mirror of
https://github.com/xemu-project/xemu.git
synced 2025-01-11 14:26:48 +00:00
6b20875503
Now that we have exactly one call, it's easy to pass in env instead of passing in the sp value. Use target_save_altstack, which required env. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20210426025334.1168495-4-richard.henderson@linaro.org> Signed-off-by: Laurent Vivier <laurent@vivier.eu>
747 lines
28 KiB
C
747 lines
28 KiB
C
#ifndef QEMU_H
|
|
#define QEMU_H
|
|
|
|
#include "hostdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
|
|
#undef DEBUG_REMAP
|
|
|
|
#include "exec/user/abitypes.h"
|
|
|
|
#include "exec/user/thunk.h"
|
|
#include "syscall_defs.h"
|
|
#include "target_syscall.h"
|
|
#include "exec/gdbstub.h"
|
|
|
|
/* This is the size of the host kernel's sigset_t, needed where we make
|
|
* direct system calls that take a sigset_t pointer and a size.
|
|
*/
|
|
#define SIGSET_T_SIZE (_NSIG / 8)
|
|
|
|
/* This struct is used to hold certain information about the image.
|
|
* Basically, it replicates in user space what would be certain
|
|
* task_struct fields in the kernel
|
|
*/
|
|
struct image_info {
|
|
abi_ulong load_bias;
|
|
abi_ulong load_addr;
|
|
abi_ulong start_code;
|
|
abi_ulong end_code;
|
|
abi_ulong start_data;
|
|
abi_ulong end_data;
|
|
abi_ulong start_brk;
|
|
abi_ulong brk;
|
|
abi_ulong reserve_brk;
|
|
abi_ulong start_mmap;
|
|
abi_ulong start_stack;
|
|
abi_ulong stack_limit;
|
|
abi_ulong entry;
|
|
abi_ulong code_offset;
|
|
abi_ulong data_offset;
|
|
abi_ulong saved_auxv;
|
|
abi_ulong auxv_len;
|
|
abi_ulong arg_start;
|
|
abi_ulong arg_end;
|
|
abi_ulong arg_strings;
|
|
abi_ulong env_strings;
|
|
abi_ulong file_string;
|
|
uint32_t elf_flags;
|
|
int personality;
|
|
abi_ulong alignment;
|
|
|
|
/* The fields below are used in FDPIC mode. */
|
|
abi_ulong loadmap_addr;
|
|
uint16_t nsegs;
|
|
void *loadsegs;
|
|
abi_ulong pt_dynamic_addr;
|
|
abi_ulong interpreter_loadmap_addr;
|
|
abi_ulong interpreter_pt_dynamic_addr;
|
|
struct image_info *other_info;
|
|
|
|
/* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
|
|
uint32_t note_flags;
|
|
|
|
#ifdef TARGET_MIPS
|
|
int fp_abi;
|
|
int interp_fp_abi;
|
|
#endif
|
|
};
|
|
|
|
#ifdef TARGET_I386
|
|
/* Information about the current linux thread */
|
|
struct vm86_saved_state {
|
|
uint32_t eax; /* return code */
|
|
uint32_t ebx;
|
|
uint32_t ecx;
|
|
uint32_t edx;
|
|
uint32_t esi;
|
|
uint32_t edi;
|
|
uint32_t ebp;
|
|
uint32_t esp;
|
|
uint32_t eflags;
|
|
uint32_t eip;
|
|
uint16_t cs, ss, ds, es, fs, gs;
|
|
};
|
|
#endif
|
|
|
|
#if defined(TARGET_ARM) && defined(TARGET_ABI32)
|
|
/* FPU emulator */
|
|
#include "nwfpe/fpa11.h"
|
|
#endif
|
|
|
|
#define MAX_SIGQUEUE_SIZE 1024
|
|
|
|
struct emulated_sigtable {
|
|
int pending; /* true if signal is pending */
|
|
target_siginfo_t info;
|
|
};
|
|
|
|
/* NOTE: we force a big alignment so that the stack stored after is
|
|
aligned too */
|
|
typedef struct TaskState {
|
|
pid_t ts_tid; /* tid (or pid) of this task */
|
|
#ifdef TARGET_ARM
|
|
# ifdef TARGET_ABI32
|
|
/* FPA state */
|
|
FPA11 fpa;
|
|
# endif
|
|
#endif
|
|
#if defined(TARGET_ARM) || defined(TARGET_RISCV)
|
|
int swi_errno;
|
|
#endif
|
|
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
|
|
abi_ulong target_v86;
|
|
struct vm86_saved_state vm86_saved_regs;
|
|
struct target_vm86plus_struct vm86plus;
|
|
uint32_t v86flags;
|
|
uint32_t v86mask;
|
|
#endif
|
|
abi_ulong child_tidptr;
|
|
#ifdef TARGET_M68K
|
|
abi_ulong tp_value;
|
|
#endif
|
|
#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV)
|
|
/* Extra fields for semihosted binaries. */
|
|
abi_ulong heap_base;
|
|
abi_ulong heap_limit;
|
|
#endif
|
|
abi_ulong stack_base;
|
|
int used; /* non zero if used */
|
|
struct image_info *info;
|
|
struct linux_binprm *bprm;
|
|
|
|
struct emulated_sigtable sync_signal;
|
|
struct emulated_sigtable sigtab[TARGET_NSIG];
|
|
/* This thread's signal mask, as requested by the guest program.
|
|
* The actual signal mask of this thread may differ:
|
|
* + we don't let SIGSEGV and SIGBUS be blocked while running guest code
|
|
* + sometimes we block all signals to avoid races
|
|
*/
|
|
sigset_t signal_mask;
|
|
/* The signal mask imposed by a guest sigsuspend syscall, if we are
|
|
* currently in the middle of such a syscall
|
|
*/
|
|
sigset_t sigsuspend_mask;
|
|
/* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
|
|
int in_sigsuspend;
|
|
|
|
/* Nonzero if process_pending_signals() needs to do something (either
|
|
* handle a pending signal or unblock signals).
|
|
* This flag is written from a signal handler so should be accessed via
|
|
* the qatomic_read() and qatomic_set() functions. (It is not accessed
|
|
* from multiple threads.)
|
|
*/
|
|
int signal_pending;
|
|
|
|
/* This thread's sigaltstack, if it has one */
|
|
struct target_sigaltstack sigaltstack_used;
|
|
} __attribute__((aligned(16))) TaskState;
|
|
|
|
extern char *exec_path;
|
|
void init_task_state(TaskState *ts);
|
|
void task_settid(TaskState *);
|
|
void stop_all_tasks(void);
|
|
extern const char *qemu_uname_release;
|
|
extern unsigned long mmap_min_addr;
|
|
|
|
/* ??? See if we can avoid exposing so much of the loader internals. */
|
|
|
|
/* Read a good amount of data initially, to hopefully get all the
|
|
program headers loaded. */
|
|
#define BPRM_BUF_SIZE 1024
|
|
|
|
/*
|
|
* This structure is used to hold the arguments that are
|
|
* used when loading binaries.
|
|
*/
|
|
struct linux_binprm {
|
|
char buf[BPRM_BUF_SIZE] __attribute__((aligned));
|
|
abi_ulong p;
|
|
int fd;
|
|
int e_uid, e_gid;
|
|
int argc, envc;
|
|
char **argv;
|
|
char **envp;
|
|
char * filename; /* Name of binary */
|
|
int (*core_dump)(int, const CPUArchState *); /* coredump routine */
|
|
};
|
|
|
|
typedef struct IOCTLEntry IOCTLEntry;
|
|
|
|
typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
|
|
int fd, int cmd, abi_long arg);
|
|
|
|
struct IOCTLEntry {
|
|
int target_cmd;
|
|
unsigned int host_cmd;
|
|
const char *name;
|
|
int access;
|
|
do_ioctl_fn *do_ioctl;
|
|
const argtype arg_type[5];
|
|
};
|
|
|
|
extern IOCTLEntry ioctl_entries[];
|
|
|
|
#define IOC_R 0x0001
|
|
#define IOC_W 0x0002
|
|
#define IOC_RW (IOC_R | IOC_W)
|
|
|
|
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
|
|
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
|
|
abi_ulong stringp, int push_ptr);
|
|
int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
|
|
struct target_pt_regs * regs, struct image_info *infop,
|
|
struct linux_binprm *);
|
|
|
|
/* Returns true if the image uses the FDPIC ABI. If this is the case,
|
|
* we have to provide some information (loadmap, pt_dynamic_info) such
|
|
* that the program can be relocated adequately. This is also useful
|
|
* when handling signals.
|
|
*/
|
|
int info_is_fdpic(struct image_info *info);
|
|
|
|
uint32_t get_elf_eflags(int fd);
|
|
int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
|
|
int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
|
|
|
|
abi_long memcpy_to_target(abi_ulong dest, const void *src,
|
|
unsigned long len);
|
|
void target_set_brk(abi_ulong new_brk);
|
|
abi_long do_brk(abi_ulong new_brk);
|
|
void syscall_init(void);
|
|
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
|
|
abi_long arg2, abi_long arg3, abi_long arg4,
|
|
abi_long arg5, abi_long arg6, abi_long arg7,
|
|
abi_long arg8);
|
|
extern __thread CPUState *thread_cpu;
|
|
void cpu_loop(CPUArchState *env);
|
|
const char *target_strerror(int err);
|
|
int get_osversion(void);
|
|
void init_qemu_uname_release(void);
|
|
void fork_start(void);
|
|
void fork_end(int child);
|
|
|
|
/**
|
|
* probe_guest_base:
|
|
* @image_name: the executable being loaded
|
|
* @loaddr: the lowest fixed address in the executable
|
|
* @hiaddr: the highest fixed address in the executable
|
|
*
|
|
* Creates the initial guest address space in the host memory space.
|
|
*
|
|
* If @loaddr == 0, then no address in the executable is fixed,
|
|
* i.e. it is fully relocatable. In that case @hiaddr is the size
|
|
* of the executable.
|
|
*
|
|
* This function will not return if a valid value for guest_base
|
|
* cannot be chosen. On return, the executable loader can expect
|
|
*
|
|
* target_mmap(loaddr, hiaddr - loaddr, ...)
|
|
*
|
|
* to succeed.
|
|
*/
|
|
void probe_guest_base(const char *image_name,
|
|
abi_ulong loaddr, abi_ulong hiaddr);
|
|
|
|
#include "qemu/log.h"
|
|
|
|
/* safe_syscall.S */
|
|
|
|
/**
|
|
* safe_syscall:
|
|
* @int number: number of system call to make
|
|
* ...: arguments to the system call
|
|
*
|
|
* Call a system call if guest signal not pending.
|
|
* This has the same API as the libc syscall() function, except that it
|
|
* may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
|
|
*
|
|
* Returns: the system call result, or -1 with an error code in errno
|
|
* (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
|
|
* with any of the host errno values.)
|
|
*/
|
|
|
|
/* A guide to using safe_syscall() to handle interactions between guest
|
|
* syscalls and guest signals:
|
|
*
|
|
* Guest syscalls come in two flavours:
|
|
*
|
|
* (1) Non-interruptible syscalls
|
|
*
|
|
* These are guest syscalls that never get interrupted by signals and
|
|
* so never return EINTR. They can be implemented straightforwardly in
|
|
* QEMU: just make sure that if the implementation code has to make any
|
|
* blocking calls that those calls are retried if they return EINTR.
|
|
* It's also OK to implement these with safe_syscall, though it will be
|
|
* a little less efficient if a signal is delivered at the 'wrong' moment.
|
|
*
|
|
* Some non-interruptible syscalls need to be handled using block_signals()
|
|
* to block signals for the duration of the syscall. This mainly applies
|
|
* to code which needs to modify the data structures used by the
|
|
* host_signal_handler() function and the functions it calls, including
|
|
* all syscalls which change the thread's signal mask.
|
|
*
|
|
* (2) Interruptible syscalls
|
|
*
|
|
* These are guest syscalls that can be interrupted by signals and
|
|
* for which we need to either return EINTR or arrange for the guest
|
|
* syscall to be restarted. This category includes both syscalls which
|
|
* always restart (and in the kernel return -ERESTARTNOINTR), ones
|
|
* which only restart if there is no handler (kernel returns -ERESTARTNOHAND
|
|
* or -ERESTART_RESTARTBLOCK), and the most common kind which restart
|
|
* if the handler was registered with SA_RESTART (kernel returns
|
|
* -ERESTARTSYS). System calls which are only interruptible in some
|
|
* situations (like 'open') also need to be handled this way.
|
|
*
|
|
* Here it is important that the host syscall is made
|
|
* via this safe_syscall() function, and *not* via the host libc.
|
|
* If the host libc is used then the implementation will appear to work
|
|
* most of the time, but there will be a race condition where a
|
|
* signal could arrive just before we make the host syscall inside libc,
|
|
* and then then guest syscall will not correctly be interrupted.
|
|
* Instead the implementation of the guest syscall can use the safe_syscall
|
|
* function but otherwise just return the result or errno in the usual
|
|
* way; the main loop code will take care of restarting the syscall
|
|
* if appropriate.
|
|
*
|
|
* (If the implementation needs to make multiple host syscalls this is
|
|
* OK; any which might really block must be via safe_syscall(); for those
|
|
* which are only technically blocking (ie which we know in practice won't
|
|
* stay in the host kernel indefinitely) it's OK to use libc if necessary.
|
|
* You must be able to cope with backing out correctly if some safe_syscall
|
|
* you make in the implementation returns either -TARGET_ERESTARTSYS or
|
|
* EINTR though.)
|
|
*
|
|
* block_signals() cannot be used for interruptible syscalls.
|
|
*
|
|
*
|
|
* How and why the safe_syscall implementation works:
|
|
*
|
|
* The basic setup is that we make the host syscall via a known
|
|
* section of host native assembly. If a signal occurs, our signal
|
|
* handler checks the interrupted host PC against the addresse of that
|
|
* known section. If the PC is before or at the address of the syscall
|
|
* instruction then we change the PC to point at a "return
|
|
* -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
|
|
* (causing the safe_syscall() call to immediately return that value).
|
|
* Then in the main.c loop if we see this magic return value we adjust
|
|
* the guest PC to wind it back to before the system call, and invoke
|
|
* the guest signal handler as usual.
|
|
*
|
|
* This winding-back will happen in two cases:
|
|
* (1) signal came in just before we took the host syscall (a race);
|
|
* in this case we'll take the guest signal and have another go
|
|
* at the syscall afterwards, and this is indistinguishable for the
|
|
* guest from the timing having been different such that the guest
|
|
* signal really did win the race
|
|
* (2) signal came in while the host syscall was blocking, and the
|
|
* host kernel decided the syscall should be restarted;
|
|
* in this case we want to restart the guest syscall also, and so
|
|
* rewinding is the right thing. (Note that "restart" semantics mean
|
|
* "first call the signal handler, then reattempt the syscall".)
|
|
* The other situation to consider is when a signal came in while the
|
|
* host syscall was blocking, and the host kernel decided that the syscall
|
|
* should not be restarted; in this case QEMU's host signal handler will
|
|
* be invoked with the PC pointing just after the syscall instruction,
|
|
* with registers indicating an EINTR return; the special code in the
|
|
* handler will not kick in, and we will return EINTR to the guest as
|
|
* we should.
|
|
*
|
|
* Notice that we can leave the host kernel to make the decision for
|
|
* us about whether to do a restart of the syscall or not; we do not
|
|
* need to check SA_RESTART flags in QEMU or distinguish the various
|
|
* kinds of restartability.
|
|
*/
|
|
#ifdef HAVE_SAFE_SYSCALL
|
|
/* The core part of this function is implemented in assembly */
|
|
extern long safe_syscall_base(int *pending, long number, ...);
|
|
|
|
#define safe_syscall(...) \
|
|
({ \
|
|
long ret_; \
|
|
int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
|
|
ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
|
|
if (is_error(ret_)) { \
|
|
errno = -ret_; \
|
|
ret_ = -1; \
|
|
} \
|
|
ret_; \
|
|
})
|
|
|
|
#else
|
|
|
|
/* Fallback for architectures which don't yet provide a safe-syscall assembly
|
|
* fragment; note that this is racy!
|
|
* This should go away when all host architectures have been updated.
|
|
*/
|
|
#define safe_syscall syscall
|
|
|
|
#endif
|
|
|
|
/* syscall.c */
|
|
int host_to_target_waitstatus(int status);
|
|
|
|
/* strace.c */
|
|
void print_syscall(void *cpu_env, int num,
|
|
abi_long arg1, abi_long arg2, abi_long arg3,
|
|
abi_long arg4, abi_long arg5, abi_long arg6);
|
|
void print_syscall_ret(void *cpu_env, int num, abi_long ret,
|
|
abi_long arg1, abi_long arg2, abi_long arg3,
|
|
abi_long arg4, abi_long arg5, abi_long arg6);
|
|
/**
|
|
* print_taken_signal:
|
|
* @target_signum: target signal being taken
|
|
* @tinfo: target_siginfo_t which will be passed to the guest for the signal
|
|
*
|
|
* Print strace output indicating that this signal is being taken by the guest,
|
|
* in a format similar to:
|
|
* --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
|
|
*/
|
|
void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
|
|
|
|
/* signal.c */
|
|
void process_pending_signals(CPUArchState *cpu_env);
|
|
void signal_init(void);
|
|
int queue_signal(CPUArchState *env, int sig, int si_type,
|
|
target_siginfo_t *info);
|
|
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
|
|
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
|
|
int target_to_host_signal(int sig);
|
|
int host_to_target_signal(int sig);
|
|
long do_sigreturn(CPUArchState *env);
|
|
long do_rt_sigreturn(CPUArchState *env);
|
|
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
|
|
CPUArchState *env);
|
|
int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
|
|
abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
|
|
abi_ulong unew_ctx, abi_long ctx_size);
|
|
/**
|
|
* block_signals: block all signals while handling this guest syscall
|
|
*
|
|
* Block all signals, and arrange that the signal mask is returned to
|
|
* its correct value for the guest before we resume execution of guest code.
|
|
* If this function returns non-zero, then the caller should immediately
|
|
* return -TARGET_ERESTARTSYS to the main loop, which will take the pending
|
|
* signal and restart execution of the syscall.
|
|
* If block_signals() returns zero, then the caller can continue with
|
|
* emulation of the system call knowing that no signals can be taken
|
|
* (and therefore that no race conditions will result).
|
|
* This should only be called once, because if it is called a second time
|
|
* it will always return non-zero. (Think of it like a mutex that can't
|
|
* be recursively locked.)
|
|
* Signals will be unblocked again by process_pending_signals().
|
|
*
|
|
* Return value: non-zero if there was a pending signal, zero if not.
|
|
*/
|
|
int block_signals(void); /* Returns non zero if signal pending */
|
|
|
|
#ifdef TARGET_I386
|
|
/* vm86.c */
|
|
void save_v86_state(CPUX86State *env);
|
|
void handle_vm86_trap(CPUX86State *env, int trapno);
|
|
void handle_vm86_fault(CPUX86State *env);
|
|
int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
|
|
#elif defined(TARGET_SPARC64)
|
|
void sparc64_set_context(CPUSPARCState *env);
|
|
void sparc64_get_context(CPUSPARCState *env);
|
|
#endif
|
|
|
|
/* mmap.c */
|
|
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
|
|
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
|
|
int flags, int fd, abi_ulong offset);
|
|
int target_munmap(abi_ulong start, abi_ulong len);
|
|
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
|
|
abi_ulong new_size, unsigned long flags,
|
|
abi_ulong new_addr);
|
|
extern unsigned long last_brk;
|
|
extern abi_ulong mmap_next_start;
|
|
abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
|
|
void mmap_fork_start(void);
|
|
void mmap_fork_end(int child);
|
|
|
|
/* main.c */
|
|
extern unsigned long guest_stack_size;
|
|
|
|
/* user access */
|
|
|
|
#define VERIFY_READ PAGE_READ
|
|
#define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
|
|
|
|
static inline bool access_ok_untagged(int type, abi_ulong addr, abi_ulong size)
|
|
{
|
|
if (size == 0
|
|
? !guest_addr_valid_untagged(addr)
|
|
: !guest_range_valid_untagged(addr, size)) {
|
|
return false;
|
|
}
|
|
return page_check_range((target_ulong)addr, size, type) == 0;
|
|
}
|
|
|
|
static inline bool access_ok(CPUState *cpu, int type,
|
|
abi_ulong addr, abi_ulong size)
|
|
{
|
|
return access_ok_untagged(type, cpu_untagged_addr(cpu, addr), size);
|
|
}
|
|
|
|
/* NOTE __get_user and __put_user use host pointers and don't check access.
|
|
These are usually used to access struct data members once the struct has
|
|
been locked - usually with lock_user_struct. */
|
|
|
|
/*
|
|
* Tricky points:
|
|
* - Use __builtin_choose_expr to avoid type promotion from ?:,
|
|
* - Invalid sizes result in a compile time error stemming from
|
|
* the fact that abort has no parameters.
|
|
* - It's easier to use the endian-specific unaligned load/store
|
|
* functions than host-endian unaligned load/store plus tswapN.
|
|
* - The pragmas are necessary only to silence a clang false-positive
|
|
* warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
|
|
* - gcc has bugs in its _Pragma() support in some versions, eg
|
|
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
|
|
* include the warning-suppression pragmas for clang
|
|
*/
|
|
#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
|
|
#define PRAGMA_DISABLE_PACKED_WARNING \
|
|
_Pragma("GCC diagnostic push"); \
|
|
_Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
|
|
|
|
#define PRAGMA_REENABLE_PACKED_WARNING \
|
|
_Pragma("GCC diagnostic pop")
|
|
|
|
#else
|
|
#define PRAGMA_DISABLE_PACKED_WARNING
|
|
#define PRAGMA_REENABLE_PACKED_WARNING
|
|
#endif
|
|
|
|
#define __put_user_e(x, hptr, e) \
|
|
do { \
|
|
PRAGMA_DISABLE_PACKED_WARNING; \
|
|
(__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
|
|
__builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
|
|
__builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
|
|
__builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
|
|
((hptr), (x)), (void)0); \
|
|
PRAGMA_REENABLE_PACKED_WARNING; \
|
|
} while (0)
|
|
|
|
#define __get_user_e(x, hptr, e) \
|
|
do { \
|
|
PRAGMA_DISABLE_PACKED_WARNING; \
|
|
((x) = (typeof(*hptr))( \
|
|
__builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
|
|
__builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
|
|
__builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
|
|
__builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
|
|
(hptr)), (void)0); \
|
|
PRAGMA_REENABLE_PACKED_WARNING; \
|
|
} while (0)
|
|
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
# define __put_user(x, hptr) __put_user_e(x, hptr, be)
|
|
# define __get_user(x, hptr) __get_user_e(x, hptr, be)
|
|
#else
|
|
# define __put_user(x, hptr) __put_user_e(x, hptr, le)
|
|
# define __get_user(x, hptr) __get_user_e(x, hptr, le)
|
|
#endif
|
|
|
|
/* put_user()/get_user() take a guest address and check access */
|
|
/* These are usually used to access an atomic data type, such as an int,
|
|
* that has been passed by address. These internally perform locking
|
|
* and unlocking on the data type.
|
|
*/
|
|
#define put_user(x, gaddr, target_type) \
|
|
({ \
|
|
abi_ulong __gaddr = (gaddr); \
|
|
target_type *__hptr; \
|
|
abi_long __ret = 0; \
|
|
if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
|
|
__put_user((x), __hptr); \
|
|
unlock_user(__hptr, __gaddr, sizeof(target_type)); \
|
|
} else \
|
|
__ret = -TARGET_EFAULT; \
|
|
__ret; \
|
|
})
|
|
|
|
#define get_user(x, gaddr, target_type) \
|
|
({ \
|
|
abi_ulong __gaddr = (gaddr); \
|
|
target_type *__hptr; \
|
|
abi_long __ret = 0; \
|
|
if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
|
|
__get_user((x), __hptr); \
|
|
unlock_user(__hptr, __gaddr, 0); \
|
|
} else { \
|
|
/* avoid warning */ \
|
|
(x) = 0; \
|
|
__ret = -TARGET_EFAULT; \
|
|
} \
|
|
__ret; \
|
|
})
|
|
|
|
#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
|
|
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
|
|
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
|
|
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
|
|
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
|
|
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
|
|
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
|
|
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
|
|
#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
|
|
#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
|
|
|
|
#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
|
|
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
|
|
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
|
|
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
|
|
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
|
|
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
|
|
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
|
|
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
|
|
#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
|
|
#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
|
|
|
|
/* copy_from_user() and copy_to_user() are usually used to copy data
|
|
* buffers between the target and host. These internally perform
|
|
* locking/unlocking of the memory.
|
|
*/
|
|
int copy_from_user(void *hptr, abi_ulong gaddr, ssize_t len);
|
|
int copy_to_user(abi_ulong gaddr, void *hptr, ssize_t len);
|
|
|
|
/* Functions for accessing guest memory. The tget and tput functions
|
|
read/write single values, byteswapping as necessary. The lock_user function
|
|
gets a pointer to a contiguous area of guest memory, but does not perform
|
|
any byteswapping. lock_user may return either a pointer to the guest
|
|
memory, or a temporary buffer. */
|
|
|
|
/* Lock an area of guest memory into the host. If copy is true then the
|
|
host area will have the same contents as the guest. */
|
|
void *lock_user(int type, abi_ulong guest_addr, ssize_t len, bool copy);
|
|
|
|
/* Unlock an area of guest memory. The first LEN bytes must be
|
|
flushed back to guest memory. host_ptr = NULL is explicitly
|
|
allowed and does nothing. */
|
|
#ifndef DEBUG_REMAP
|
|
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
|
|
ssize_t len)
|
|
{
|
|
/* no-op */
|
|
}
|
|
#else
|
|
void unlock_user(void *host_ptr, abi_ulong guest_addr, ssize_t len);
|
|
#endif
|
|
|
|
/* Return the length of a string in target memory or -TARGET_EFAULT if
|
|
access error. */
|
|
ssize_t target_strlen(abi_ulong gaddr);
|
|
|
|
/* Like lock_user but for null terminated strings. */
|
|
void *lock_user_string(abi_ulong guest_addr);
|
|
|
|
/* Helper macros for locking/unlocking a target struct. */
|
|
#define lock_user_struct(type, host_ptr, guest_addr, copy) \
|
|
(host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
|
|
#define unlock_user_struct(host_ptr, guest_addr, copy) \
|
|
unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
|
|
|
|
#include <pthread.h>
|
|
|
|
static inline int is_error(abi_long ret)
|
|
{
|
|
return (abi_ulong)ret >= (abi_ulong)(-4096);
|
|
}
|
|
|
|
#if TARGET_ABI_BITS == 32
|
|
static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
|
|
{
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
return ((uint64_t)word0 << 32) | word1;
|
|
#else
|
|
return ((uint64_t)word1 << 32) | word0;
|
|
#endif
|
|
}
|
|
#else /* TARGET_ABI_BITS == 32 */
|
|
static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
|
|
{
|
|
return word0;
|
|
}
|
|
#endif /* TARGET_ABI_BITS != 32 */
|
|
|
|
void print_termios(void *arg);
|
|
|
|
/* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
|
|
#ifdef TARGET_ARM
|
|
static inline int regpairs_aligned(void *cpu_env, int num)
|
|
{
|
|
return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
|
|
}
|
|
#elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
|
|
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
|
|
#elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
|
|
/*
|
|
* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
|
|
* of registers which translates to the same as ARM/MIPS, because we start with
|
|
* r3 as arg1
|
|
*/
|
|
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
|
|
#elif defined(TARGET_SH4)
|
|
/* SH4 doesn't align register pairs, except for p{read,write}64 */
|
|
static inline int regpairs_aligned(void *cpu_env, int num)
|
|
{
|
|
switch (num) {
|
|
case TARGET_NR_pread64:
|
|
case TARGET_NR_pwrite64:
|
|
return 1;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
#elif defined(TARGET_XTENSA)
|
|
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
|
|
#elif defined(TARGET_HEXAGON)
|
|
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
|
|
#else
|
|
static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
|
|
#endif
|
|
|
|
/**
|
|
* preexit_cleanup: housekeeping before the guest exits
|
|
*
|
|
* env: the CPU state
|
|
* code: the exit code
|
|
*/
|
|
void preexit_cleanup(CPUArchState *env, int code);
|
|
|
|
/* Include target-specific struct and function definitions;
|
|
* they may need access to the target-independent structures
|
|
* above, so include them last.
|
|
*/
|
|
#include "target_cpu.h"
|
|
#include "target_structs.h"
|
|
|
|
#endif /* QEMU_H */
|