xemu/hw/arm/nseries.c
Philippe Mathieu-Daudé 0304f9ec9c hw: Do not include "sysemu/block-backend.h" if it is not necessary
Remove those unneeded includes to speed up the compilation
process a little bit. (Continue 7eceff5b5a1fa cleanup)

Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20180528232719.4721-13-f4bug@amsat.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01 14:15:10 +02:00

1461 lines
43 KiB
C

/*
* Nokia N-series internet tablets.
*
* Copyright (C) 2007 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu/cutils.h"
#include "qemu/bswap.h"
#include "sysemu/sysemu.h"
#include "hw/arm/omap.h"
#include "hw/arm/arm.h"
#include "hw/irq.h"
#include "ui/console.h"
#include "hw/boards.h"
#include "hw/i2c/i2c.h"
#include "hw/devices.h"
#include "hw/block/flash.h"
#include "hw/hw.h"
#include "hw/bt.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "qemu/log.h"
#include "exec/address-spaces.h"
/* Nokia N8x0 support */
struct n800_s {
struct omap_mpu_state_s *mpu;
struct rfbi_chip_s blizzard;
struct {
void *opaque;
uint32_t (*txrx)(void *opaque, uint32_t value, int len);
uWireSlave *chip;
} ts;
int keymap[0x80];
DeviceState *kbd;
DeviceState *usb;
void *retu;
void *tahvo;
DeviceState *nand;
};
/* GPIO pins */
#define N8X0_TUSB_ENABLE_GPIO 0
#define N800_MMC2_WP_GPIO 8
#define N800_UNKNOWN_GPIO0 9 /* out */
#define N810_MMC2_VIOSD_GPIO 9
#define N810_HEADSET_AMP_GPIO 10
#define N800_CAM_TURN_GPIO 12
#define N810_GPS_RESET_GPIO 12
#define N800_BLIZZARD_POWERDOWN_GPIO 15
#define N800_MMC1_WP_GPIO 23
#define N810_MMC2_VSD_GPIO 23
#define N8X0_ONENAND_GPIO 26
#define N810_BLIZZARD_RESET_GPIO 30
#define N800_UNKNOWN_GPIO2 53 /* out */
#define N8X0_TUSB_INT_GPIO 58
#define N8X0_BT_WKUP_GPIO 61
#define N8X0_STI_GPIO 62
#define N8X0_CBUS_SEL_GPIO 64
#define N8X0_CBUS_DAT_GPIO 65
#define N8X0_CBUS_CLK_GPIO 66
#define N8X0_WLAN_IRQ_GPIO 87
#define N8X0_BT_RESET_GPIO 92
#define N8X0_TEA5761_CS_GPIO 93
#define N800_UNKNOWN_GPIO 94
#define N810_TSC_RESET_GPIO 94
#define N800_CAM_ACT_GPIO 95
#define N810_GPS_WAKEUP_GPIO 95
#define N8X0_MMC_CS_GPIO 96
#define N8X0_WLAN_PWR_GPIO 97
#define N8X0_BT_HOST_WKUP_GPIO 98
#define N810_SPEAKER_AMP_GPIO 101
#define N810_KB_LOCK_GPIO 102
#define N800_TSC_TS_GPIO 103
#define N810_TSC_TS_GPIO 106
#define N8X0_HEADPHONE_GPIO 107
#define N8X0_RETU_GPIO 108
#define N800_TSC_KP_IRQ_GPIO 109
#define N810_KEYBOARD_GPIO 109
#define N800_BAT_COVER_GPIO 110
#define N810_SLIDE_GPIO 110
#define N8X0_TAHVO_GPIO 111
#define N800_UNKNOWN_GPIO4 112 /* out */
#define N810_SLEEPX_LED_GPIO 112
#define N800_TSC_RESET_GPIO 118 /* ? */
#define N810_AIC33_RESET_GPIO 118
#define N800_TSC_UNKNOWN_GPIO 119 /* out */
#define N8X0_TMP105_GPIO 125
/* Config */
#define BT_UART 0
#define XLDR_LL_UART 1
/* Addresses on the I2C bus 0 */
#define N810_TLV320AIC33_ADDR 0x18 /* Audio CODEC */
#define N8X0_TCM825x_ADDR 0x29 /* Camera */
#define N810_LP5521_ADDR 0x32 /* LEDs */
#define N810_TSL2563_ADDR 0x3d /* Light sensor */
#define N810_LM8323_ADDR 0x45 /* Keyboard */
/* Addresses on the I2C bus 1 */
#define N8X0_TMP105_ADDR 0x48 /* Temperature sensor */
#define N8X0_MENELAUS_ADDR 0x72 /* Power management */
/* Chipselects on GPMC NOR interface */
#define N8X0_ONENAND_CS 0
#define N8X0_USB_ASYNC_CS 1
#define N8X0_USB_SYNC_CS 4
#define N8X0_BD_ADDR 0x00, 0x1a, 0x89, 0x9e, 0x3e, 0x81
static void n800_mmc_cs_cb(void *opaque, int line, int level)
{
/* TODO: this seems to actually be connected to the menelaus, to
* which also both MMC slots connect. */
omap_mmc_enable((struct omap_mmc_s *) opaque, !level);
}
static void n8x0_gpio_setup(struct n800_s *s)
{
qdev_connect_gpio_out(s->mpu->gpio, N8X0_MMC_CS_GPIO,
qemu_allocate_irq(n800_mmc_cs_cb, s->mpu->mmc, 0));
qemu_irq_lower(qdev_get_gpio_in(s->mpu->gpio, N800_BAT_COVER_GPIO));
}
#define MAEMO_CAL_HEADER(...) \
'C', 'o', 'n', 'F', 0x02, 0x00, 0x04, 0x00, \
__VA_ARGS__, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
static const uint8_t n8x0_cal_wlan_mac[] = {
MAEMO_CAL_HEADER('w', 'l', 'a', 'n', '-', 'm', 'a', 'c')
0x1c, 0x00, 0x00, 0x00, 0x47, 0xd6, 0x69, 0xb3,
0x30, 0x08, 0xa0, 0x83, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00,
0x89, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00,
0x5d, 0x00, 0x00, 0x00, 0xc1, 0x00, 0x00, 0x00,
};
static const uint8_t n8x0_cal_bt_id[] = {
MAEMO_CAL_HEADER('b', 't', '-', 'i', 'd', 0, 0, 0)
0x0a, 0x00, 0x00, 0x00, 0xa3, 0x4b, 0xf6, 0x96,
0xa8, 0xeb, 0xb2, 0x41, 0x00, 0x00, 0x00, 0x00,
N8X0_BD_ADDR,
};
static void n8x0_nand_setup(struct n800_s *s)
{
char *otp_region;
DriveInfo *dinfo;
s->nand = qdev_create(NULL, "onenand");
qdev_prop_set_uint16(s->nand, "manufacturer_id", NAND_MFR_SAMSUNG);
/* Either 0x40 or 0x48 are OK for the device ID */
qdev_prop_set_uint16(s->nand, "device_id", 0x48);
qdev_prop_set_uint16(s->nand, "version_id", 0);
qdev_prop_set_int32(s->nand, "shift", 1);
dinfo = drive_get(IF_MTD, 0, 0);
if (dinfo) {
qdev_prop_set_drive(s->nand, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
}
qdev_init_nofail(s->nand);
sysbus_connect_irq(SYS_BUS_DEVICE(s->nand), 0,
qdev_get_gpio_in(s->mpu->gpio, N8X0_ONENAND_GPIO));
omap_gpmc_attach(s->mpu->gpmc, N8X0_ONENAND_CS,
sysbus_mmio_get_region(SYS_BUS_DEVICE(s->nand), 0));
otp_region = onenand_raw_otp(s->nand);
memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac));
memcpy(otp_region + 0x800, n8x0_cal_bt_id, sizeof(n8x0_cal_bt_id));
/* XXX: in theory should also update the OOB for both pages */
}
static qemu_irq n8x0_system_powerdown;
static void n8x0_powerdown_req(Notifier *n, void *opaque)
{
qemu_irq_raise(n8x0_system_powerdown);
}
static Notifier n8x0_system_powerdown_notifier = {
.notify = n8x0_powerdown_req
};
static void n8x0_i2c_setup(struct n800_s *s)
{
DeviceState *dev;
qemu_irq tmp_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TMP105_GPIO);
I2CBus *i2c = omap_i2c_bus(s->mpu->i2c[0]);
/* Attach a menelaus PM chip */
dev = i2c_create_slave(i2c, "twl92230", N8X0_MENELAUS_ADDR);
qdev_connect_gpio_out(dev, 3,
qdev_get_gpio_in(s->mpu->ih[0],
OMAP_INT_24XX_SYS_NIRQ));
n8x0_system_powerdown = qdev_get_gpio_in(dev, 3);
qemu_register_powerdown_notifier(&n8x0_system_powerdown_notifier);
/* Attach a TMP105 PM chip (A0 wired to ground) */
dev = i2c_create_slave(i2c, "tmp105", N8X0_TMP105_ADDR);
qdev_connect_gpio_out(dev, 0, tmp_irq);
}
/* Touchscreen and keypad controller */
static MouseTransformInfo n800_pointercal = {
.x = 800,
.y = 480,
.a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 },
};
static MouseTransformInfo n810_pointercal = {
.x = 800,
.y = 480,
.a = { 15041, 148, -4731056, 171, -10238, 35933380, 65536 },
};
#define RETU_KEYCODE 61 /* F3 */
static void n800_key_event(void *opaque, int keycode)
{
struct n800_s *s = (struct n800_s *) opaque;
int code = s->keymap[keycode & 0x7f];
if (code == -1) {
if ((keycode & 0x7f) == RETU_KEYCODE) {
retu_key_event(s->retu, !(keycode & 0x80));
}
return;
}
tsc210x_key_event(s->ts.chip, code, !(keycode & 0x80));
}
static const int n800_keys[16] = {
-1,
72, /* Up */
63, /* Home (F5) */
-1,
75, /* Left */
28, /* Enter */
77, /* Right */
-1,
1, /* Cycle (ESC) */
80, /* Down */
62, /* Menu (F4) */
-1,
66, /* Zoom- (F8) */
64, /* FullScreen (F6) */
65, /* Zoom+ (F7) */
-1,
};
static void n800_tsc_kbd_setup(struct n800_s *s)
{
int i;
/* XXX: are the three pins inverted inside the chip between the
* tsc and the cpu (N4111)? */
qemu_irq penirq = NULL; /* NC */
qemu_irq kbirq = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_KP_IRQ_GPIO);
qemu_irq dav = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_TS_GPIO);
s->ts.chip = tsc2301_init(penirq, kbirq, dav);
s->ts.opaque = s->ts.chip->opaque;
s->ts.txrx = tsc210x_txrx;
for (i = 0; i < 0x80; i++) {
s->keymap[i] = -1;
}
for (i = 0; i < 0x10; i++) {
if (n800_keys[i] >= 0) {
s->keymap[n800_keys[i]] = i;
}
}
qemu_add_kbd_event_handler(n800_key_event, s);
tsc210x_set_transform(s->ts.chip, &n800_pointercal);
}
static void n810_tsc_setup(struct n800_s *s)
{
qemu_irq pintdav = qdev_get_gpio_in(s->mpu->gpio, N810_TSC_TS_GPIO);
s->ts.opaque = tsc2005_init(pintdav);
s->ts.txrx = tsc2005_txrx;
tsc2005_set_transform(s->ts.opaque, &n810_pointercal);
}
/* N810 Keyboard controller */
static void n810_key_event(void *opaque, int keycode)
{
struct n800_s *s = (struct n800_s *) opaque;
int code = s->keymap[keycode & 0x7f];
if (code == -1) {
if ((keycode & 0x7f) == RETU_KEYCODE) {
retu_key_event(s->retu, !(keycode & 0x80));
}
return;
}
lm832x_key_event(s->kbd, code, !(keycode & 0x80));
}
#define M 0
static int n810_keys[0x80] = {
[0x01] = 16, /* Q */
[0x02] = 37, /* K */
[0x03] = 24, /* O */
[0x04] = 25, /* P */
[0x05] = 14, /* Backspace */
[0x06] = 30, /* A */
[0x07] = 31, /* S */
[0x08] = 32, /* D */
[0x09] = 33, /* F */
[0x0a] = 34, /* G */
[0x0b] = 35, /* H */
[0x0c] = 36, /* J */
[0x11] = 17, /* W */
[0x12] = 62, /* Menu (F4) */
[0x13] = 38, /* L */
[0x14] = 40, /* ' (Apostrophe) */
[0x16] = 44, /* Z */
[0x17] = 45, /* X */
[0x18] = 46, /* C */
[0x19] = 47, /* V */
[0x1a] = 48, /* B */
[0x1b] = 49, /* N */
[0x1c] = 42, /* Shift (Left shift) */
[0x1f] = 65, /* Zoom+ (F7) */
[0x21] = 18, /* E */
[0x22] = 39, /* ; (Semicolon) */
[0x23] = 12, /* - (Minus) */
[0x24] = 13, /* = (Equal) */
[0x2b] = 56, /* Fn (Left Alt) */
[0x2c] = 50, /* M */
[0x2f] = 66, /* Zoom- (F8) */
[0x31] = 19, /* R */
[0x32] = 29 | M, /* Right Ctrl */
[0x34] = 57, /* Space */
[0x35] = 51, /* , (Comma) */
[0x37] = 72 | M, /* Up */
[0x3c] = 82 | M, /* Compose (Insert) */
[0x3f] = 64, /* FullScreen (F6) */
[0x41] = 20, /* T */
[0x44] = 52, /* . (Dot) */
[0x46] = 77 | M, /* Right */
[0x4f] = 63, /* Home (F5) */
[0x51] = 21, /* Y */
[0x53] = 80 | M, /* Down */
[0x55] = 28, /* Enter */
[0x5f] = 1, /* Cycle (ESC) */
[0x61] = 22, /* U */
[0x64] = 75 | M, /* Left */
[0x71] = 23, /* I */
#if 0
[0x75] = 28 | M, /* KP Enter (KP Enter) */
#else
[0x75] = 15, /* KP Enter (Tab) */
#endif
};
#undef M
static void n810_kbd_setup(struct n800_s *s)
{
qemu_irq kbd_irq = qdev_get_gpio_in(s->mpu->gpio, N810_KEYBOARD_GPIO);
int i;
for (i = 0; i < 0x80; i++) {
s->keymap[i] = -1;
}
for (i = 0; i < 0x80; i++) {
if (n810_keys[i] > 0) {
s->keymap[n810_keys[i]] = i;
}
}
qemu_add_kbd_event_handler(n810_key_event, s);
/* Attach the LM8322 keyboard to the I2C bus,
* should happen in n8x0_i2c_setup and s->kbd be initialised here. */
s->kbd = i2c_create_slave(omap_i2c_bus(s->mpu->i2c[0]),
"lm8323", N810_LM8323_ADDR);
qdev_connect_gpio_out(s->kbd, 0, kbd_irq);
}
/* LCD MIPI DBI-C controller (URAL) */
struct mipid_s {
int resp[4];
int param[4];
int p;
int pm;
int cmd;
int sleep;
int booster;
int te;
int selfcheck;
int partial;
int normal;
int vscr;
int invert;
int onoff;
int gamma;
uint32_t id;
};
static void mipid_reset(struct mipid_s *s)
{
s->pm = 0;
s->cmd = 0;
s->sleep = 1;
s->booster = 0;
s->selfcheck =
(1 << 7) | /* Register loading OK. */
(1 << 5) | /* The chip is attached. */
(1 << 4); /* Display glass still in one piece. */
s->te = 0;
s->partial = 0;
s->normal = 1;
s->vscr = 0;
s->invert = 0;
s->onoff = 1;
s->gamma = 0;
}
static uint32_t mipid_txrx(void *opaque, uint32_t cmd, int len)
{
struct mipid_s *s = (struct mipid_s *) opaque;
uint8_t ret;
if (len > 9) {
hw_error("%s: FIXME: bad SPI word width %i\n", __func__, len);
}
if (s->p >= ARRAY_SIZE(s->resp)) {
ret = 0;
} else {
ret = s->resp[s->p++];
}
if (s->pm-- > 0) {
s->param[s->pm] = cmd;
} else {
s->cmd = cmd;
}
switch (s->cmd) {
case 0x00: /* NOP */
break;
case 0x01: /* SWRESET */
mipid_reset(s);
break;
case 0x02: /* BSTROFF */
s->booster = 0;
break;
case 0x03: /* BSTRON */
s->booster = 1;
break;
case 0x04: /* RDDID */
s->p = 0;
s->resp[0] = (s->id >> 16) & 0xff;
s->resp[1] = (s->id >> 8) & 0xff;
s->resp[2] = (s->id >> 0) & 0xff;
break;
case 0x06: /* RD_RED */
case 0x07: /* RD_GREEN */
/* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so
* for the bootloader one needs to change this. */
case 0x08: /* RD_BLUE */
s->p = 0;
/* TODO: return first pixel components */
s->resp[0] = 0x01;
break;
case 0x09: /* RDDST */
s->p = 0;
s->resp[0] = s->booster << 7;
s->resp[1] = (5 << 4) | (s->partial << 2) |
(s->sleep << 1) | s->normal;
s->resp[2] = (s->vscr << 7) | (s->invert << 5) |
(s->onoff << 2) | (s->te << 1) | (s->gamma >> 2);
s->resp[3] = s->gamma << 6;
break;
case 0x0a: /* RDDPM */
s->p = 0;
s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) |
(s->partial << 5) | (s->sleep << 6) | (s->booster << 7);
break;
case 0x0b: /* RDDMADCTR */
s->p = 0;
s->resp[0] = 0;
break;
case 0x0c: /* RDDCOLMOD */
s->p = 0;
s->resp[0] = 5; /* 65K colours */
break;
case 0x0d: /* RDDIM */
s->p = 0;
s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma;
break;
case 0x0e: /* RDDSM */
s->p = 0;
s->resp[0] = s->te << 7;
break;
case 0x0f: /* RDDSDR */
s->p = 0;
s->resp[0] = s->selfcheck;
break;
case 0x10: /* SLPIN */
s->sleep = 1;
break;
case 0x11: /* SLPOUT */
s->sleep = 0;
s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */
break;
case 0x12: /* PTLON */
s->partial = 1;
s->normal = 0;
s->vscr = 0;
break;
case 0x13: /* NORON */
s->partial = 0;
s->normal = 1;
s->vscr = 0;
break;
case 0x20: /* INVOFF */
s->invert = 0;
break;
case 0x21: /* INVON */
s->invert = 1;
break;
case 0x22: /* APOFF */
case 0x23: /* APON */
goto bad_cmd;
case 0x25: /* WRCNTR */
if (s->pm < 0) {
s->pm = 1;
}
goto bad_cmd;
case 0x26: /* GAMSET */
if (!s->pm) {
s->gamma = ctz32(s->param[0] & 0xf);
if (s->gamma == 32) {
s->gamma = -1; /* XXX: should this be 0? */
}
} else if (s->pm < 0) {
s->pm = 1;
}
break;
case 0x28: /* DISPOFF */
s->onoff = 0;
break;
case 0x29: /* DISPON */
s->onoff = 1;
break;
case 0x2a: /* CASET */
case 0x2b: /* RASET */
case 0x2c: /* RAMWR */
case 0x2d: /* RGBSET */
case 0x2e: /* RAMRD */
case 0x30: /* PTLAR */
case 0x33: /* SCRLAR */
goto bad_cmd;
case 0x34: /* TEOFF */
s->te = 0;
break;
case 0x35: /* TEON */
if (!s->pm) {
s->te = 1;
} else if (s->pm < 0) {
s->pm = 1;
}
break;
case 0x36: /* MADCTR */
goto bad_cmd;
case 0x37: /* VSCSAD */
s->partial = 0;
s->normal = 0;
s->vscr = 1;
break;
case 0x38: /* IDMOFF */
case 0x39: /* IDMON */
case 0x3a: /* COLMOD */
goto bad_cmd;
case 0xb0: /* CLKINT / DISCTL */
case 0xb1: /* CLKEXT */
if (s->pm < 0) {
s->pm = 2;
}
break;
case 0xb4: /* FRMSEL */
break;
case 0xb5: /* FRM8SEL */
case 0xb6: /* TMPRNG / INIESC */
case 0xb7: /* TMPHIS / NOP2 */
case 0xb8: /* TMPREAD / MADCTL */
case 0xba: /* DISTCTR */
case 0xbb: /* EPVOL */
goto bad_cmd;
case 0xbd: /* Unknown */
s->p = 0;
s->resp[0] = 0;
s->resp[1] = 1;
break;
case 0xc2: /* IFMOD */
if (s->pm < 0) {
s->pm = 2;
}
break;
case 0xc6: /* PWRCTL */
case 0xc7: /* PPWRCTL */
case 0xd0: /* EPWROUT */
case 0xd1: /* EPWRIN */
case 0xd4: /* RDEV */
case 0xd5: /* RDRR */
goto bad_cmd;
case 0xda: /* RDID1 */
s->p = 0;
s->resp[0] = (s->id >> 16) & 0xff;
break;
case 0xdb: /* RDID2 */
s->p = 0;
s->resp[0] = (s->id >> 8) & 0xff;
break;
case 0xdc: /* RDID3 */
s->p = 0;
s->resp[0] = (s->id >> 0) & 0xff;
break;
default:
bad_cmd:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: unknown command %02x\n", __func__, s->cmd);
break;
}
return ret;
}
static void *mipid_init(void)
{
struct mipid_s *s = (struct mipid_s *) g_malloc0(sizeof(*s));
s->id = 0x838f03;
mipid_reset(s);
return s;
}
static void n8x0_spi_setup(struct n800_s *s)
{
void *tsc = s->ts.opaque;
void *mipid = mipid_init();
omap_mcspi_attach(s->mpu->mcspi[0], s->ts.txrx, tsc, 0);
omap_mcspi_attach(s->mpu->mcspi[0], mipid_txrx, mipid, 1);
}
/* This task is normally performed by the bootloader. If we're loading
* a kernel directly, we need to enable the Blizzard ourselves. */
static void n800_dss_init(struct rfbi_chip_s *chip)
{
uint8_t *fb_blank;
chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */
chip->write(chip->opaque, 1, 0x64);
chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */
chip->write(chip->opaque, 1, 0x1e);
chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */
chip->write(chip->opaque, 1, 0xe0);
chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */
chip->write(chip->opaque, 1, 0x01);
chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */
chip->write(chip->opaque, 1, 0x06);
chip->write(chip->opaque, 0, 0x68); /* Display Mode register */
chip->write(chip->opaque, 1, 1); /* Enable bit */
chip->write(chip->opaque, 0, 0x6c);
chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */
chip->write(chip->opaque, 1, 0x03); /* Input X End Position */
chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */
chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */
chip->write(chip->opaque, 1, 0x03); /* Output X End Position */
chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Input Data Format */
chip->write(chip->opaque, 1, 0x01); /* Data Source Select */
fb_blank = memset(g_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2);
/* Display Memory Data Port */
chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800);
g_free(fb_blank);
}
static void n8x0_dss_setup(struct n800_s *s)
{
s->blizzard.opaque = s1d13745_init(NULL);
s->blizzard.block = s1d13745_write_block;
s->blizzard.write = s1d13745_write;
s->blizzard.read = s1d13745_read;
omap_rfbi_attach(s->mpu->dss, 0, &s->blizzard);
}
static void n8x0_cbus_setup(struct n800_s *s)
{
qemu_irq dat_out = qdev_get_gpio_in(s->mpu->gpio, N8X0_CBUS_DAT_GPIO);
qemu_irq retu_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_RETU_GPIO);
qemu_irq tahvo_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TAHVO_GPIO);
CBus *cbus = cbus_init(dat_out);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel);
cbus_attach(cbus, s->retu = retu_init(retu_irq, 1));
cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1));
}
static void n8x0_uart_setup(struct n800_s *s)
{
Chardev *radio = uart_hci_init();
qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_RESET_GPIO,
csrhci_pins_get(radio)[csrhci_pin_reset]);
qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_WKUP_GPIO,
csrhci_pins_get(radio)[csrhci_pin_wakeup]);
omap_uart_attach(s->mpu->uart[BT_UART], radio);
}
static void n8x0_usb_setup(struct n800_s *s)
{
SysBusDevice *dev;
s->usb = qdev_create(NULL, "tusb6010");
dev = SYS_BUS_DEVICE(s->usb);
qdev_init_nofail(s->usb);
sysbus_connect_irq(dev, 0,
qdev_get_gpio_in(s->mpu->gpio, N8X0_TUSB_INT_GPIO));
/* Using the NOR interface */
omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_ASYNC_CS,
sysbus_mmio_get_region(dev, 0));
omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_SYNC_CS,
sysbus_mmio_get_region(dev, 1));
qdev_connect_gpio_out(s->mpu->gpio, N8X0_TUSB_ENABLE_GPIO,
qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */
}
/* Setup done before the main bootloader starts by some early setup code
* - used when we want to run the main bootloader in emulation. This
* isn't documented. */
static uint32_t n800_pinout[104] = {
0x080f00d8, 0x00d40808, 0x03080808, 0x080800d0,
0x00dc0808, 0x0b0f0f00, 0x080800b4, 0x00c00808,
0x08080808, 0x180800c4, 0x00b80000, 0x08080808,
0x080800bc, 0x00cc0808, 0x08081818, 0x18180128,
0x01241800, 0x18181818, 0x000000f0, 0x01300000,
0x00001b0b, 0x1b0f0138, 0x00e0181b, 0x1b031b0b,
0x180f0078, 0x00740018, 0x0f0f0f1a, 0x00000080,
0x007c0000, 0x00000000, 0x00000088, 0x00840000,
0x00000000, 0x00000094, 0x00980300, 0x0f180003,
0x0000008c, 0x00900f0f, 0x0f0f1b00, 0x0f00009c,
0x01140000, 0x1b1b0f18, 0x0818013c, 0x01400008,
0x00001818, 0x000b0110, 0x010c1800, 0x0b030b0f,
0x181800f4, 0x00f81818, 0x00000018, 0x000000fc,
0x00401808, 0x00000000, 0x0f1b0030, 0x003c0008,
0x00000000, 0x00000038, 0x00340000, 0x00000000,
0x1a080070, 0x00641a1a, 0x08080808, 0x08080060,
0x005c0808, 0x08080808, 0x08080058, 0x00540808,
0x08080808, 0x0808006c, 0x00680808, 0x08080808,
0x000000a8, 0x00b00000, 0x08080808, 0x000000a0,
0x00a40000, 0x00000000, 0x08ff0050, 0x004c0808,
0xffffffff, 0xffff0048, 0x0044ffff, 0xffffffff,
0x000000ac, 0x01040800, 0x08080b0f, 0x18180100,
0x01081818, 0x0b0b1808, 0x1a0300e4, 0x012c0b1a,
0x02020018, 0x0b000134, 0x011c0800, 0x0b1b1b00,
0x0f0000c8, 0x00ec181b, 0x000f0f02, 0x00180118,
0x01200000, 0x0f0b1b1b, 0x0f0200e8, 0x0000020b,
};
static void n800_setup_nolo_tags(void *sram_base)
{
int i;
uint32_t *p = sram_base + 0x8000;
uint32_t *v = sram_base + 0xa000;
memset(p, 0, 0x3000);
strcpy((void *) (p + 0), "QEMU N800");
strcpy((void *) (p + 8), "F5");
stl_p(p + 10, 0x04f70000);
strcpy((void *) (p + 9), "RX-34");
/* RAM size in MB? */
stl_p(p + 12, 0x80);
/* Pointer to the list of tags */
stl_p(p + 13, OMAP2_SRAM_BASE + 0x9000);
/* The NOLO tags start here */
p = sram_base + 0x9000;
#define ADD_TAG(tag, len) \
stw_p((uint16_t *) p + 0, tag); \
stw_p((uint16_t *) p + 1, len); p++; \
stl_p(p++, OMAP2_SRAM_BASE | (((void *) v - sram_base) & 0xffff));
/* OMAP STI console? Pin out settings? */
ADD_TAG(0x6e01, 414);
for (i = 0; i < ARRAY_SIZE(n800_pinout); i++) {
stl_p(v++, n800_pinout[i]);
}
/* Kernel memsize? */
ADD_TAG(0x6e05, 1);
stl_p(v++, 2);
/* NOLO serial console */
ADD_TAG(0x6e02, 4);
stl_p(v++, XLDR_LL_UART); /* UART number (1 - 3) */
#if 0
/* CBUS settings (Retu/AVilma) */
ADD_TAG(0x6e03, 6);
stw_p((uint16_t *) v + 0, 65); /* CBUS GPIO0 */
stw_p((uint16_t *) v + 1, 66); /* CBUS GPIO1 */
stw_p((uint16_t *) v + 2, 64); /* CBUS GPIO2 */
v += 2;
#endif
/* Nokia ASIC BB5 (Retu/Tahvo) */
ADD_TAG(0x6e0a, 4);
stw_p((uint16_t *) v + 0, 111); /* "Retu" interrupt GPIO */
stw_p((uint16_t *) v + 1, 108); /* "Tahvo" interrupt GPIO */
v++;
/* LCD console? */
ADD_TAG(0x6e04, 4);
stw_p((uint16_t *) v + 0, 30); /* ??? */
stw_p((uint16_t *) v + 1, 24); /* ??? */
v++;
#if 0
/* LCD settings */
ADD_TAG(0x6e06, 2);
stw_p((uint16_t *) (v++), 15); /* ??? */
#endif
/* I^2C (Menelaus) */
ADD_TAG(0x6e07, 4);
stl_p(v++, 0x00720000); /* ??? */
/* Unknown */
ADD_TAG(0x6e0b, 6);
stw_p((uint16_t *) v + 0, 94); /* ??? */
stw_p((uint16_t *) v + 1, 23); /* ??? */
stw_p((uint16_t *) v + 2, 0); /* ??? */
v += 2;
/* OMAP gpio switch info */
ADD_TAG(0x6e0c, 80);
strcpy((void *) v, "bat_cover"); v += 3;
stw_p((uint16_t *) v + 0, 110); /* GPIO num ??? */
stw_p((uint16_t *) v + 1, 1); /* GPIO num ??? */
v += 2;
strcpy((void *) v, "cam_act"); v += 3;
stw_p((uint16_t *) v + 0, 95); /* GPIO num ??? */
stw_p((uint16_t *) v + 1, 32); /* GPIO num ??? */
v += 2;
strcpy((void *) v, "cam_turn"); v += 3;
stw_p((uint16_t *) v + 0, 12); /* GPIO num ??? */
stw_p((uint16_t *) v + 1, 33); /* GPIO num ??? */
v += 2;
strcpy((void *) v, "headphone"); v += 3;
stw_p((uint16_t *) v + 0, 107); /* GPIO num ??? */
stw_p((uint16_t *) v + 1, 17); /* GPIO num ??? */
v += 2;
/* Bluetooth */
ADD_TAG(0x6e0e, 12);
stl_p(v++, 0x5c623d01); /* ??? */
stl_p(v++, 0x00000201); /* ??? */
stl_p(v++, 0x00000000); /* ??? */
/* CX3110x WLAN settings */
ADD_TAG(0x6e0f, 8);
stl_p(v++, 0x00610025); /* ??? */
stl_p(v++, 0xffff0057); /* ??? */
/* MMC host settings */
ADD_TAG(0x6e10, 12);
stl_p(v++, 0xffff000f); /* ??? */
stl_p(v++, 0xffffffff); /* ??? */
stl_p(v++, 0x00000060); /* ??? */
/* OneNAND chip select */
ADD_TAG(0x6e11, 10);
stl_p(v++, 0x00000401); /* ??? */
stl_p(v++, 0x0002003a); /* ??? */
stl_p(v++, 0x00000002); /* ??? */
/* TEA5761 sensor settings */
ADD_TAG(0x6e12, 2);
stl_p(v++, 93); /* GPIO num ??? */
#if 0
/* Unknown tag */
ADD_TAG(6e09, 0);
/* Kernel UART / console */
ADD_TAG(6e12, 0);
#endif
/* End of the list */
stl_p(p++, 0x00000000);
stl_p(p++, 0x00000000);
}
/* This task is normally performed by the bootloader. If we're loading
* a kernel directly, we need to set up GPMC mappings ourselves. */
static void n800_gpmc_init(struct n800_s *s)
{
uint32_t config7 =
(0xf << 8) | /* MASKADDRESS */
(1 << 6) | /* CSVALID */
(4 << 0); /* BASEADDRESS */
cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */
&config7, sizeof(config7));
}
/* Setup sequence done by the bootloader */
static void n8x0_boot_init(void *opaque)
{
struct n800_s *s = (struct n800_s *) opaque;
uint32_t buf;
/* PRCM setup */
#define omap_writel(addr, val) \
buf = (val); \
cpu_physical_memory_write(addr, &buf, sizeof(buf))
omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */
omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */
omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */
omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */
omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */
omap_writel(0x48008098, 0); /* PRCM_POLCTRL */
omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */
omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */
omap_writel(0x48008158, 1); /* RM_RSTST_MPU */
omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */
omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */
omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */
omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */
omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */
omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */
omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */
omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */
omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */
omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */
omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */
omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */
omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */
omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */
omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */
omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */
omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */
omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */
omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */
omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */
omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */
omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */
omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */
omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */
omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */
omap_writel(0x48008540, /* CM_CLKSEL1_PLL */
(0x78 << 12) | (6 << 8));
omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */
/* GPMC setup */
n800_gpmc_init(s);
/* Video setup */
n800_dss_init(&s->blizzard);
/* CPU setup */
s->mpu->cpu->env.GE = 0x5;
/* If the machine has a slided keyboard, open it */
if (s->kbd) {
qemu_irq_raise(qdev_get_gpio_in(s->mpu->gpio, N810_SLIDE_GPIO));
}
}
#define OMAP_TAG_NOKIA_BT 0x4e01
#define OMAP_TAG_WLAN_CX3110X 0x4e02
#define OMAP_TAG_CBUS 0x4e03
#define OMAP_TAG_EM_ASIC_BB5 0x4e04
static struct omap_gpiosw_info_s {
const char *name;
int line;
int type;
} n800_gpiosw_info[] = {
{
"bat_cover", N800_BAT_COVER_GPIO,
OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
}, {
"cam_act", N800_CAM_ACT_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY,
}, {
"cam_turn", N800_CAM_TURN_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED,
}, {
"headphone", N8X0_HEADPHONE_GPIO,
OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED,
},
{ NULL }
}, n810_gpiosw_info[] = {
{
"gps_reset", N810_GPS_RESET_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT,
}, {
"gps_wakeup", N810_GPS_WAKEUP_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT,
}, {
"headphone", N8X0_HEADPHONE_GPIO,
OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED,
}, {
"kb_lock", N810_KB_LOCK_GPIO,
OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
}, {
"sleepx_led", N810_SLEEPX_LED_GPIO,
OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED | OMAP_GPIOSW_OUTPUT,
}, {
"slide", N810_SLIDE_GPIO,
OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED,
},
{ NULL }
};
static struct omap_partition_info_s {
uint32_t offset;
uint32_t size;
int mask;
const char *name;
} n800_part_info[] = {
{ 0x00000000, 0x00020000, 0x3, "bootloader" },
{ 0x00020000, 0x00060000, 0x0, "config" },
{ 0x00080000, 0x00200000, 0x0, "kernel" },
{ 0x00280000, 0x00200000, 0x3, "initfs" },
{ 0x00480000, 0x0fb80000, 0x3, "rootfs" },
{ 0, 0, 0, NULL }
}, n810_part_info[] = {
{ 0x00000000, 0x00020000, 0x3, "bootloader" },
{ 0x00020000, 0x00060000, 0x0, "config" },
{ 0x00080000, 0x00220000, 0x0, "kernel" },
{ 0x002a0000, 0x00400000, 0x0, "initfs" },
{ 0x006a0000, 0x0f960000, 0x0, "rootfs" },
{ 0, 0, 0, NULL }
};
static bdaddr_t n8x0_bd_addr = {{ N8X0_BD_ADDR }};
static int n8x0_atag_setup(void *p, int model)
{
uint8_t *b;
uint16_t *w;
uint32_t *l;
struct omap_gpiosw_info_s *gpiosw;
struct omap_partition_info_s *partition;
const char *tag;
w = p;
stw_p(w++, OMAP_TAG_UART); /* u16 tag */
stw_p(w++, 4); /* u16 len */
stw_p(w++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */
w++;
#if 0
stw_p(w++, OMAP_TAG_SERIAL_CONSOLE); /* u16 tag */
stw_p(w++, 4); /* u16 len */
stw_p(w++, XLDR_LL_UART + 1); /* u8 console_uart */
stw_p(w++, 115200); /* u32 console_speed */
#endif
stw_p(w++, OMAP_TAG_LCD); /* u16 tag */
stw_p(w++, 36); /* u16 len */
strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */
w += 8;
strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */
w += 8;
stw_p(w++, N810_BLIZZARD_RESET_GPIO); /* TODO: n800 s16 nreset_gpio */
stw_p(w++, 24); /* u8 data_lines */
stw_p(w++, OMAP_TAG_CBUS); /* u16 tag */
stw_p(w++, 8); /* u16 len */
stw_p(w++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */
stw_p(w++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */
stw_p(w++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */
w++;
stw_p(w++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */
stw_p(w++, 4); /* u16 len */
stw_p(w++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */
stw_p(w++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */
gpiosw = (model == 810) ? n810_gpiosw_info : n800_gpiosw_info;
for (; gpiosw->name; gpiosw++) {
stw_p(w++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */
stw_p(w++, 20); /* u16 len */
strcpy((void *) w, gpiosw->name); /* char name[12] */
w += 6;
stw_p(w++, gpiosw->line); /* u16 gpio */
stw_p(w++, gpiosw->type);
stw_p(w++, 0);
stw_p(w++, 0);
}
stw_p(w++, OMAP_TAG_NOKIA_BT); /* u16 tag */
stw_p(w++, 12); /* u16 len */
b = (void *) w;
stb_p(b++, 0x01); /* u8 chip_type (CSR) */
stb_p(b++, N8X0_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */
stb_p(b++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */
stb_p(b++, N8X0_BT_RESET_GPIO); /* u8 reset_gpio */
stb_p(b++, BT_UART + 1); /* u8 bt_uart */
memcpy(b, &n8x0_bd_addr, 6); /* u8 bd_addr[6] */
b += 6;
stb_p(b++, 0x02); /* u8 bt_sysclk (38.4) */
w = (void *) b;
stw_p(w++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */
stw_p(w++, 8); /* u16 len */
stw_p(w++, 0x25); /* u8 chip_type */
stw_p(w++, N8X0_WLAN_PWR_GPIO); /* s16 power_gpio */
stw_p(w++, N8X0_WLAN_IRQ_GPIO); /* s16 irq_gpio */
stw_p(w++, -1); /* s16 spi_cs_gpio */
stw_p(w++, OMAP_TAG_MMC); /* u16 tag */
stw_p(w++, 16); /* u16 len */
if (model == 810) {
stw_p(w++, 0x23f); /* unsigned flags */
stw_p(w++, -1); /* s16 power_pin */
stw_p(w++, -1); /* s16 switch_pin */
stw_p(w++, -1); /* s16 wp_pin */
stw_p(w++, 0x240); /* unsigned flags */
stw_p(w++, 0xc000); /* s16 power_pin */
stw_p(w++, 0x0248); /* s16 switch_pin */
stw_p(w++, 0xc000); /* s16 wp_pin */
} else {
stw_p(w++, 0xf); /* unsigned flags */
stw_p(w++, -1); /* s16 power_pin */
stw_p(w++, -1); /* s16 switch_pin */
stw_p(w++, -1); /* s16 wp_pin */
stw_p(w++, 0); /* unsigned flags */
stw_p(w++, 0); /* s16 power_pin */
stw_p(w++, 0); /* s16 switch_pin */
stw_p(w++, 0); /* s16 wp_pin */
}
stw_p(w++, OMAP_TAG_TEA5761); /* u16 tag */
stw_p(w++, 4); /* u16 len */
stw_p(w++, N8X0_TEA5761_CS_GPIO); /* u16 enable_gpio */
w++;
partition = (model == 810) ? n810_part_info : n800_part_info;
for (; partition->name; partition++) {
stw_p(w++, OMAP_TAG_PARTITION); /* u16 tag */
stw_p(w++, 28); /* u16 len */
strcpy((void *) w, partition->name); /* char name[16] */
l = (void *) (w + 8);
stl_p(l++, partition->size); /* unsigned int size */
stl_p(l++, partition->offset); /* unsigned int offset */
stl_p(l++, partition->mask); /* unsigned int mask_flags */
w = (void *) l;
}
stw_p(w++, OMAP_TAG_BOOT_REASON); /* u16 tag */
stw_p(w++, 12); /* u16 len */
#if 0
strcpy((void *) w, "por"); /* char reason_str[12] */
strcpy((void *) w, "charger"); /* char reason_str[12] */
strcpy((void *) w, "32wd_to"); /* char reason_str[12] */
strcpy((void *) w, "sw_rst"); /* char reason_str[12] */
strcpy((void *) w, "mbus"); /* char reason_str[12] */
strcpy((void *) w, "unknown"); /* char reason_str[12] */
strcpy((void *) w, "swdg_to"); /* char reason_str[12] */
strcpy((void *) w, "sec_vio"); /* char reason_str[12] */
strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */
#else
strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
#endif
w += 6;
tag = (model == 810) ? "RX-44" : "RX-34";
stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_p(w++, 24); /* u16 len */
strcpy((void *) w, "product"); /* char component[12] */
w += 6;
strcpy((void *) w, tag); /* char version[12] */
w += 6;
stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_p(w++, 24); /* u16 len */
strcpy((void *) w, "hw-build"); /* char component[12] */
w += 6;
strcpy((void *) w, "QEMU ");
pstrcat((void *) w, 12, qemu_hw_version()); /* char version[12] */
w += 6;
tag = (model == 810) ? "1.1.10-qemu" : "1.1.6-qemu";
stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_p(w++, 24); /* u16 len */
strcpy((void *) w, "nolo"); /* char component[12] */
w += 6;
strcpy((void *) w, tag); /* char version[12] */
w += 6;
return (void *) w - p;
}
static int n800_atag_setup(const struct arm_boot_info *info, void *p)
{
return n8x0_atag_setup(p, 800);
}
static int n810_atag_setup(const struct arm_boot_info *info, void *p)
{
return n8x0_atag_setup(p, 810);
}
static void n8x0_init(MachineState *machine,
struct arm_boot_info *binfo, int model)
{
MemoryRegion *sysmem = get_system_memory();
struct n800_s *s = (struct n800_s *) g_malloc0(sizeof(*s));
int sdram_size = binfo->ram_size;
s->mpu = omap2420_mpu_init(sysmem, sdram_size, machine->cpu_type);
/* Setup peripherals
*
* Believed external peripherals layout in the N810:
* (spi bus 1)
* tsc2005
* lcd_mipid
* (spi bus 2)
* Conexant cx3110x (WLAN)
* optional: pc2400m (WiMAX)
* (i2c bus 0)
* TLV320AIC33 (audio codec)
* TCM825x (camera by Toshiba)
* lp5521 (clever LEDs)
* tsl2563 (light sensor, hwmon, model 7, rev. 0)
* lm8323 (keypad, manf 00, rev 04)
* (i2c bus 1)
* tmp105 (temperature sensor, hwmon)
* menelaus (pm)
* (somewhere on i2c - maybe N800-only)
* tea5761 (FM tuner)
* (serial 0)
* GPS
* (some serial port)
* csr41814 (Bluetooth)
*/
n8x0_gpio_setup(s);
n8x0_nand_setup(s);
n8x0_i2c_setup(s);
if (model == 800) {
n800_tsc_kbd_setup(s);
} else if (model == 810) {
n810_tsc_setup(s);
n810_kbd_setup(s);
}
n8x0_spi_setup(s);
n8x0_dss_setup(s);
n8x0_cbus_setup(s);
n8x0_uart_setup(s);
if (machine_usb(machine)) {
n8x0_usb_setup(s);
}
if (machine->kernel_filename) {
/* Or at the linux loader. */
binfo->kernel_filename = machine->kernel_filename;
binfo->kernel_cmdline = machine->kernel_cmdline;
binfo->initrd_filename = machine->initrd_filename;
arm_load_kernel(s->mpu->cpu, binfo);
qemu_register_reset(n8x0_boot_init, s);
}
if (option_rom[0].name &&
(machine->boot_order[0] == 'n' || !machine->kernel_filename)) {
uint8_t *nolo_tags = g_new(uint8_t, 0x10000);
/* No, wait, better start at the ROM. */
s->mpu->cpu->env.regs[15] = OMAP2_Q2_BASE + 0x400000;
/* This is intended for loading the `secondary.bin' program from
* Nokia images (the NOLO bootloader). The entry point seems
* to be at OMAP2_Q2_BASE + 0x400000.
*
* The `2nd.bin' files contain some kind of earlier boot code and
* for them the entry point needs to be set to OMAP2_SRAM_BASE.
*
* The code above is for loading the `zImage' file from Nokia
* images. */
load_image_targphys(option_rom[0].name,
OMAP2_Q2_BASE + 0x400000,
sdram_size - 0x400000);
n800_setup_nolo_tags(nolo_tags);
cpu_physical_memory_write(OMAP2_SRAM_BASE, nolo_tags, 0x10000);
g_free(nolo_tags);
}
}
static struct arm_boot_info n800_binfo = {
.loader_start = OMAP2_Q2_BASE,
/* Actually two chips of 0x4000000 bytes each */
.ram_size = 0x08000000,
.board_id = 0x4f7,
.atag_board = n800_atag_setup,
};
static struct arm_boot_info n810_binfo = {
.loader_start = OMAP2_Q2_BASE,
/* Actually two chips of 0x4000000 bytes each */
.ram_size = 0x08000000,
/* 0x60c and 0x6bf (WiMAX Edition) have been assigned but are not
* used by some older versions of the bootloader and 5555 is used
* instead (including versions that shipped with many devices). */
.board_id = 0x60c,
.atag_board = n810_atag_setup,
};
static void n800_init(MachineState *machine)
{
n8x0_init(machine, &n800_binfo, 800);
}
static void n810_init(MachineState *machine)
{
n8x0_init(machine, &n810_binfo, 810);
}
static void n800_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Nokia N800 tablet aka. RX-34 (OMAP2420)";
mc->init = n800_init;
mc->default_boot_order = "";
mc->ignore_memory_transaction_failures = true;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("arm1136-r2");
}
static const TypeInfo n800_type = {
.name = MACHINE_TYPE_NAME("n800"),
.parent = TYPE_MACHINE,
.class_init = n800_class_init,
};
static void n810_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Nokia N810 tablet aka. RX-44 (OMAP2420)";
mc->init = n810_init;
mc->default_boot_order = "";
mc->ignore_memory_transaction_failures = true;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("arm1136-r2");
}
static const TypeInfo n810_type = {
.name = MACHINE_TYPE_NAME("n810"),
.parent = TYPE_MACHINE,
.class_init = n810_class_init,
};
static void nseries_machine_init(void)
{
type_register_static(&n800_type);
type_register_static(&n810_type);
}
type_init(nseries_machine_init)