mirror of
https://github.com/xemu-project/xemu.git
synced 2025-01-04 10:38:58 +00:00
9fc7fc4d39
All users of object_initialize_child() pass the obvious child size
argument. Almost all pass &error_abort and no properties. Tiresome.
Rename object_initialize_child() to
object_initialize_child_with_props() to free the name. New
convenience wrapper object_initialize_child() automates the size
argument, and passes &error_abort and no properties.
Rename object_initialize_childv() to
object_initialize_child_with_propsv() for consistency.
Convert callers with this Coccinelle script:
@@
expression parent, propname, type;
expression child, size;
symbol error_abort;
@@
- object_initialize_child(parent, propname, OBJECT(child), size, type, &error_abort, NULL)
+ object_initialize_child(parent, propname, child, size, type, &error_abort, NULL)
@@
expression parent, propname, type;
expression child;
symbol error_abort;
@@
- object_initialize_child(parent, propname, child, sizeof(*child), type, &error_abort, NULL)
+ object_initialize_child(parent, propname, child, type)
@@
expression parent, propname, type;
expression child;
symbol error_abort;
@@
- object_initialize_child(parent, propname, &child, sizeof(child), type, &error_abort, NULL)
+ object_initialize_child(parent, propname, &child, type)
@@
expression parent, propname, type;
expression child, size, err;
expression list props;
@@
- object_initialize_child(parent, propname, child, size, type, err, props)
+ object_initialize_child_with_props(parent, propname, child, size, type, err, props)
Note that Coccinelle chokes on ARMSSE typedef vs. macro in
hw/arm/armsse.c. Worked around by temporarily renaming the macro for
the spatch run.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
[Rebased: machine opentitan is new (commit fe0fe4735e
)]
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200610053247.1583243-37-armbru@redhat.com>
1312 lines
49 KiB
C
1312 lines
49 KiB
C
/*
|
|
* Arm SSE (Subsystems for Embedded): IoTKit
|
|
*
|
|
* Copyright (c) 2018 Linaro Limited
|
|
* Written by Peter Maydell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qapi/error.h"
|
|
#include "trace.h"
|
|
#include "hw/sysbus.h"
|
|
#include "migration/vmstate.h"
|
|
#include "hw/registerfields.h"
|
|
#include "hw/arm/armsse.h"
|
|
#include "hw/arm/boot.h"
|
|
#include "hw/irq.h"
|
|
|
|
/* Format of the System Information block SYS_CONFIG register */
|
|
typedef enum SysConfigFormat {
|
|
IoTKitFormat,
|
|
SSE200Format,
|
|
} SysConfigFormat;
|
|
|
|
struct ARMSSEInfo {
|
|
const char *name;
|
|
int sram_banks;
|
|
int num_cpus;
|
|
uint32_t sys_version;
|
|
uint32_t cpuwait_rst;
|
|
SysConfigFormat sys_config_format;
|
|
bool has_mhus;
|
|
bool has_ppus;
|
|
bool has_cachectrl;
|
|
bool has_cpusecctrl;
|
|
bool has_cpuid;
|
|
Property *props;
|
|
};
|
|
|
|
static Property iotkit_properties[] = {
|
|
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
|
|
MemoryRegion *),
|
|
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
|
|
DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
|
|
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
|
|
DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
|
|
DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
|
|
DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
|
|
DEFINE_PROP_END_OF_LIST()
|
|
};
|
|
|
|
static Property armsse_properties[] = {
|
|
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
|
|
MemoryRegion *),
|
|
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
|
|
DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
|
|
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
|
|
DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
|
|
DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
|
|
DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
|
|
DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
|
|
DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
|
|
DEFINE_PROP_END_OF_LIST()
|
|
};
|
|
|
|
static const ARMSSEInfo armsse_variants[] = {
|
|
{
|
|
.name = TYPE_IOTKIT,
|
|
.sram_banks = 1,
|
|
.num_cpus = 1,
|
|
.sys_version = 0x41743,
|
|
.cpuwait_rst = 0,
|
|
.sys_config_format = IoTKitFormat,
|
|
.has_mhus = false,
|
|
.has_ppus = false,
|
|
.has_cachectrl = false,
|
|
.has_cpusecctrl = false,
|
|
.has_cpuid = false,
|
|
.props = iotkit_properties,
|
|
},
|
|
{
|
|
.name = TYPE_SSE200,
|
|
.sram_banks = 4,
|
|
.num_cpus = 2,
|
|
.sys_version = 0x22041743,
|
|
.cpuwait_rst = 2,
|
|
.sys_config_format = SSE200Format,
|
|
.has_mhus = true,
|
|
.has_ppus = true,
|
|
.has_cachectrl = true,
|
|
.has_cpusecctrl = true,
|
|
.has_cpuid = true,
|
|
.props = armsse_properties,
|
|
},
|
|
};
|
|
|
|
static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
|
|
{
|
|
/* Return the SYS_CONFIG value for this SSE */
|
|
uint32_t sys_config;
|
|
|
|
switch (info->sys_config_format) {
|
|
case IoTKitFormat:
|
|
sys_config = 0;
|
|
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
|
|
sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
|
|
break;
|
|
case SSE200Format:
|
|
sys_config = 0;
|
|
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
|
|
sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
|
|
sys_config = deposit32(sys_config, 24, 4, 2);
|
|
if (info->num_cpus > 1) {
|
|
sys_config = deposit32(sys_config, 10, 1, 1);
|
|
sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
|
|
sys_config = deposit32(sys_config, 28, 4, 2);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return sys_config;
|
|
}
|
|
|
|
/* Clock frequency in HZ of the 32KHz "slow clock" */
|
|
#define S32KCLK (32 * 1000)
|
|
|
|
/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
|
|
static bool irq_is_common[32] = {
|
|
[0 ... 5] = true,
|
|
/* 6, 7: per-CPU MHU interrupts */
|
|
[8 ... 12] = true,
|
|
/* 13: per-CPU icache interrupt */
|
|
/* 14: reserved */
|
|
[15 ... 20] = true,
|
|
/* 21: reserved */
|
|
[22 ... 26] = true,
|
|
/* 27: reserved */
|
|
/* 28, 29: per-CPU CTI interrupts */
|
|
/* 30, 31: reserved */
|
|
};
|
|
|
|
/*
|
|
* Create an alias region in @container of @size bytes starting at @base
|
|
* which mirrors the memory starting at @orig.
|
|
*/
|
|
static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
|
|
const char *name, hwaddr base, hwaddr size, hwaddr orig)
|
|
{
|
|
memory_region_init_alias(mr, NULL, name, container, orig, size);
|
|
/* The alias is even lower priority than unimplemented_device regions */
|
|
memory_region_add_subregion_overlap(container, base, mr, -1500);
|
|
}
|
|
|
|
static void irq_status_forwarder(void *opaque, int n, int level)
|
|
{
|
|
qemu_irq destirq = opaque;
|
|
|
|
qemu_set_irq(destirq, level);
|
|
}
|
|
|
|
static void nsccfg_handler(void *opaque, int n, int level)
|
|
{
|
|
ARMSSE *s = ARMSSE(opaque);
|
|
|
|
s->nsccfg = level;
|
|
}
|
|
|
|
static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
|
|
{
|
|
/* Each of the 4 AHB and 4 APB PPCs that might be present in a
|
|
* system using the ARMSSE has a collection of control lines which
|
|
* are provided by the security controller and which we want to
|
|
* expose as control lines on the ARMSSE device itself, so the
|
|
* code using the ARMSSE can wire them up to the PPCs.
|
|
*/
|
|
SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
|
|
DeviceState *armssedev = DEVICE(s);
|
|
DeviceState *dev_secctl = DEVICE(&s->secctl);
|
|
DeviceState *dev_splitter = DEVICE(splitter);
|
|
char *name;
|
|
|
|
name = g_strdup_printf("%s_nonsec", ppcname);
|
|
qdev_pass_gpios(dev_secctl, armssedev, name);
|
|
g_free(name);
|
|
name = g_strdup_printf("%s_ap", ppcname);
|
|
qdev_pass_gpios(dev_secctl, armssedev, name);
|
|
g_free(name);
|
|
name = g_strdup_printf("%s_irq_enable", ppcname);
|
|
qdev_pass_gpios(dev_secctl, armssedev, name);
|
|
g_free(name);
|
|
name = g_strdup_printf("%s_irq_clear", ppcname);
|
|
qdev_pass_gpios(dev_secctl, armssedev, name);
|
|
g_free(name);
|
|
|
|
/* irq_status is a little more tricky, because we need to
|
|
* split it so we can send it both to the security controller
|
|
* and to our OR gate for the NVIC interrupt line.
|
|
* Connect up the splitter's outputs, and create a GPIO input
|
|
* which will pass the line state to the input splitter.
|
|
*/
|
|
name = g_strdup_printf("%s_irq_status", ppcname);
|
|
qdev_connect_gpio_out(dev_splitter, 0,
|
|
qdev_get_gpio_in_named(dev_secctl,
|
|
name, 0));
|
|
qdev_connect_gpio_out(dev_splitter, 1,
|
|
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
|
|
s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
|
|
qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
|
|
s->irq_status_in[ppcnum], name, 1);
|
|
g_free(name);
|
|
}
|
|
|
|
static void armsse_forward_sec_resp_cfg(ARMSSE *s)
|
|
{
|
|
/* Forward the 3rd output from the splitter device as a
|
|
* named GPIO output of the armsse object.
|
|
*/
|
|
DeviceState *dev = DEVICE(s);
|
|
DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
|
|
|
|
qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
|
|
s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
|
|
s->sec_resp_cfg, 1);
|
|
qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
|
|
}
|
|
|
|
static void armsse_init(Object *obj)
|
|
{
|
|
ARMSSE *s = ARMSSE(obj);
|
|
ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
|
|
const ARMSSEInfo *info = asc->info;
|
|
int i;
|
|
|
|
assert(info->sram_banks <= MAX_SRAM_BANKS);
|
|
assert(info->num_cpus <= SSE_MAX_CPUS);
|
|
|
|
memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
|
|
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
/*
|
|
* We put each CPU in its own cluster as they are logically
|
|
* distinct and may be configured differently.
|
|
*/
|
|
char *name;
|
|
|
|
name = g_strdup_printf("cluster%d", i);
|
|
object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
|
|
qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
|
|
g_free(name);
|
|
|
|
name = g_strdup_printf("armv7m%d", i);
|
|
sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
|
|
&s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
|
|
qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
|
|
ARM_CPU_TYPE_NAME("cortex-m33"));
|
|
g_free(name);
|
|
name = g_strdup_printf("arm-sse-cpu-container%d", i);
|
|
memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
|
|
g_free(name);
|
|
if (i > 0) {
|
|
name = g_strdup_printf("arm-sse-container-alias%d", i);
|
|
memory_region_init_alias(&s->container_alias[i - 1], obj,
|
|
name, &s->container, 0, UINT64_MAX);
|
|
g_free(name);
|
|
}
|
|
}
|
|
|
|
sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
|
|
TYPE_IOTKIT_SECCTL);
|
|
sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
|
|
TYPE_TZ_PPC);
|
|
sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
|
|
TYPE_TZ_PPC);
|
|
for (i = 0; i < info->sram_banks; i++) {
|
|
char *name = g_strdup_printf("mpc%d", i);
|
|
sysbus_init_child_obj(obj, name, &s->mpc[i],
|
|
sizeof(s->mpc[i]), TYPE_TZ_MPC);
|
|
g_free(name);
|
|
}
|
|
object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
|
|
TYPE_OR_IRQ);
|
|
|
|
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
|
|
char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
|
|
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
|
|
|
|
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
|
|
g_free(name);
|
|
}
|
|
sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
|
|
TYPE_CMSDK_APB_TIMER);
|
|
sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
|
|
TYPE_CMSDK_APB_TIMER);
|
|
sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
|
|
TYPE_CMSDK_APB_TIMER);
|
|
sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
|
|
TYPE_CMSDK_APB_DUALTIMER);
|
|
sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
|
|
sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
|
|
sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
|
|
sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
|
|
sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
|
|
sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
|
|
sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
|
|
sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
|
|
sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
|
|
sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
|
|
if (info->has_mhus) {
|
|
sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
|
|
TYPE_ARMSSE_MHU);
|
|
sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
|
|
TYPE_ARMSSE_MHU);
|
|
}
|
|
if (info->has_ppus) {
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
char *name = g_strdup_printf("CPU%dCORE_PPU", i);
|
|
int ppuidx = CPU0CORE_PPU + i;
|
|
|
|
sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
|
|
sizeof(s->ppu[ppuidx]),
|
|
TYPE_UNIMPLEMENTED_DEVICE);
|
|
g_free(name);
|
|
}
|
|
sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
|
|
sizeof(s->ppu[DBG_PPU]),
|
|
TYPE_UNIMPLEMENTED_DEVICE);
|
|
for (i = 0; i < info->sram_banks; i++) {
|
|
char *name = g_strdup_printf("RAM%d_PPU", i);
|
|
int ppuidx = RAM0_PPU + i;
|
|
|
|
sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
|
|
sizeof(s->ppu[ppuidx]),
|
|
TYPE_UNIMPLEMENTED_DEVICE);
|
|
g_free(name);
|
|
}
|
|
}
|
|
if (info->has_cachectrl) {
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
char *name = g_strdup_printf("cachectrl%d", i);
|
|
|
|
sysbus_init_child_obj(obj, name, &s->cachectrl[i],
|
|
sizeof(s->cachectrl[i]),
|
|
TYPE_UNIMPLEMENTED_DEVICE);
|
|
g_free(name);
|
|
}
|
|
}
|
|
if (info->has_cpusecctrl) {
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
char *name = g_strdup_printf("cpusecctrl%d", i);
|
|
|
|
sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
|
|
sizeof(s->cpusecctrl[i]),
|
|
TYPE_UNIMPLEMENTED_DEVICE);
|
|
g_free(name);
|
|
}
|
|
}
|
|
if (info->has_cpuid) {
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
char *name = g_strdup_printf("cpuid%d", i);
|
|
|
|
sysbus_init_child_obj(obj, name, &s->cpuid[i],
|
|
sizeof(s->cpuid[i]),
|
|
TYPE_ARMSSE_CPUID);
|
|
g_free(name);
|
|
}
|
|
}
|
|
object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
|
|
object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
|
|
TYPE_OR_IRQ);
|
|
object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
|
|
TYPE_SPLIT_IRQ);
|
|
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
|
|
char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
|
|
SplitIRQ *splitter = &s->ppc_irq_splitter[i];
|
|
|
|
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
|
|
g_free(name);
|
|
}
|
|
if (info->num_cpus > 1) {
|
|
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
|
|
if (irq_is_common[i]) {
|
|
char *name = g_strdup_printf("cpu-irq-splitter%d", i);
|
|
SplitIRQ *splitter = &s->cpu_irq_splitter[i];
|
|
|
|
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
|
|
g_free(name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void armsse_exp_irq(void *opaque, int n, int level)
|
|
{
|
|
qemu_irq *irqarray = opaque;
|
|
|
|
qemu_set_irq(irqarray[n], level);
|
|
}
|
|
|
|
static void armsse_mpcexp_status(void *opaque, int n, int level)
|
|
{
|
|
ARMSSE *s = ARMSSE(opaque);
|
|
qemu_set_irq(s->mpcexp_status_in[n], level);
|
|
}
|
|
|
|
static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
|
|
{
|
|
/*
|
|
* Return a qemu_irq which can be used to signal IRQ n to
|
|
* all CPUs in the SSE.
|
|
*/
|
|
ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
|
|
const ARMSSEInfo *info = asc->info;
|
|
|
|
assert(irq_is_common[irqno]);
|
|
|
|
if (info->num_cpus == 1) {
|
|
/* Only one CPU -- just connect directly to it */
|
|
return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
|
|
} else {
|
|
/* Connect to the splitter which feeds all CPUs */
|
|
return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
|
|
}
|
|
}
|
|
|
|
static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
|
|
{
|
|
/* Map a PPU unimplemented device stub */
|
|
DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
|
|
|
|
qdev_prop_set_string(dev, "name", name);
|
|
qdev_prop_set_uint64(dev, "size", 0x1000);
|
|
qdev_init_nofail(dev);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
|
|
}
|
|
|
|
static void armsse_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
ARMSSE *s = ARMSSE(dev);
|
|
ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
|
|
const ARMSSEInfo *info = asc->info;
|
|
int i;
|
|
MemoryRegion *mr;
|
|
Error *err = NULL;
|
|
SysBusDevice *sbd_apb_ppc0;
|
|
SysBusDevice *sbd_secctl;
|
|
DeviceState *dev_apb_ppc0;
|
|
DeviceState *dev_apb_ppc1;
|
|
DeviceState *dev_secctl;
|
|
DeviceState *dev_splitter;
|
|
uint32_t addr_width_max;
|
|
|
|
if (!s->board_memory) {
|
|
error_setg(errp, "memory property was not set");
|
|
return;
|
|
}
|
|
|
|
if (!s->mainclk_frq) {
|
|
error_setg(errp, "MAINCLK property was not set");
|
|
return;
|
|
}
|
|
|
|
/* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
|
|
assert(is_power_of_2(info->sram_banks));
|
|
addr_width_max = 24 - ctz32(info->sram_banks);
|
|
if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
|
|
error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
|
|
addr_width_max);
|
|
return;
|
|
}
|
|
|
|
/* Handling of which devices should be available only to secure
|
|
* code is usually done differently for M profile than for A profile.
|
|
* Instead of putting some devices only into the secure address space,
|
|
* devices exist in both address spaces but with hard-wired security
|
|
* permissions that will cause the CPU to fault for non-secure accesses.
|
|
*
|
|
* The ARMSSE has an IDAU (Implementation Defined Access Unit),
|
|
* which specifies hard-wired security permissions for different
|
|
* areas of the physical address space. For the ARMSSE IDAU, the
|
|
* top 4 bits of the physical address are the IDAU region ID, and
|
|
* if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
|
|
* region, otherwise it is an S region.
|
|
*
|
|
* The various devices and RAMs are generally all mapped twice,
|
|
* once into a region that the IDAU defines as secure and once
|
|
* into a non-secure region. They sit behind either a Memory
|
|
* Protection Controller (for RAM) or a Peripheral Protection
|
|
* Controller (for devices), which allow a more fine grained
|
|
* configuration of whether non-secure accesses are permitted.
|
|
*
|
|
* (The other place that guest software can configure security
|
|
* permissions is in the architected SAU (Security Attribution
|
|
* Unit), which is entirely inside the CPU. The IDAU can upgrade
|
|
* the security attributes for a region to more restrictive than
|
|
* the SAU specifies, but cannot downgrade them.)
|
|
*
|
|
* 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
|
|
* 0x20000000..0x2007ffff 32KB FPGA block RAM
|
|
* 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
|
|
* 0x40000000..0x4000ffff base peripheral region 1
|
|
* 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
|
|
* 0x40020000..0x4002ffff system control element peripherals
|
|
* 0x40080000..0x400fffff base peripheral region 2
|
|
* 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
|
|
*/
|
|
|
|
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
|
|
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
DeviceState *cpudev = DEVICE(&s->armv7m[i]);
|
|
Object *cpuobj = OBJECT(&s->armv7m[i]);
|
|
int j;
|
|
char *gpioname;
|
|
|
|
qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
|
|
/*
|
|
* In real hardware the initial Secure VTOR is set from the INITSVTOR*
|
|
* registers in the IoT Kit System Control Register block. In QEMU
|
|
* we set the initial value here, and also the reset value of the
|
|
* sysctl register, from this object's QOM init-svtor property.
|
|
* If the guest changes the INITSVTOR* registers at runtime then the
|
|
* code in iotkit-sysctl.c will update the CPU init-svtor property
|
|
* (which will then take effect on the next CPU warm-reset).
|
|
*
|
|
* Note that typically a board using the SSE-200 will have a system
|
|
* control processor whose boot firmware initializes the INITSVTOR*
|
|
* registers before powering up the CPUs. QEMU doesn't emulate
|
|
* the control processor, so instead we behave in the way that the
|
|
* firmware does: the initial value should be set by the board code
|
|
* (using the init-svtor property on the ARMSSE object) to match
|
|
* whatever its firmware does.
|
|
*/
|
|
qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
|
|
/*
|
|
* CPUs start powered down if the corresponding bit in the CPUWAIT
|
|
* register is 1. In real hardware the CPUWAIT register reset value is
|
|
* a configurable property of the SSE-200 (via the CPUWAIT0_RST and
|
|
* CPUWAIT1_RST parameters), but since all the boards we care about
|
|
* start CPU0 and leave CPU1 powered off, we hard-code that in
|
|
* info->cpuwait_rst for now. We can add QOM properties for this
|
|
* later if necessary.
|
|
*/
|
|
if (extract32(info->cpuwait_rst, i, 1)) {
|
|
object_property_set_bool(cpuobj, true, "start-powered-off", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
}
|
|
if (!s->cpu_fpu[i]) {
|
|
object_property_set_bool(cpuobj, false, "vfp", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
}
|
|
if (!s->cpu_dsp[i]) {
|
|
object_property_set_bool(cpuobj, false, "dsp", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (i > 0) {
|
|
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
|
|
&s->container_alias[i - 1], -1);
|
|
} else {
|
|
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
|
|
&s->container, -1);
|
|
}
|
|
object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
|
|
"memory", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(cpuobj, true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
/*
|
|
* The cluster must be realized after the armv7m container, as
|
|
* the container's CPU object is only created on realize, and the
|
|
* CPU must exist and have been parented into the cluster before
|
|
* the cluster is realized.
|
|
*/
|
|
object_property_set_bool(OBJECT(&s->cluster[i]),
|
|
true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
/* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
|
|
s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
|
|
for (j = 0; j < s->exp_numirq; j++) {
|
|
s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
|
|
}
|
|
if (i == 0) {
|
|
gpioname = g_strdup("EXP_IRQ");
|
|
} else {
|
|
gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
|
|
}
|
|
qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
|
|
s->exp_irqs[i],
|
|
gpioname, s->exp_numirq);
|
|
g_free(gpioname);
|
|
}
|
|
|
|
/* Wire up the splitters that connect common IRQs to all CPUs */
|
|
if (info->num_cpus > 1) {
|
|
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
|
|
if (irq_is_common[i]) {
|
|
Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
|
|
DeviceState *devs = DEVICE(splitter);
|
|
int cpunum;
|
|
|
|
object_property_set_int(splitter, info->num_cpus,
|
|
"num-lines", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(splitter, true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
|
|
DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
|
|
|
|
qdev_connect_gpio_out(devs, cpunum,
|
|
qdev_get_gpio_in(cpudev, i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set up the big aliases first */
|
|
make_alias(s, &s->alias1, &s->container, "alias 1",
|
|
0x10000000, 0x10000000, 0x00000000);
|
|
make_alias(s, &s->alias2, &s->container,
|
|
"alias 2", 0x30000000, 0x10000000, 0x20000000);
|
|
/* The 0x50000000..0x5fffffff region is not a pure alias: it has
|
|
* a few extra devices that only appear there (generally the
|
|
* control interfaces for the protection controllers).
|
|
* We implement this by mapping those devices over the top of this
|
|
* alias MR at a higher priority. Some of the devices in this range
|
|
* are per-CPU, so we must put this alias in the per-cpu containers.
|
|
*/
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
make_alias(s, &s->alias3[i], &s->cpu_container[i],
|
|
"alias 3", 0x50000000, 0x10000000, 0x40000000);
|
|
}
|
|
|
|
/* Security controller */
|
|
object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
|
|
dev_secctl = DEVICE(&s->secctl);
|
|
sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
|
|
sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
|
|
|
|
s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
|
|
qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
|
|
|
|
/* The sec_resp_cfg output from the security controller must be split into
|
|
* multiple lines, one for each of the PPCs within the ARMSSE and one
|
|
* that will be an output from the ARMSSE to the system.
|
|
*/
|
|
object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
|
|
"num-lines", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
|
|
"realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
dev_splitter = DEVICE(&s->sec_resp_splitter);
|
|
qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
|
|
qdev_get_gpio_in(dev_splitter, 0));
|
|
|
|
/* Each SRAM bank lives behind its own Memory Protection Controller */
|
|
for (i = 0; i < info->sram_banks; i++) {
|
|
char *ramname = g_strdup_printf("armsse.sram%d", i);
|
|
SysBusDevice *sbd_mpc;
|
|
uint32_t sram_bank_size = 1 << s->sram_addr_width;
|
|
|
|
memory_region_init_ram(&s->sram[i], NULL, ramname,
|
|
sram_bank_size, &err);
|
|
g_free(ramname);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
|
|
"downstream", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
/* Map the upstream end of the MPC into the right place... */
|
|
sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
|
|
memory_region_add_subregion(&s->container,
|
|
0x20000000 + i * sram_bank_size,
|
|
sysbus_mmio_get_region(sbd_mpc, 1));
|
|
/* ...and its register interface */
|
|
memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
|
|
sysbus_mmio_get_region(sbd_mpc, 0));
|
|
}
|
|
|
|
/* We must OR together lines from the MPC splitters to go to the NVIC */
|
|
object_property_set_int(OBJECT(&s->mpc_irq_orgate),
|
|
IOTS_NUM_EXP_MPC + info->sram_banks,
|
|
"num-lines", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
|
|
"realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
|
|
armsse_get_common_irq_in(s, 9));
|
|
|
|
/* Devices behind APB PPC0:
|
|
* 0x40000000: timer0
|
|
* 0x40001000: timer1
|
|
* 0x40002000: dual timer
|
|
* 0x40003000: MHU0 (SSE-200 only)
|
|
* 0x40004000: MHU1 (SSE-200 only)
|
|
* We must configure and realize each downstream device and connect
|
|
* it to the appropriate PPC port; then we can realize the PPC and
|
|
* map its upstream ends to the right place in the container.
|
|
*/
|
|
qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
|
|
object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
|
|
armsse_get_common_irq_in(s, 3));
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
|
|
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
|
|
object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
|
|
armsse_get_common_irq_in(s, 4));
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
|
|
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
|
|
qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
|
|
object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
|
|
armsse_get_common_irq_in(s, 5));
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
|
|
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
if (info->has_mhus) {
|
|
/*
|
|
* An SSE-200 with only one CPU should have only one MHU created,
|
|
* with the region where the second MHU usually is being RAZ/WI.
|
|
* We don't implement that SSE-200 config; if we want to support
|
|
* it then this code needs to be enhanced to handle creating the
|
|
* RAZ/WI region instead of the second MHU.
|
|
*/
|
|
assert(info->num_cpus == ARRAY_SIZE(s->mhu));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
|
|
char *port;
|
|
int cpunum;
|
|
SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
|
|
|
|
object_property_set_bool(OBJECT(&s->mhu[i]), true,
|
|
"realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
port = g_strdup_printf("port[%d]", i + 3);
|
|
mr = sysbus_mmio_get_region(mhu_sbd, 0);
|
|
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
|
|
port, &err);
|
|
g_free(port);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Each MHU has an irq line for each CPU:
|
|
* MHU 0 irq line 0 -> CPU 0 IRQ 6
|
|
* MHU 0 irq line 1 -> CPU 1 IRQ 6
|
|
* MHU 1 irq line 0 -> CPU 0 IRQ 7
|
|
* MHU 1 irq line 1 -> CPU 1 IRQ 7
|
|
*/
|
|
for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
|
|
DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
|
|
|
|
sysbus_connect_irq(mhu_sbd, cpunum,
|
|
qdev_get_gpio_in(cpudev, 6 + i));
|
|
}
|
|
}
|
|
}
|
|
|
|
object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
|
|
dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
|
|
|
|
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
|
|
memory_region_add_subregion(&s->container, 0x40000000, mr);
|
|
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
|
|
memory_region_add_subregion(&s->container, 0x40001000, mr);
|
|
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
|
|
memory_region_add_subregion(&s->container, 0x40002000, mr);
|
|
if (info->has_mhus) {
|
|
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
|
|
memory_region_add_subregion(&s->container, 0x40003000, mr);
|
|
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
|
|
memory_region_add_subregion(&s->container, 0x40004000, mr);
|
|
}
|
|
for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
|
|
qdev_get_gpio_in_named(dev_apb_ppc0,
|
|
"cfg_nonsec", i));
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
|
|
qdev_get_gpio_in_named(dev_apb_ppc0,
|
|
"cfg_ap", i));
|
|
}
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
|
|
qdev_get_gpio_in_named(dev_apb_ppc0,
|
|
"irq_enable", 0));
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
|
|
qdev_get_gpio_in_named(dev_apb_ppc0,
|
|
"irq_clear", 0));
|
|
qdev_connect_gpio_out(dev_splitter, 0,
|
|
qdev_get_gpio_in_named(dev_apb_ppc0,
|
|
"cfg_sec_resp", 0));
|
|
|
|
/* All the PPC irq lines (from the 2 internal PPCs and the 8 external
|
|
* ones) are sent individually to the security controller, and also
|
|
* ORed together to give a single combined PPC interrupt to the NVIC.
|
|
*/
|
|
object_property_set_int(OBJECT(&s->ppc_irq_orgate),
|
|
NUM_PPCS, "num-lines", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
|
|
"realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
|
|
armsse_get_common_irq_in(s, 10));
|
|
|
|
/*
|
|
* 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
|
|
* private per-CPU region (all these devices are SSE-200 only):
|
|
* 0x50010000: L1 icache control registers
|
|
* 0x50011000: CPUSECCTRL (CPU local security control registers)
|
|
* 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
|
|
*/
|
|
if (info->has_cachectrl) {
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
char *name = g_strdup_printf("cachectrl%d", i);
|
|
MemoryRegion *mr;
|
|
|
|
qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
|
|
g_free(name);
|
|
qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
|
|
object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
|
|
"realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
|
|
memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
|
|
}
|
|
}
|
|
if (info->has_cpusecctrl) {
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
char *name = g_strdup_printf("CPUSECCTRL%d", i);
|
|
MemoryRegion *mr;
|
|
|
|
qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
|
|
g_free(name);
|
|
qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
|
|
object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
|
|
"realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
|
|
memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
|
|
}
|
|
}
|
|
if (info->has_cpuid) {
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
MemoryRegion *mr;
|
|
|
|
qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
|
|
object_property_set_bool(OBJECT(&s->cpuid[i]), true,
|
|
"realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
|
|
memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
|
|
}
|
|
}
|
|
|
|
/* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
|
|
/* Devices behind APB PPC1:
|
|
* 0x4002f000: S32K timer
|
|
*/
|
|
qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
|
|
object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
|
|
armsse_get_common_irq_in(s, 2));
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
|
|
object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
|
|
memory_region_add_subregion(&s->container, 0x4002f000, mr);
|
|
|
|
dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
|
|
qdev_get_gpio_in_named(dev_apb_ppc1,
|
|
"cfg_nonsec", 0));
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
|
|
qdev_get_gpio_in_named(dev_apb_ppc1,
|
|
"cfg_ap", 0));
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
|
|
qdev_get_gpio_in_named(dev_apb_ppc1,
|
|
"irq_enable", 0));
|
|
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
|
|
qdev_get_gpio_in_named(dev_apb_ppc1,
|
|
"irq_clear", 0));
|
|
qdev_connect_gpio_out(dev_splitter, 1,
|
|
qdev_get_gpio_in_named(dev_apb_ppc1,
|
|
"cfg_sec_resp", 0));
|
|
|
|
object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
|
|
"SYS_VERSION", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_int(OBJECT(&s->sysinfo),
|
|
armsse_sys_config_value(s, info),
|
|
"SYS_CONFIG", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
/* System information registers */
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
|
|
/* System control registers */
|
|
object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
|
|
"SYS_VERSION", &err);
|
|
object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
|
|
"CPUWAIT_RST", &err);
|
|
object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
|
|
"INITSVTOR0_RST", &err);
|
|
object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
|
|
"INITSVTOR1_RST", &err);
|
|
object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
|
|
|
|
if (info->has_ppus) {
|
|
/* CPUnCORE_PPU for each CPU */
|
|
for (i = 0; i < info->num_cpus; i++) {
|
|
char *name = g_strdup_printf("CPU%dCORE_PPU", i);
|
|
|
|
map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
|
|
/*
|
|
* We don't support CPU debug so don't create the
|
|
* CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
|
|
*/
|
|
g_free(name);
|
|
}
|
|
map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
|
|
|
|
for (i = 0; i < info->sram_banks; i++) {
|
|
char *name = g_strdup_printf("RAM%d_PPU", i);
|
|
|
|
map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
|
|
g_free(name);
|
|
}
|
|
}
|
|
|
|
/* This OR gate wires together outputs from the secure watchdogs to NMI */
|
|
object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
|
|
qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
|
|
|
|
qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
|
|
object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
|
|
qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
|
|
|
|
/* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
|
|
|
|
qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
|
|
object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
|
|
armsse_get_common_irq_in(s, 1));
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
|
|
|
|
qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
|
|
object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
|
|
qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
|
|
Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
|
|
|
|
object_property_set_int(splitter, 2, "num-lines", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(splitter, true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
|
|
char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
|
|
|
|
armsse_forward_ppc(s, ppcname, i);
|
|
g_free(ppcname);
|
|
}
|
|
|
|
for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
|
|
char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
|
|
|
|
armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
|
|
g_free(ppcname);
|
|
}
|
|
|
|
for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
|
|
/* Wire up IRQ splitter for internal PPCs */
|
|
DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
|
|
char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
|
|
i - NUM_EXTERNAL_PPCS);
|
|
TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
|
|
|
|
qdev_connect_gpio_out(devs, 0,
|
|
qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
|
|
qdev_connect_gpio_out(devs, 1,
|
|
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
|
|
qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
|
|
qdev_get_gpio_in(devs, 0));
|
|
g_free(gpioname);
|
|
}
|
|
|
|
/* Wire up the splitters for the MPC IRQs */
|
|
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
|
|
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
|
|
DeviceState *dev_splitter = DEVICE(splitter);
|
|
|
|
object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
object_property_set_bool(OBJECT(splitter), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
|
|
if (i < IOTS_NUM_EXP_MPC) {
|
|
/* Splitter input is from GPIO input line */
|
|
s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
|
|
qdev_connect_gpio_out(dev_splitter, 0,
|
|
qdev_get_gpio_in_named(dev_secctl,
|
|
"mpcexp_status", i));
|
|
} else {
|
|
/* Splitter input is from our own MPC */
|
|
qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
|
|
"irq", 0,
|
|
qdev_get_gpio_in(dev_splitter, 0));
|
|
qdev_connect_gpio_out(dev_splitter, 0,
|
|
qdev_get_gpio_in_named(dev_secctl,
|
|
"mpc_status", 0));
|
|
}
|
|
|
|
qdev_connect_gpio_out(dev_splitter, 1,
|
|
qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
|
|
}
|
|
/* Create GPIO inputs which will pass the line state for our
|
|
* mpcexp_irq inputs to the correct splitter devices.
|
|
*/
|
|
qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
|
|
IOTS_NUM_EXP_MPC);
|
|
|
|
armsse_forward_sec_resp_cfg(s);
|
|
|
|
/* Forward the MSC related signals */
|
|
qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
|
|
qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
|
|
qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
|
|
qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
|
|
armsse_get_common_irq_in(s, 11));
|
|
|
|
/*
|
|
* Expose our container region to the board model; this corresponds
|
|
* to the AHB Slave Expansion ports which allow bus master devices
|
|
* (eg DMA controllers) in the board model to make transactions into
|
|
* devices in the ARMSSE.
|
|
*/
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
|
|
|
|
system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
|
|
}
|
|
|
|
static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
|
|
int *iregion, bool *exempt, bool *ns, bool *nsc)
|
|
{
|
|
/*
|
|
* For ARMSSE systems the IDAU responses are simple logical functions
|
|
* of the address bits. The NSC attribute is guest-adjustable via the
|
|
* NSCCFG register in the security controller.
|
|
*/
|
|
ARMSSE *s = ARMSSE(ii);
|
|
int region = extract32(address, 28, 4);
|
|
|
|
*ns = !(region & 1);
|
|
*nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
|
|
/* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
|
|
*exempt = (address & 0xeff00000) == 0xe0000000;
|
|
*iregion = region;
|
|
}
|
|
|
|
static const VMStateDescription armsse_vmstate = {
|
|
.name = "iotkit",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(nsccfg, ARMSSE),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void armsse_reset(DeviceState *dev)
|
|
{
|
|
ARMSSE *s = ARMSSE(dev);
|
|
|
|
s->nsccfg = 0;
|
|
}
|
|
|
|
static void armsse_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
|
|
ARMSSEClass *asc = ARMSSE_CLASS(klass);
|
|
const ARMSSEInfo *info = data;
|
|
|
|
dc->realize = armsse_realize;
|
|
dc->vmsd = &armsse_vmstate;
|
|
device_class_set_props(dc, info->props);
|
|
dc->reset = armsse_reset;
|
|
iic->check = armsse_idau_check;
|
|
asc->info = info;
|
|
}
|
|
|
|
static const TypeInfo armsse_info = {
|
|
.name = TYPE_ARMSSE,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(ARMSSE),
|
|
.instance_init = armsse_init,
|
|
.abstract = true,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_IDAU_INTERFACE },
|
|
{ }
|
|
}
|
|
};
|
|
|
|
static void armsse_register_types(void)
|
|
{
|
|
int i;
|
|
|
|
type_register_static(&armsse_info);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
|
|
TypeInfo ti = {
|
|
.name = armsse_variants[i].name,
|
|
.parent = TYPE_ARMSSE,
|
|
.class_init = armsse_class_init,
|
|
.class_data = (void *)&armsse_variants[i],
|
|
};
|
|
type_register(&ti);
|
|
}
|
|
}
|
|
|
|
type_init(armsse_register_types);
|