && reg == R_EDX) {
/* On Intel, kvm returns cpuid according to the Intel spec,
* so add missing bits according to the AMD spec:
*/
cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
}
g_free(cpuid);
/* fallback for older kernels */
if ((function == KVM_CPUID_FEATURES) && !found) {
ret = get_para_features(s);
}
return ret;
}
typedef struct HWPoisonPage {
ram_addr_t ram_addr;
QLIST_ENTRY(HWPoisonPage) list;
} HWPoisonPage;
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
QLIST_HEAD_INITIALIZER(hwpoison_page_list);
static void kvm_unpoison_all(void *param)
{
HWPoisonPage *page, *next_page;
QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
QLIST_REMOVE(page, list);
qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
g_free(page);
}
}
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
{
HWPoisonPage *page;
QLIST_FOREACH(page, &hwpoison_page_list, list) {
if (page->ram_addr == ram_addr) {
return;
}
}
page = g_new(HWPoisonPage, 1);
page->ram_addr = ram_addr;
QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
}
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
int *max_banks)
{
int r;
r = kvm_check_extension(s, KVM_CAP_MCE);
if (r > 0) {
*max_banks = r;
return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
}
return -ENOSYS;
}
static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
{
CPUX86State *env = &cpu->env;
uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
uint64_t mcg_status = MCG_STATUS_MCIP;
if (code == BUS_MCEERR_AR) {
status |= MCI_STATUS_AR | 0x134;
mcg_status |= MCG_STATUS_EIPV;
} else {
status |= 0xc0;
mcg_status |= MCG_STATUS_RIPV;
}
cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
(MCM_ADDR_PHYS << 6) | 0xc,
cpu_x86_support_mca_broadcast(env) ?
MCE_INJECT_BROADCAST : 0);
}
static void hardware_memory_error(void)
{
fprintf(stderr, "Hardware memory error!\n");
exit(1);
}
int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
{
X86CPU *cpu = X86_CPU(c);
CPUX86State *env = &cpu->env;
ram_addr_t ram_addr;
hwaddr paddr;
if ((env->mcg_cap & MCG_SER_P) && addr
&& (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
!kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
fprintf(stderr, "Hardware memory error for memory used by "
"QEMU itself instead of guest system!\n");
/* Hope we are lucky for AO MCE */
if (code == BUS_MCEERR_AO) {
return 0;
} else {
hardware_memory_error();
}
}
kvm_hwpoison_page_add(ram_addr);
kvm_mce_inject(cpu, paddr, code);
} else {
if (code == BUS_MCEERR_AO) {
return 0;
} else if (code == BUS_MCEERR_AR) {
hardware_memory_error();
} else {
return 1;
}
}
return 0;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
X86CPU *cpu = X86_CPU(first_cpu);
if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
ram_addr_t ram_addr;
hwaddr paddr;
/* Hope we are lucky for AO MCE */
if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
!kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
addr, &paddr)) {
fprintf(stderr, "Hardware memory error for memory used by "
"QEMU itself instead of guest system!: %p\n", addr);
return 0;
}
kvm_hwpoison_page_add(ram_addr);
kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
} else {
if (code == BUS_MCEERR_AO) {
return 0;
} else if (code == BUS_MCEERR_AR) {
hardware_memory_error();
} else {
return 1;
}
}
return 0;
}
static int kvm_inject_mce_oldstyle(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
unsigned int bank, bank_num = env->mcg_cap & 0xff;
struct kvm_x86_mce mce;
env->exception_injected = -1;
/*
* There must be at least one bank in use if an MCE is pending.
* Find it and use its values for the event injection.
*/
for (bank = 0; bank < bank_num; bank++) {
if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
break;
}
}
assert(bank < bank_num);
mce.bank = bank;
mce.status = env->mce_banks[bank * 4 + 1];
mce.mcg_status = env->mcg_status;
mce.addr = env->mce_banks[bank * 4 + 2];
mce.misc = env->mce_banks[bank * 4 + 3];
return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
}
return 0;
}
static void cpu_update_state(void *opaque, int running, RunState state)
{
CPUX86State *env = opaque;
if (running) {
env->tsc_valid = false;
}
}
unsigned long kvm_arch_vcpu_id(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->apic_id;
}
#ifndef KVM_CPUID_SIGNATURE_NEXT
#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
#endif
static bool hyperv_hypercall_available(X86CPU *cpu)
{
return cpu->hyperv_vapic ||
(cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
}
static bool hyperv_enabled(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
(hyperv_hypercall_available(cpu) ||
cpu->hyperv_time ||
cpu->hyperv_relaxed_timing);
}
static Error *invtsc_mig_blocker;
#define KVM_MAX_CPUID_ENTRIES 100
int kvm_arch_init_vcpu(CPUState *cs)
{
struct {
struct kvm_cpuid2 cpuid;
struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
} QEMU_PACKED cpuid_data;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
uint32_t limit, i, j, cpuid_i;
uint32_t unused;
struct kvm_cpuid_entry2 *c;
uint32_t signature[3];
int kvm_base = KVM_CPUID_SIGNATURE;
int r;
memset(&cpuid_data, 0, sizeof(cpuid_data));
cpuid_i = 0;
/* Paravirtualization CPUIDs */
if (hyperv_enabled(cpu)) {
c = &cpuid_data.entries[cpuid_i++];
c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
memcpy(signature, "Microsoft Hv", 12);
c->eax = HYPERV_CPUID_MIN;
c->ebx = signature[0];
c->ecx = signature[1];
c->edx = signature[2];
c = &cpuid_data.entries[cpuid_i++];
c->function = HYPERV_CPUID_INTERFACE;
memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
c->eax = signature[0];
c->ebx = 0;
c->ecx = 0;
c->edx = 0;
c = &cpuid_data.entries[cpuid_i++];
c->function = HYPERV_CPUID_VERSION;
c->eax = 0x00001bbc;
c->ebx = 0x00060001;
c = &cpuid_data.entries[cpuid_i++];
c->function = HYPERV_CPUID_FEATURES;
if (cpu->hyperv_relaxed_timing) {
c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
}
if (cpu->hyperv_vapic) {
c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
has_msr_hv_vapic = true;
}
if (cpu->hyperv_time &&
kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
c->eax |= 0x200;
has_msr_hv_tsc = true;
}
c = &cpuid_data.entries[cpuid_i++];
c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
if (cpu->hyperv_relaxed_timing) {
c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
}
if (has_msr_hv_vapic) {
c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
}
c->ebx = cpu->hyperv_spinlock_attempts;
c = &cpuid_data.entries[cpuid_i++];
c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
c->eax = 0x40;
c->ebx = 0x40;
kvm_base = KVM_CPUID_SIGNATURE_NEXT;
has_msr_hv_hypercall = true;
}
if (cpu->expose_kvm) {
memcpy(signature, "KVMKVMKVM\0\0\0", 12);
c = &cpuid_data.entries[cpuid_i++];
c->function = KVM_CPUID_SIGNATURE | kvm_base;
c->eax = KVM_CPUID_FEATURES | kvm_base;
c->ebx = signature[0];
c->ecx = signature[1];
c->edx = signature[2];
c = &cpuid_data.entries[cpuid_i++];
c->function = KVM_CPUID_FEATURES | kvm_base;
c->eax = env->features[FEAT_KVM];
has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
}
cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
for (i = 0; i <= limit; i++) {
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
fprintf(stderr, "unsupported level value: 0x%x\n", limit);
abort();
}
c = &cpuid_data.entries[cpuid_i++];
switch (i) {
case 2: {
/* Keep reading function 2 till all the input is received */
int times;
c->function = i;
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
KVM_CPUID_FLAG_STATE_READ_NEXT;
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
times = c->eax & 0xff;
for (j = 1; j < times; ++j) {
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
fprintf(stderr, "cpuid_data is full, no space for "
"cpuid(eax:2):eax & 0xf = 0x%x\n", times);
abort();
}
c = &cpuid_data.entries[cpuid_i++];
c->function = i;
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
}
break;
}
case 4:
case 0xb:
case 0xd:
for (j = 0; ; j++) {
if (i == 0xd && j == 64) {
break;
}
c->function = i;
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
c->index = j;
cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
if (i == 4 && c->eax == 0) {
break;
}
if (i == 0xb && !(c->ecx & 0xff00)) {
break;
}
if (i == 0xd && c->eax == 0) {
continue;
}
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
fprintf(stderr, "cpuid_data is full, no space for "
"cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
abort();
}
c = &cpuid_data.entries[cpuid_i++];
}
break;
default:
c->function = i;
c->flags = 0;
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
break;
}
}
if (limit >= 0x0a) {
uint32_t ver;
cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
if ((ver & 0xff) > 0) {
has_msr_architectural_pmu = true;
num_architectural_pmu_counters = (ver & 0xff00) >> 8;
/* Shouldn't be more than 32, since that's the number of bits
* available in EBX to tell us _which_ counters are available.
* Play it safe.
*/
if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
num_architectural_pmu_counters = MAX_GP_COUNTERS;
}
}
}
cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
for (i = 0x80000000; i <= limit; i++) {
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
abort();
}
c = &cpuid_data.entries[cpuid_i++];
c->function = i;
c->flags = 0;
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
}
/* Call Centaur's CPUID instructions they are supported. */
if (env->cpuid_xlevel2 > 0) {
cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
for (i = 0xC0000000; i <= limit; i++) {
if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
abort();
}
c = &cpuid_data.entries[cpuid_i++];
c->function = i;
c->flags = 0;
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
}
}
cpuid_data.cpuid.nent = cpuid_i;
if (((env->cpuid_version >> 8)&0xF) >= 6
&& (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)
&& kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
uint64_t mcg_cap;
int banks;
int ret;
ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
if (ret < 0) {
fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
return ret;
}
if (banks > MCE_BANKS_DEF) {
banks = MCE_BANKS_DEF;
}
mcg_cap &= MCE_CAP_DEF;
mcg_cap |= banks;
ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
if (ret < 0) {
fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
return ret;
}
env->mcg_cap = mcg_cap;
}
qemu_add_vm_change_state_handler(cpu_update_state, env);
c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
if (c) {
has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
!!(c->ecx & CPUID_EXT_SMX);
}
c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
/* for migration */
error_setg(&invtsc_mig_blocker,
"State blocked by non-migratable CPU device"
" (invtsc flag)");
migrate_add_blocker(invtsc_mig_blocker);
/* for savevm */
vmstate_x86_cpu.unmigratable = 1;
}
cpuid_data.cpuid.padding = 0;
r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
if (r) {
return r;
}
r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
if (r && env->tsc_khz) {
r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
if (r < 0) {
fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
return r;
}
}
if (kvm_has_xsave()) {
env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
}
if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
has_msr_mtrr = true;
}
return 0;
}
void kvm_arch_reset_vcpu(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
env->exception_injected = -1;
env->interrupt_injected = -1;
env->xcr0 = 1;
if (kvm_irqchip_in_kernel()) {
env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
KVM_MP_STATE_UNINITIALIZED;
} else {
env->mp_state = KVM_MP_STATE_RUNNABLE;
}
}
void kvm_arch_do_init_vcpu(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
/* APs get directly into wait-for-SIPI state. */
if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
}
}
static int kvm_get_supported_msrs(KVMState *s)
{
static int kvm_supported_msrs;
int ret = 0;
/* first time */
if (kvm_supported_msrs == 0) {
struct kvm_msr_list msr_list, *kvm_msr_list;
kvm_supported_msrs = -1;
/* Obtain MSR list from KVM. These are the MSRs that we must
* save/restore */
msr_list.nmsrs = 0;
ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
if (ret < 0 && ret != -E2BIG) {
return ret;
}
/* Old kernel modules had a bug and could write beyond the provided
memory. Allocate at least a safe amount of 1K. */
kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
msr_list.nmsrs *
sizeof(msr_list.indices[0])));
kvm_msr_list->nmsrs = msr_list.nmsrs;
ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
if (ret >= 0) {
int i;
for (i = 0; i < kvm_msr_list->nmsrs; i++) {
if (kvm_msr_list->indices[i] == MSR_STAR) {
has_msr_star = true;
continue;
}
if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
has_msr_hsave_pa = true;
continue;
}
if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
has_msr_tsc_adjust = true;
continue;
}
if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
has_msr_tsc_deadline = true;
continue;
}
if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
has_msr_misc_enable = true;
continue;
}
if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
has_msr_bndcfgs = true;
continue;
}
if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
has_msr_xss = true;
continue;
}
}
}
g_free(kvm_msr_list);
}
return ret;
}
int kvm_arch_init(KVMState *s)
{
uint64_t identity_base = 0xfffbc000;
uint64_t shadow_mem;
int ret;
struct utsname utsname;
ret = kvm_get_supported_msrs(s);
if (ret < 0) {
return ret;
}
uname(&utsname);
lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
/*
* On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
* In order to use vm86 mode, an EPT identity map and a TSS are needed.
* Since these must be part of guest physical memory, we need to allocate
* them, both by setting their start addresses in the kernel and by
* creating a corresponding e820 entry. We need 4 pages before the BIOS.
*
* Older KVM versions may not support setting the identity map base. In
* that case we need to stick with the default, i.e. a 256K maximum BIOS
* size.
*/
if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
/* Allows up to 16M BIOSes. */
identity_base = 0xfeffc000;
ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
if (ret < 0) {
return ret;
}
}
/* Set TSS base one page after EPT identity map. */
ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
if (ret < 0) {
return ret;
}
/* Tell fw_cfg to notify the BIOS to reserve the range. */
ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
if (ret < 0) {
fprintf(stderr, "e820_add_entry() table is full\n");
return ret;
}
qemu_register_reset(kvm_unpoison_all, NULL);
shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
"kvm_shadow_mem", -1);
if (shadow_mem != -1) {
shadow_mem /= 4096;
ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
if (ret < 0) {
return ret;
}
}
return 0;
}
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = 3;
lhs->present = 1;
lhs->dpl = 3;
lhs->db = 0;
lhs->s = 1;
lhs->l = 0;
lhs->g = 0;
lhs->avl = 0;
lhs->unusable = 0;
}
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
unsigned flags = rhs->flags;
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
lhs->present = (flags & DESC_P_MASK) != 0;
lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
lhs->db = (flags >> DESC_B_SHIFT) & 1;
lhs->s = (flags & DESC_S_MASK) != 0;
lhs->l = (flags >> DESC_L_SHIFT) & 1;
lhs->g = (flags & DESC_G_MASK) != 0;
lhs->avl = (flags & DESC_AVL_MASK) != 0;
lhs->unusable = 0;
lhs->padding = 0;
}
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
(rhs->present * DESC_P_MASK) |
(rhs->dpl << DESC_DPL_SHIFT) |
(rhs->db << DESC_B_SHIFT) |
(rhs->s * DESC_S_MASK) |
(rhs->l << DESC_L_SHIFT) |
(rhs->g * DESC_G_MASK) |
(rhs->avl * DESC_AVL_MASK);
}
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
{
if (set) {
*kvm_reg = *qemu_reg;
} else {
*qemu_reg = *kvm_reg;
}
}
static int kvm_getput_regs(X86CPU *cpu, int set)
{
CPUX86State *env = &cpu->env;
struct kvm_regs regs;
int ret = 0;
if (!set) {
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
}
kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
#ifdef TARGET_X86_64
kvm_getput_reg(&regs.r8, &env->regs[8], set);
kvm_getput_reg(&regs.r9, &env->regs[9], set);
kvm_getput_reg(&regs.r10, &env->regs[10], set);
kvm_getput_reg(&regs.r11, &env->regs[11], set);
kvm_getput_reg(&regs.r12, &env->regs[12], set);
kvm_getput_reg(&regs.r13, &env->regs[13], set);
kvm_getput_reg(&regs.r14, &env->regs[14], set);
kvm_getput_reg(&regs.r15, &env->regs[15], set);
#endif
kvm_getput_reg(&regs.rflags, &env->eflags, set);
kvm_getput_reg(&regs.rip, &env->eip, set);
if (set) {
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
}
return ret;
}
static int kvm_put_fpu(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_fpu fpu;
int i;
memset(&fpu, 0, sizeof fpu);
fpu.fsw = env->fpus & ~(7 << 11);
fpu.fsw |= (env->fpstt & 7) << 11;
fpu.fcw = env->fpuc;
fpu.last_opcode = env->fpop;
fpu.last_ip = env->fpip;
fpu.last_dp = env->fpdp;
for (i = 0; i < 8; ++i) {
fpu.ftwx |= (!env->fptags[i]) << i;
}
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
for (i = 0; i < CPU_NB_REGS; i++) {
stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0));
stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1));
}
fpu.mxcsr = env->mxcsr;
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
}
#define XSAVE_FCW_FSW 0
#define XSAVE_FTW_FOP 1
#define XSAVE_CWD_RIP 2
#define XSAVE_CWD_RDP 4
#define XSAVE_MXCSR 6
#define XSAVE_ST_SPACE 8
#define XSAVE_XMM_SPACE 40
#define XSAVE_XSTATE_BV 128
#define XSAVE_YMMH_SPACE 144
#define XSAVE_BNDREGS 240
#define XSAVE_BNDCSR 256
#define XSAVE_OPMASK 272
#define XSAVE_ZMM_Hi256 288
#define XSAVE_Hi16_ZMM 416
static int kvm_put_xsave(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_xsave* xsave = env->kvm_xsave_buf;
uint16_t cwd, swd, twd;
uint8_t *xmm, *ymmh, *zmmh;
int i, r;
if (!kvm_has_xsave()) {
return kvm_put_fpu(cpu);
}
memset(xsave, 0, sizeof(struct kvm_xsave));
twd = 0;
swd = env->fpus & ~(7 << 11);
swd |= (env->fpstt & 7) << 11;
cwd = env->fpuc;
for (i = 0; i < 8; ++i) {
twd |= (!env->fptags[i]) << i;
}
xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
sizeof env->fpregs);
xsave->region[XSAVE_MXCSR] = env->mxcsr;
*(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
sizeof env->bnd_regs);
memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
sizeof(env->bndcs_regs));
memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
sizeof env->opmask_regs);
xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
stq_p(xmm, env->xmm_regs[i].XMM_Q(0));
stq_p(xmm+8, env->xmm_regs[i].XMM_Q(1));
stq_p(ymmh, env->xmm_regs[i].XMM_Q(2));
stq_p(ymmh+8, env->xmm_regs[i].XMM_Q(3));
stq_p(zmmh, env->xmm_regs[i].XMM_Q(4));
stq_p(zmmh+8, env->xmm_regs[i].XMM_Q(5));
stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6));
stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7));
}
#ifdef TARGET_X86_64
memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16],
16 * sizeof env->xmm_regs[16]);
#endif
r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
return r;
}
static int kvm_put_xcrs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_xcrs xcrs = {};
if (!kvm_has_xcrs()) {
return 0;
}
xcrs.nr_xcrs = 1;
xcrs.flags = 0;
xcrs.xcrs[0].xcr = 0;
xcrs.xcrs[0].value = env->xcr0;
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
}
static int kvm_put_sregs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_sregs sregs;
memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
if (env->interrupt_injected >= 0) {
sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
(uint64_t)1 << (env->interrupt_injected % 64);
}
if ((env->eflags & VM_MASK)) {
set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
set_v8086_seg(&sregs.es, &env->segs[R_ES]);
set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
} else {
set_seg(&sregs.cs, &env->segs[R_CS]);
set_seg(&sregs.ds, &env->segs[R_DS]);
set_seg(&sregs.es, &env->segs[R_ES]);
set_seg(&sregs.fs, &env->segs[R_FS]);
set_seg(&sregs.gs, &env->segs[R_GS]);
set_seg(&sregs.ss, &env->segs[R_SS]);
}
set_seg(&sregs.tr, &env->tr);
set_seg(&sregs.ldt, &env->ldt);
sregs.idt.limit = env->idt.limit;
sregs.idt.base = env->idt.base;
memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
sregs.gdt.limit = env->gdt.limit;
sregs.gdt.base = env->gdt.base;
memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
sregs.cr0 = env->cr[0];
sregs.cr2 = env->cr[2];
sregs.cr3 = env->cr[3];
sregs.cr4 = env->cr[4];
sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
sregs.efer = env->efer;
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
}
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
uint32_t index, uint64_t value)
{
entry->index = index;
entry->reserved = 0;
entry->data = value;
}
static int kvm_put_tscdeadline_msr(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct {
struct kvm_msrs info;
struct kvm_msr_entry entries[1];
} msr_data;
struct kvm_msr_entry *msrs = msr_data.entries;
if (!has_msr_tsc_deadline) {
return 0;
}
kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
msr_data.info = (struct kvm_msrs) {
.nmsrs = 1,
};
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
}
/*
* Provide a separate write service for the feature control MSR in order to
* kick the VCPU out of VMXON or even guest mode on reset. This has to be done
* before writing any other state because forcibly leaving nested mode
* invalidates the VCPU state.
*/
static int kvm_put_msr_feature_control(X86CPU *cpu)
{
struct {
struct kvm_msrs info;
struct kvm_msr_entry entry;
} msr_data;
kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
cpu->env.msr_ia32_feature_control);
msr_data.info = (struct kvm_msrs) {
.nmsrs = 1,
};
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
}
static int kvm_put_msrs(X86CPU *cpu, int level)
{
CPUX86State *env = &cpu->env;
struct {
struct kvm_msrs info;
struct kvm_msr_entry entries[150];
} msr_data;
struct kvm_msr_entry *msrs = msr_data.entries;
int n = 0, i;
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
if (has_msr_star) {
kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
}
if (has_msr_hsave_pa) {
kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
}
if (has_msr_tsc_adjust) {
kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
}
if (has_msr_misc_enable) {
kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
env->msr_ia32_misc_enable);
}
if (has_msr_bndcfgs) {
kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
}
if (has_msr_xss) {
kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
}
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
}
#endif
/*
* The following MSRs have side effects on the guest or are too heavy
* for normal writeback. Limit them to reset or full state updates.
*/
if (level >= KVM_PUT_RESET_STATE) {
kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
env->system_time_msr);
kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
if (has_msr_async_pf_en) {
kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
env->async_pf_en_msr);
}
if (has_msr_pv_eoi_en) {
kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
env->pv_eoi_en_msr);
}
if (has_msr_kvm_steal_time) {
kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
env->steal_time_msr);
}
if (has_msr_architectural_pmu) {
/* Stop the counter. */
kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
/* Set the counter values. */
for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
env->msr_fixed_counters[i]);
}
for (i = 0; i < num_architectural_pmu_counters; i++) {
kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
env->msr_gp_counters[i]);
kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
env->msr_gp_evtsel[i]);
}
kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
env->msr_global_status);
kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
env->msr_global_ovf_ctrl);
/* Now start the PMU. */
kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
env->msr_fixed_ctr_ctrl);
kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
env->msr_global_ctrl);
}
if (has_msr_hv_hypercall) {
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
env->msr_hv_guest_os_id);
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
env->msr_hv_hypercall);
}
if (has_msr_hv_vapic) {
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
env->msr_hv_vapic);
}
if (has_msr_hv_tsc) {
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
env->msr_hv_tsc);
}
if (has_msr_mtrr) {
kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRphysBase(i), env->mtrr_var[i].base);
kvm_msr_entry_set(&msrs[n++],
MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
}
}
/* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
* kvm_put_msr_feature_control. */
}
if (env->mcg_cap) {
int i;
kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
}
}
msr_data.info = (struct kvm_msrs) {
.nmsrs = n,
};
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
}
static int kvm_get_fpu(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_fpu fpu;
int i, ret;
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
if (ret < 0) {
return ret;
}
env->fpstt = (fpu.fsw >> 11) & 7;
env->fpus = fpu.fsw;
env->fpuc = fpu.fcw;
env->fpop = fpu.last_opcode;
env->fpip = fpu.last_ip;
env->fpdp = fpu.last_dp;
for (i = 0; i < 8; ++i) {
env->fptags[i] = !((fpu.ftwx >> i) & 1);
}
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
for (i = 0; i < CPU_NB_REGS; i++) {
env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
}
env->mxcsr = fpu.mxcsr;
return 0;
}
static int kvm_get_xsave(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_xsave* xsave = env->kvm_xsave_buf;
int ret, i;
const uint8_t *xmm, *ymmh, *zmmh;
uint16_t cwd, swd, twd;
if (!kvm_has_xsave()) {
return kvm_get_fpu(cpu);
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
if (ret < 0) {
return ret;
}
cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
env->fpstt = (swd >> 11) & 7;
env->fpus = swd;
env->fpuc = cwd;
for (i = 0; i < 8; ++i) {
env->fptags[i] = !((twd >> i) & 1);
}
memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
env->mxcsr = xsave->region[XSAVE_MXCSR];
memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
sizeof env->fpregs);
env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
sizeof env->bnd_regs);
memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
sizeof(env->bndcs_regs));
memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
sizeof env->opmask_regs);
xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm);
env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8);
env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh);
env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8);
env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh);
env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8);
env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16);
env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24);
}
#ifdef TARGET_X86_64
memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM],
16 * sizeof env->xmm_regs[16]);
#endif
return 0;
}
static int kvm_get_xcrs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
int i, ret;
struct kvm_xcrs xcrs;
if (!kvm_has_xcrs()) {
return 0;
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
if (ret < 0) {
return ret;
}
for (i = 0; i < xcrs.nr_xcrs; i++) {
/* Only support xcr0 now */
if (xcrs.xcrs[i].xcr == 0) {
env->xcr0 = xcrs.xcrs[i].value;
break;
}
}
return 0;
}
static int kvm_get_sregs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_sregs sregs;
uint32_t hflags;
int bit, i, ret;
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
/* There can only be one pending IRQ set in the bitmap at a time, so try
to find it and save its number instead (-1 for none). */
env->interrupt_injected = -1;
for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
if (sregs.interrupt_bitmap[i]) {
bit = ctz64(sregs.interrupt_bitmap[i]);
env->interrupt_injected = i * 64 + bit;
break;
}
}
get_seg(&env->segs[R_CS], &sregs.cs);
get_seg(&env->segs[R_DS], &sregs.ds);
get_seg(&env->segs[R_ES], &sregs.es);
get_seg(&env->segs[R_FS], &sregs.fs);
get_seg(&env->segs[R_GS], &sregs.gs);
get_seg(&env->segs[R_SS], &sregs.ss);
get_seg(&env->tr, &sregs.tr);
get_seg(&env->ldt, &sregs.ldt);
env->idt.limit = sregs.idt.limit;
env->idt.base = sregs.idt.base;
env->gdt.limit = sregs.gdt.limit;
env->gdt.base = sregs.gdt.base;
env->cr[0] = sregs.cr0;
env->cr[2] = sregs.cr2;
env->cr[3] = sregs.cr3;
env->cr[4] = sregs.cr4;
env->efer = sregs.efer;
/* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
#define HFLAG_COPY_MASK \
~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
}
}
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
return 0;
}
static int kvm_get_msrs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct {
struct kvm_msrs info;
struct kvm_msr_entry entries[150];
} msr_data;
struct kvm_msr_entry *msrs = msr_data.entries;
int ret, i, n;
n = 0;
msrs[n++].index = MSR_IA32_SYSENTER_CS;
msrs[n++].index = MSR_IA32_SYSENTER_ESP;
msrs[n++].index = MSR_IA32_SYSENTER_EIP;
msrs[n++].index = MSR_PAT;
if (has_msr_star) {
msrs[n++].index = MSR_STAR;
}
if (has_msr_hsave_pa) {
msrs[n++].index = MSR_VM_HSAVE_PA;
}
if (has_msr_tsc_adjust) {
msrs[n++].index = MSR_TSC_ADJUST;
}
if (has_msr_tsc_deadline) {
msrs[n++].index = MSR_IA32_TSCDEADLINE;
}
if (has_msr_misc_enable) {
msrs[n++].index = MSR_IA32_MISC_ENABLE;
}
if (has_msr_feature_control) {
msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
}
if (has_msr_bndcfgs) {
msrs[n++].index = MSR_IA32_BNDCFGS;
}
if (has_msr_xss) {
msrs[n++].index = MSR_IA32_XSS;
}
if (!env->tsc_valid) {
msrs[n++].index = MSR_IA32_TSC;
env->tsc_valid = !runstate_is_running();
}
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
msrs[n++].index = MSR_CSTAR;
msrs[n++].index = MSR_KERNELGSBASE;
msrs[n++].index = MSR_FMASK;
msrs[n++].index = MSR_LSTAR;
}
#endif
msrs[n++].index = MSR_KVM_SYSTEM_TIME;
msrs[n++].index = MSR_KVM_WALL_CLOCK;
if (has_msr_async_pf_en) {
msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
}
if (has_msr_pv_eoi_en) {
msrs[n++].index = MSR_KVM_PV_EOI_EN;
}
if (has_msr_kvm_steal_time) {
msrs[n++].index = MSR_KVM_STEAL_TIME;
}
if (has_msr_architectural_pmu) {
msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
}
for (i = 0; i < num_architectural_pmu_counters; i++) {
msrs[n++].index = MSR_P6_PERFCTR0 + i;
msrs[n++].index = MSR_P6_EVNTSEL0 + i;
}
}
if (env->mcg_cap) {
msrs[n++].index = MSR_MCG_STATUS;
msrs[n++].index = MSR_MCG_CTL;
for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
msrs[n++].index = MSR_MC0_CTL + i;
}
}
if (has_msr_hv_hypercall) {
msrs[n++].index = HV_X64_MSR_HYPERCALL;
msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
}
if (has_msr_hv_vapic) {
msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
}
if (has_msr_hv_tsc) {
msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
}
if (has_msr_mtrr) {
msrs[n++].index = MSR_MTRRdefType;
msrs[n++].index = MSR_MTRRfix64K_00000;
msrs[n++].index = MSR_MTRRfix16K_80000;
msrs[n++].index = MSR_MTRRfix16K_A0000;
msrs[n++].index = MSR_MTRRfix4K_C0000;
msrs[n++].index = MSR_MTRRfix4K_C8000;
msrs[n++].index = MSR_MTRRfix4K_D0000;
msrs[n++].index = MSR_MTRRfix4K_D8000;
msrs[n++].index = MSR_MTRRfix4K_E0000;
msrs[n++].index = MSR_MTRRfix4K_E8000;
msrs[n++].index = MSR_MTRRfix4K_F0000;
msrs[n++].index = MSR_MTRRfix4K_F8000;
for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
msrs[n++].index = MSR_MTRRphysBase(i);
msrs[n++].index = MSR_MTRRphysMask(i);
}
}
msr_data.info = (struct kvm_msrs) {
.nmsrs = n,
};
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
if (ret < 0) {
return ret;
}
for (i = 0; i < ret; i++) {
uint32_t index = msrs[i].index;
switch (index) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = msrs[i].data;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = msrs[i].data;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = msrs[i].data;
break;
case MSR_PAT:
env->pat = msrs[i].data;
break;
case MSR_STAR:
env->star = msrs[i].data;
break;
#ifdef TARGET_X86_64
case MSR_CSTAR:
env->cstar = msrs[i].data;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = msrs[i].data;
break;
case MSR_FMASK:
env->fmask = msrs[i].data;
break;
case MSR_LSTAR:
env->lstar = msrs[i].data;
break;
#endif
case MSR_IA32_TSC:
env->tsc = msrs[i].data;
break;
case MSR_TSC_ADJUST:
env->tsc_adjust = msrs[i].data;
break;
case MSR_IA32_TSCDEADLINE:
env->tsc_deadline = msrs[i].data;
break;
case MSR_VM_HSAVE_PA:
env->vm_hsave = msrs[i].data;
break;
case MSR_KVM_SYSTEM_TIME:
env->system_time_msr = msrs[i].data;
break;
case MSR_KVM_WALL_CLOCK:
env->wall_clock_msr = msrs[i].data;
break;
case MSR_MCG_STATUS:
env->mcg_status = msrs[i].data;
break;
case MSR_MCG_CTL:
env->mcg_ctl = msrs[i].data;
break;
case MSR_IA32_MISC_ENABLE:
env->msr_ia32_misc_enable = msrs[i].data;
break;
case MSR_IA32_FEATURE_CONTROL:
env->msr_ia32_feature_control = msrs[i].data;
break;
case MSR_IA32_BNDCFGS:
env->msr_bndcfgs = msrs[i].data;
break;
case MSR_IA32_XSS:
env->xss = msrs[i].data;
break;
default:
if (msrs[i].index >= MSR_MC0_CTL &&
msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
}
break;
case MSR_KVM_ASYNC_PF_EN:
env->async_pf_en_msr = msrs[i].data;
break;
case MSR_KVM_PV_EOI_EN:
env->pv_eoi_en_msr = msrs[i].data;
break;
case MSR_KVM_STEAL_TIME:
env->steal_time_msr = msrs[i].data;
break;
case MSR_CORE_PERF_FIXED_CTR_CTRL:
env->msr_fixed_ctr_ctrl = msrs[i].data;
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
env->msr_global_ctrl = msrs[i].data;
break;
case MSR_CORE_PERF_GLOBAL_STATUS:
env->msr_global_status = msrs[i].data;
break;
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
env->msr_global_ovf_ctrl = msrs[i].data;
break;
case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
break;
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
break;
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
break;
case HV_X64_MSR_HYPERCALL:
env->msr_hv_hypercall = msrs[i].data;
break;
case HV_X64_MSR_GUEST_OS_ID:
env->msr_hv_guest_os_id = msrs[i].data;
break;
case HV_X64_MSR_APIC_ASSIST_PAGE:
env->msr_hv_vapic = msrs[i].data;
break;
case HV_X64_MSR_REFERENCE_TSC:
env->msr_hv_tsc = msrs[i].data;
break;
case MSR_MTRRdefType:
env->mtrr_deftype = msrs[i].data;
break;
case MSR_MTRRfix64K_00000:
env->mtrr_fixed[0] = msrs[i].data;
break;
case MSR_MTRRfix16K_80000:
env->mtrr_fixed[1] = msrs[i].data;
break;
case MSR_MTRRfix16K_A0000:
env->mtrr_fixed[2] = msrs[i].data;
break;
case MSR_MTRRfix4K_C0000:
env->mtrr_fixed[3] = msrs[i].data;
break;
case MSR_MTRRfix4K_C8000:
env->mtrr_fixed[4] = msrs[i].data;
break;
case MSR_MTRRfix4K_D0000:
env->mtrr_fixed[5] = msrs[i].data;
break;
case MSR_MTRRfix4K_D8000:
env->mtrr_fixed[6] = msrs[i].data;
break;
case MSR_MTRRfix4K_E0000:
env->mtrr_fixed[7] = msrs[i].data;
break;
case MSR_MTRRfix4K_E8000:
env->mtrr_fixed[8] = msrs[i].data;
break;
case MSR_MTRRfix4K_F0000:
env->mtrr_fixed[9] = msrs[i].data;
break;
case MSR_MTRRfix4K_F8000:
env->mtrr_fixed[10] = msrs[i].data;
break;
case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
if (index & 1) {
env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
} else {
env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
}
break;
}
}
return 0;
}
static int kvm_put_mp_state(X86CPU *cpu)
{
struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
}
static int kvm_get_mp_state(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
struct kvm_mp_state mp_state;
int ret;
ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
if (ret < 0) {
return ret;
}
env->mp_state = mp_state.mp_state;
if (kvm_irqchip_in_kernel()) {
cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
}
return 0;
}
static int kvm_get_apic(X86CPU *cpu)
{
DeviceState *apic = cpu->apic_state;
struct kvm_lapic_state kapic;
int ret;
if (apic && kvm_irqchip_in_kernel()) {
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
if (ret < 0) {
return ret;
}
kvm_get_apic_state(apic, &kapic);
}
return 0;
}
static int kvm_put_apic(X86CPU *cpu)
{
DeviceState *apic = cpu->apic_state;
struct kvm_lapic_state kapic;
if (apic && kvm_irqchip_in_kernel()) {
kvm_put_apic_state(apic, &kapic);
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
}
return 0;
}
static int kvm_put_vcpu_events(X86CPU *cpu, int level)
{
CPUX86State *env = &cpu->env;
struct kvm_vcpu_events events = {};
if (!kvm_has_vcpu_events()) {
return 0;
}
events.exception.injected = (env->exception_injected >= 0);
events.exception.nr = env->exception_injected;
events.exception.has_error_code = env->has_error_code;
events.exception.error_code = env->error_code;
events.exception.pad = 0;
events.interrupt.injected = (env->interrupt_injected >= 0);
events.interrupt.nr = env->interrupt_injected;
events.interrupt.soft = env->soft_interrupt;
events.nmi.injected = env->nmi_injected;
events.nmi.pending = env->nmi_pending;
events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
events.nmi.pad = 0;
events.sipi_vector = env->sipi_vector;
events.flags = 0;
if (level >= KVM_PUT_RESET_STATE) {
events.flags |=
KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
}
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
}
static int kvm_get_vcpu_events(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_vcpu_events events;
int ret;
if (!kvm_has_vcpu_events()) {
return 0;
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
if (ret < 0) {
return ret;
}
env->exception_injected =
events.exception.injected ? events.exception.nr : -1;
env->has_error_code = events.exception.has_error_code;
env->error_code = events.exception.error_code;
env->interrupt_injected =
events.interrupt.injected ? events.interrupt.nr : -1;
env->soft_interrupt = events.interrupt.soft;
env->nmi_injected = events.nmi.injected;
env->nmi_pending = events.nmi.pending;
if (events.nmi.masked) {
env->hflags2 |= HF2_NMI_MASK;
} else {
env->hflags2 &= ~HF2_NMI_MASK;
}
env->sipi_vector = events.sipi_vector;
return 0;
}
static int kvm_guest_debug_workarounds(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
int ret = 0;
unsigned long reinject_trap = 0;
if (!kvm_has_vcpu_events()) {
if (env->exception_injected == 1) {
reinject_trap = KVM_GUESTDBG_INJECT_DB;
} else if (env->exception_injected == 3) {
reinject_trap = KVM_GUESTDBG_INJECT_BP;
}
env->exception_injected = -1;
}
/*
* Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
* injected via SET_GUEST_DEBUG while updating GP regs. Work around this
* by updating the debug state once again if single-stepping is on.
* Another reason to call kvm_update_guest_debug here is a pending debug
* trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
* reinject them via SET_GUEST_DEBUG.
*/
if (reinject_trap ||
(!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
ret = kvm_update_guest_debug(cs, reinject_trap);
}
return ret;
}
static int kvm_put_debugregs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_debugregs dbgregs;
int i;
if (!kvm_has_debugregs()) {
return 0;
}
for (i = 0; i < 4; i++) {
dbgregs.db[i] = env->dr[i];
}
dbgregs.dr6 = env->dr[6];
dbgregs.dr7 = env->dr[7];
dbgregs.flags = 0;
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
}
static int kvm_get_debugregs(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kvm_debugregs dbgregs;
int i, ret;
if (!kvm_has_debugregs()) {
return 0;
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
if (ret < 0) {
return ret;
}
for (i = 0; i < 4; i++) {
env->dr[i] = dbgregs.db[i];
}
env->dr[4] = env->dr[6] = dbgregs.dr6;
env->dr[5] = env->dr[7] = dbgregs.dr7;
return 0;
}
int kvm_arch_put_registers(CPUState *cpu, int level)
{
X86CPU *x86_cpu = X86_CPU(cpu);
int ret;
assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
ret = kvm_put_msr_feature_control(x86_cpu);
if (ret < 0) {
return ret;
}
}
ret = kvm_getput_regs(x86_cpu, 1);
if (ret < 0) {
return ret;
}
ret = kvm_put_xsave(x86_cpu);
if (ret < 0) {
return ret;
}
ret = kvm_put_xcrs(x86_cpu);
if (ret < 0) {
return ret;
}
ret = kvm_put_sregs(x86_cpu);
if (ret < 0) {
return ret;
}
/* must be before kvm_put_msrs */
ret = kvm_inject_mce_oldstyle(x86_cpu);
if (ret < 0) {
return ret;
}
ret = kvm_put_msrs(x86_cpu, level);
if (ret < 0) {
return ret;
}
if (level >= KVM_PUT_RESET_STATE) {
ret = kvm_put_mp_state(x86_cpu);
if (ret < 0) {
return ret;
}
ret = kvm_put_apic(x86_cpu);
if (ret < 0) {
return ret;
}
}
ret = kvm_put_tscdeadline_msr(x86_cpu);
if (ret < 0) {
return ret;
}
ret = kvm_put_vcpu_events(x86_cpu, level);
if (ret < 0) {
return ret;
}
ret = kvm_put_debugregs(x86_cpu);
if (ret < 0) {
return ret;
}
/* must be last */
ret = kvm_guest_debug_workarounds(x86_cpu);
if (ret < 0) {
return ret;
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
int ret;
assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
ret = kvm_getput_regs(cpu, 0);
if (ret < 0) {
return ret;
}
ret = kvm_get_xsave(cpu);
if (ret < 0) {
return ret;
}
ret = kvm_get_xcrs(cpu);
if (ret < 0) {
return ret;
}
ret = kvm_get_sregs(cpu);
if (ret < 0) {
return ret;
}
ret = kvm_get_msrs(cpu);
if (ret < 0) {
return ret;
}
ret = kvm_get_mp_state(cpu);
if (ret < 0) {
return ret;
}
ret = kvm_get_apic(cpu);
if (ret < 0) {
return ret;
}
ret = kvm_get_vcpu_events(cpu);
if (ret < 0) {
return ret;
}
ret = kvm_get_debugregs(cpu);
if (ret < 0) {
return ret;
}
return 0;
}
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
int ret;
/* Inject NMI */
if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
DPRINTF("injected NMI\n");
ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
if (ret < 0) {
fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
strerror(-ret));
}
}
/* Force the VCPU out of its inner loop to process any INIT requests
* or (for userspace APIC, but it is cheap to combine the checks here)
* pending TPR access reports.
*/
if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
cpu->exit_request = 1;
}
if (!kvm_irqchip_in_kernel()) {
/* Try to inject an interrupt if the guest can accept it */
if (run->ready_for_interrupt_injection &&
(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) {
int irq;
cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
irq = cpu_get_pic_interrupt(env);
if (irq >= 0) {
struct kvm_interrupt intr;
intr.irq = irq;
DPRINTF("injected interrupt %d\n", irq);
ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
if (ret < 0) {
fprintf(stderr,
"KVM: injection failed, interrupt lost (%s)\n",
strerror(-ret));
}
}
}
/* If we have an interrupt but the guest is not ready to receive an
* interrupt, request an interrupt window exit. This will
* cause a return to userspace as soon as the guest is ready to
* receive interrupts. */
if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
run->request_interrupt_window = 1;
} else {
run->request_interrupt_window = 0;
}
DPRINTF("setting tpr\n");
run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
}
}
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
if (run->if_flag) {
env->eflags |= IF_MASK;
} else {
env->eflags &= ~IF_MASK;
}
cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
}
int kvm_arch_process_async_events(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
/* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
assert(env->mcg_cap);
cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
kvm_cpu_synchronize_state(cs);
if (env->exception_injected == EXCP08_DBLE) {
/* this means triple fault */
qemu_system_reset_request();
cs->exit_request = 1;
return 0;
}
env->exception_injected = EXCP12_MCHK;
env->has_error_code = 0;
cs->halted = 0;
if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
env->mp_state = KVM_MP_STATE_RUNNABLE;
}
}
if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
kvm_cpu_synchronize_state(cs);
do_cpu_init(cpu);
}
if (kvm_irqchip_in_kernel()) {
return 0;
}
if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
apic_poll_irq(cpu->apic_state);
}
if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
cs->halted = 0;
}
if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
kvm_cpu_synchronize_state(cs);
do_cpu_sipi(cpu);
}
if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
kvm_cpu_synchronize_state(cs);
apic_handle_tpr_access_report(cpu->apic_state, env->eip,
env->tpr_access_type);
}
return cs->halted;
}
static int kvm_handle_halt(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) &&
!(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
cs->halted = 1;
return EXCP_HLT;
}
return 0;
}
static int kvm_handle_tpr_access(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
run->tpr_access.is_write ? TPR_ACCESS_WRITE
: TPR_ACCESS_READ);
return 1;
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static const uint8_t int3 = 0xcc;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint8_t int3;
if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
return -EINVAL;
}
return 0;
}
static struct {
target_ulong addr;
int len;
int type;
} hw_breakpoint[4];
static int nb_hw_breakpoint;
static int find_hw_breakpoint(target_ulong addr, int len, int type)
{
int n;
for (n = 0; n < nb_hw_breakpoint; n++) {
if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
(hw_breakpoint[n].len == len || len == -1)) {
return n;
}
}
return -1;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
len = 1;
break;
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
switch (len) {
case 1:
break;
case 2:
case 4:
case 8:
if (addr & (len - 1)) {
return -EINVAL;
}
break;
default:
return -EINVAL;
}
break;
default:
return -ENOSYS;
}
if (nb_hw_breakpoint == 4) {
return -ENOBUFS;
}
if (find_hw_breakpoint(addr, len, type) >= 0) {
return -EEXIST;
}
hw_breakpoint[nb_hw_breakpoint].addr = addr;
hw_breakpoint[nb_hw_breakpoint].len = len;
hw_breakpoint[nb_hw_breakpoint].type = type;
nb_hw_breakpoint++;
return 0;
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
int n;
n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
if (n < 0) {
return -ENOENT;
}
nb_hw_breakpoint--;
hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
return 0;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
nb_hw_breakpoint = 0;
}
static CPUWatchpoint hw_watchpoint;
static int kvm_handle_debug(X86CPU *cpu,
struct kvm_debug_exit_arch *arch_info)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
int ret = 0;
int n;
if (arch_info->exception == 1) {
if (arch_info->dr6 & (1 << 14)) {
if (cs->singlestep_enabled) {
ret = EXCP_DEBUG;
}
} else {
for (n = 0; n < 4; n++) {
if (arch_info->dr6 & (1 << n)) {
switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
case 0x0:
ret = EXCP_DEBUG;
break;
case 0x1:
ret = EXCP_DEBUG;
cs->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_WRITE;
break;
case 0x3:
ret = EXCP_DEBUG;
cs->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_ACCESS;
break;
}
}
}
}
} else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
ret = EXCP_DEBUG;
}
if (ret == 0) {
cpu_synchronize_state(cs);
assert(env->exception_injected == -1);
/* pass to guest */
env->exception_injected = arch_info->exception;
env->has_error_code = 0;
}
return ret;
}
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
{
const uint8_t type_code[] = {
[GDB_BREAKPOINT_HW] = 0x0,
[GDB_WATCHPOINT_WRITE] = 0x1,
[GDB_WATCHPOINT_ACCESS] = 0x3
};
const uint8_t len_code[] = {
[1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
};
int n;
if (kvm_sw_breakpoints_active(cpu)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
if (nb_hw_breakpoint > 0) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
dbg->arch.debugreg[7] = 0x0600;
for (n = 0; n < nb_hw_breakpoint; n++) {
dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
dbg->arch.debugreg[7] |= (2 << (n * 2)) |
(type_code[hw_breakpoint[n].type] << (16 + n*4)) |
((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
}
}
}
static bool host_supports_vmx(void)
{
uint32_t ecx, unused;
host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
return ecx & CPUID_EXT_VMX;
}
#define VMX_INVALID_GUEST_STATE 0x80000021
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
X86CPU *cpu = X86_CPU(cs);
uint64_t code;
int ret;
switch (run->exit_reason) {
case KVM_EXIT_HLT:
DPRINTF("handle_hlt\n");
ret = kvm_handle_halt(cpu);
break;
case KVM_EXIT_SET_TPR:
ret = 0;
break;
case KVM_EXIT_TPR_ACCESS:
ret = kvm_handle_tpr_access(cpu);
break;
case KVM_EXIT_FAIL_ENTRY:
code = run->fail_entry.hardware_entry_failure_reason;
fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
code);
if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
fprintf(stderr,
"\nIf you're running a guest on an Intel machine without "
"unrestricted mode\n"
"support, the failure can be most likely due to the guest "
"entering an invalid\n"
"state for Intel VT. For example, the guest maybe running "
"in big real mode\n"
"which is not supported on less recent Intel processors."
"\n\n");
}
ret = -1;
break;
case KVM_EXIT_EXCEPTION:
fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
run->ex.exception, run->ex.error_code);
ret = -1;
break;
case KVM_EXIT_DEBUG:
DPRINTF("kvm_exit_debug\n");
ret = kvm_handle_debug(cpu, &run->debug.arch);
break;
default:
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
ret = -1;
break;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
kvm_cpu_synchronize_state(cs);
return !(env->cr[0] & CR0_PE_MASK) ||
((env->segs[R_CS].selector & 3) != 3);
}
void kvm_arch_init_irq_routing(KVMState *s)
{
if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
/* If kernel can't do irq routing, interrupt source
* override 0->2 cannot be set up as required by HPET.
* So we have to disable it.
*/
no_hpet = 1;
}
/* We know at this point that we're using the in-kernel
* irqchip, so we can use irqfds, and on x86 we know
* we can use msi via irqfd and GSI routing.
*/
kvm_msi_via_irqfd_allowed = true;
kvm_gsi_routing_allowed = true;
}
/* Classic KVM device assignment interface. Will remain x86 only. */
int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
uint32_t flags, uint32_t *dev_id)
{
struct kvm_assigned_pci_dev dev_data = {
.segnr = dev_addr->domain,
.busnr = dev_addr->bus,
.devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
.flags = flags,
};
int ret;
dev_data.assigned_dev_id =
(dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
if (ret < 0) {
return ret;
}
*dev_id = dev_data.assigned_dev_id;
return 0;
}
int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
{
struct kvm_assigned_pci_dev dev_data = {
.assigned_dev_id = dev_id,
};
return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
}
static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
uint32_t irq_type, uint32_t guest_irq)
{
struct kvm_assigned_irq assigned_irq = {
.assigned_dev_id = dev_id,
.guest_irq = guest_irq,
.flags = irq_type,
};
if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
} else {
return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
}
}
int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
uint32_t guest_irq)
{
uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
(use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
}
int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
{
struct kvm_assigned_pci_dev dev_data = {
.assigned_dev_id = dev_id,
.flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
};
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
}
static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
uint32_t type)
{
struct kvm_assigned_irq assigned_irq = {
.assigned_dev_id = dev_id,
.flags = type,
};
return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
}
int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
{
return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
(use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
}
int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
{
return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
KVM_DEV_IRQ_GUEST_MSI, virq);
}
int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
{
return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
KVM_DEV_IRQ_HOST_MSI);
}
bool kvm_device_msix_supported(KVMState *s)
{
/* The kernel lacks a corresponding KVM_CAP, so we probe by calling
* KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
}
int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
uint32_t nr_vectors)
{
struct kvm_assigned_msix_nr msix_nr = {
.assigned_dev_id = dev_id,
.entry_nr = nr_vectors,
};
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
}
int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
int virq)
{
struct kvm_assigned_msix_entry msix_entry = {
.assigned_dev_id = dev_id,
.gsi = virq,
.entry = vector,
};
return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
}
int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
{
return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
KVM_DEV_IRQ_GUEST_MSIX, 0);
}
int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
{
return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
KVM_DEV_IRQ_HOST_MSIX);
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data)
{
return 0;
}