mirror of
https://github.com/xemu-project/xemu.git
synced 2024-12-01 07:21:09 +00:00
492c30af25
The current DMA routines are driven by a call in main_loop_wait() after every select. This patch converts the DMA code to be driven by a constantly rescheduled bottom half. The advantage of using a scheduled bottom half is that we can stop scheduling the bottom half when there no DMA channels are runnable. This means we can potentially detect this case and sleep longer in the main loop. The only two architectures implementing DMA_run() are cris and i386. For cris, I converted it to a simple repeating bottom half. I've only compile tested this as cris does not seem to work on a 64-bit host. It should be functionally identical to the previous implementation so I expect it to work. For x86, I've made sure to only fire the DMA bottom half if there is a DMA channel that is runnable. The effect of this is that unless you're using sb16 or a floppy disk, the DMA bottom half never fires. You probably should test this malc. My own benchmarks actually show slight improvement by it's possible the change in timing could affect your demos. Since v1, I've changed the code to use a BH instead of a timer. cris at least seems to depend on faster than 10ms polling. Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5573 c046a42c-6fe2-441c-8c8c-71466251a162
764 lines
22 KiB
C
764 lines
22 KiB
C
/*
|
|
* QEMU ETRAX DMA Controller.
|
|
*
|
|
* Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <sys/time.h>
|
|
#include "hw.h"
|
|
#include "qemu-common.h"
|
|
#include "sysemu.h"
|
|
|
|
#include "etraxfs_dma.h"
|
|
|
|
#define D(x)
|
|
|
|
#define RW_DATA 0x0
|
|
#define RW_SAVED_DATA 0x58
|
|
#define RW_SAVED_DATA_BUF 0x5c
|
|
#define RW_GROUP 0x60
|
|
#define RW_GROUP_DOWN 0x7c
|
|
#define RW_CMD 0x80
|
|
#define RW_CFG 0x84
|
|
#define RW_STAT 0x88
|
|
#define RW_INTR_MASK 0x8c
|
|
#define RW_ACK_INTR 0x90
|
|
#define R_INTR 0x94
|
|
#define R_MASKED_INTR 0x98
|
|
#define RW_STREAM_CMD 0x9c
|
|
|
|
#define DMA_REG_MAX 0x100
|
|
|
|
/* descriptors */
|
|
|
|
// ------------------------------------------------------------ dma_descr_group
|
|
typedef struct dma_descr_group {
|
|
struct dma_descr_group *next;
|
|
unsigned eol : 1;
|
|
unsigned tol : 1;
|
|
unsigned bol : 1;
|
|
unsigned : 1;
|
|
unsigned intr : 1;
|
|
unsigned : 2;
|
|
unsigned en : 1;
|
|
unsigned : 7;
|
|
unsigned dis : 1;
|
|
unsigned md : 16;
|
|
struct dma_descr_group *up;
|
|
union {
|
|
struct dma_descr_context *context;
|
|
struct dma_descr_group *group;
|
|
} down;
|
|
} dma_descr_group;
|
|
|
|
// ---------------------------------------------------------- dma_descr_context
|
|
typedef struct dma_descr_context {
|
|
struct dma_descr_context *next;
|
|
unsigned eol : 1;
|
|
unsigned : 3;
|
|
unsigned intr : 1;
|
|
unsigned : 1;
|
|
unsigned store_mode : 1;
|
|
unsigned en : 1;
|
|
unsigned : 7;
|
|
unsigned dis : 1;
|
|
unsigned md0 : 16;
|
|
unsigned md1;
|
|
unsigned md2;
|
|
unsigned md3;
|
|
unsigned md4;
|
|
struct dma_descr_data *saved_data;
|
|
char *saved_data_buf;
|
|
} dma_descr_context;
|
|
|
|
// ------------------------------------------------------------- dma_descr_data
|
|
typedef struct dma_descr_data {
|
|
struct dma_descr_data *next;
|
|
char *buf;
|
|
unsigned eol : 1;
|
|
unsigned : 2;
|
|
unsigned out_eop : 1;
|
|
unsigned intr : 1;
|
|
unsigned wait : 1;
|
|
unsigned : 2;
|
|
unsigned : 3;
|
|
unsigned in_eop : 1;
|
|
unsigned : 4;
|
|
unsigned md : 16;
|
|
char *after;
|
|
} dma_descr_data;
|
|
|
|
/* Constants */
|
|
enum {
|
|
regk_dma_ack_pkt = 0x00000100,
|
|
regk_dma_anytime = 0x00000001,
|
|
regk_dma_array = 0x00000008,
|
|
regk_dma_burst = 0x00000020,
|
|
regk_dma_client = 0x00000002,
|
|
regk_dma_copy_next = 0x00000010,
|
|
regk_dma_copy_up = 0x00000020,
|
|
regk_dma_data_at_eol = 0x00000001,
|
|
regk_dma_dis_c = 0x00000010,
|
|
regk_dma_dis_g = 0x00000020,
|
|
regk_dma_idle = 0x00000001,
|
|
regk_dma_intern = 0x00000004,
|
|
regk_dma_load_c = 0x00000200,
|
|
regk_dma_load_c_n = 0x00000280,
|
|
regk_dma_load_c_next = 0x00000240,
|
|
regk_dma_load_d = 0x00000140,
|
|
regk_dma_load_g = 0x00000300,
|
|
regk_dma_load_g_down = 0x000003c0,
|
|
regk_dma_load_g_next = 0x00000340,
|
|
regk_dma_load_g_up = 0x00000380,
|
|
regk_dma_next_en = 0x00000010,
|
|
regk_dma_next_pkt = 0x00000010,
|
|
regk_dma_no = 0x00000000,
|
|
regk_dma_only_at_wait = 0x00000000,
|
|
regk_dma_restore = 0x00000020,
|
|
regk_dma_rst = 0x00000001,
|
|
regk_dma_running = 0x00000004,
|
|
regk_dma_rw_cfg_default = 0x00000000,
|
|
regk_dma_rw_cmd_default = 0x00000000,
|
|
regk_dma_rw_intr_mask_default = 0x00000000,
|
|
regk_dma_rw_stat_default = 0x00000101,
|
|
regk_dma_rw_stream_cmd_default = 0x00000000,
|
|
regk_dma_save_down = 0x00000020,
|
|
regk_dma_save_up = 0x00000020,
|
|
regk_dma_set_reg = 0x00000050,
|
|
regk_dma_set_w_size1 = 0x00000190,
|
|
regk_dma_set_w_size2 = 0x000001a0,
|
|
regk_dma_set_w_size4 = 0x000001c0,
|
|
regk_dma_stopped = 0x00000002,
|
|
regk_dma_store_c = 0x00000002,
|
|
regk_dma_store_descr = 0x00000000,
|
|
regk_dma_store_g = 0x00000004,
|
|
regk_dma_store_md = 0x00000001,
|
|
regk_dma_sw = 0x00000008,
|
|
regk_dma_update_down = 0x00000020,
|
|
regk_dma_yes = 0x00000001
|
|
};
|
|
|
|
enum dma_ch_state
|
|
{
|
|
RST = 1,
|
|
STOPPED = 2,
|
|
RUNNING = 4
|
|
};
|
|
|
|
struct fs_dma_channel
|
|
{
|
|
int regmap;
|
|
qemu_irq *irq;
|
|
struct etraxfs_dma_client *client;
|
|
|
|
|
|
/* Internal status. */
|
|
int stream_cmd_src;
|
|
enum dma_ch_state state;
|
|
|
|
unsigned int input : 1;
|
|
unsigned int eol : 1;
|
|
|
|
struct dma_descr_group current_g;
|
|
struct dma_descr_context current_c;
|
|
struct dma_descr_data current_d;
|
|
|
|
/* Controll registers. */
|
|
uint32_t regs[DMA_REG_MAX];
|
|
};
|
|
|
|
struct fs_dma_ctrl
|
|
{
|
|
CPUState *env;
|
|
target_phys_addr_t base;
|
|
|
|
int nr_channels;
|
|
struct fs_dma_channel *channels;
|
|
|
|
QEMUBH *bh;
|
|
};
|
|
|
|
static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
|
|
{
|
|
return ctrl->channels[c].regs[reg];
|
|
}
|
|
|
|
static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
return channel_reg(ctrl, c, RW_CFG) & 2;
|
|
}
|
|
|
|
static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
return (channel_reg(ctrl, c, RW_CFG) & 1)
|
|
&& ctrl->channels[c].client;
|
|
}
|
|
|
|
static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
|
|
{
|
|
/* Every channel has a 0x2000 ctrl register map. */
|
|
return (addr - base) >> 13;
|
|
}
|
|
|
|
#ifdef USE_THIS_DEAD_CODE
|
|
static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
|
|
|
|
/* Load and decode. FIXME: handle endianness. */
|
|
cpu_physical_memory_read (addr,
|
|
(void *) &ctrl->channels[c].current_g,
|
|
sizeof ctrl->channels[c].current_g);
|
|
}
|
|
|
|
static void dump_c(int ch, struct dma_descr_context *c)
|
|
{
|
|
printf("%s ch=%d\n", __func__, ch);
|
|
printf("next=%p\n", c->next);
|
|
printf("saved_data=%p\n", c->saved_data);
|
|
printf("saved_data_buf=%p\n", c->saved_data_buf);
|
|
printf("eol=%x\n", (uint32_t) c->eol);
|
|
}
|
|
|
|
static void dump_d(int ch, struct dma_descr_data *d)
|
|
{
|
|
printf("%s ch=%d\n", __func__, ch);
|
|
printf("next=%p\n", d->next);
|
|
printf("buf=%p\n", d->buf);
|
|
printf("after=%p\n", d->after);
|
|
printf("intr=%x\n", (uint32_t) d->intr);
|
|
printf("out_eop=%x\n", (uint32_t) d->out_eop);
|
|
printf("in_eop=%x\n", (uint32_t) d->in_eop);
|
|
printf("eol=%x\n", (uint32_t) d->eol);
|
|
}
|
|
#endif
|
|
|
|
static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
|
|
|
|
/* Load and decode. FIXME: handle endianness. */
|
|
cpu_physical_memory_read (addr,
|
|
(void *) &ctrl->channels[c].current_c,
|
|
sizeof ctrl->channels[c].current_c);
|
|
|
|
D(dump_c(c, &ctrl->channels[c].current_c));
|
|
/* I guess this should update the current pos. */
|
|
ctrl->channels[c].regs[RW_SAVED_DATA] =
|
|
(uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
|
|
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
|
|
(uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
|
|
}
|
|
|
|
static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
|
|
|
|
/* Load and decode. FIXME: handle endianness. */
|
|
D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
|
|
cpu_physical_memory_read (addr,
|
|
(void *) &ctrl->channels[c].current_d,
|
|
sizeof ctrl->channels[c].current_d);
|
|
|
|
D(dump_d(c, &ctrl->channels[c].current_d));
|
|
ctrl->channels[c].regs[RW_DATA] = addr;
|
|
}
|
|
|
|
static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
|
|
|
|
/* Encode and store. FIXME: handle endianness. */
|
|
D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
|
|
D(dump_d(c, &ctrl->channels[c].current_d));
|
|
cpu_physical_memory_write (addr,
|
|
(void *) &ctrl->channels[c].current_c,
|
|
sizeof ctrl->channels[c].current_c);
|
|
}
|
|
|
|
static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
|
|
|
|
/* Encode and store. FIXME: handle endianness. */
|
|
D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
|
|
cpu_physical_memory_write (addr,
|
|
(void *) &ctrl->channels[c].current_d,
|
|
sizeof ctrl->channels[c].current_d);
|
|
}
|
|
|
|
static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
/* FIXME: */
|
|
}
|
|
|
|
static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
if (ctrl->channels[c].client)
|
|
{
|
|
ctrl->channels[c].eol = 0;
|
|
ctrl->channels[c].state = RUNNING;
|
|
} else
|
|
printf("WARNING: starting DMA ch %d with no client\n", c);
|
|
}
|
|
|
|
static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
if (!channel_en(ctrl, c)
|
|
|| channel_stopped(ctrl, c)
|
|
|| ctrl->channels[c].state != RUNNING
|
|
/* Only reload the current data descriptor if it has eol set. */
|
|
|| !ctrl->channels[c].current_d.eol) {
|
|
D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
|
|
c, ctrl->channels[c].state,
|
|
channel_stopped(ctrl, c),
|
|
channel_en(ctrl,c),
|
|
ctrl->channels[c].eol));
|
|
D(dump_d(c, &ctrl->channels[c].current_d));
|
|
return;
|
|
}
|
|
|
|
/* Reload the current descriptor. */
|
|
channel_load_d(ctrl, c);
|
|
|
|
/* If the current descriptor cleared the eol flag and we had already
|
|
reached eol state, do the continue. */
|
|
if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
|
|
D(printf("continue %d ok %p\n", c,
|
|
ctrl->channels[c].current_d.next));
|
|
ctrl->channels[c].regs[RW_SAVED_DATA] =
|
|
(uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
|
|
channel_load_d(ctrl, c);
|
|
channel_start(ctrl, c);
|
|
}
|
|
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
|
|
(uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
|
|
}
|
|
|
|
static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
|
|
{
|
|
unsigned int cmd = v & ((1 << 10) - 1);
|
|
|
|
D(printf("%s ch=%d cmd=%x\n",
|
|
__func__, c, cmd));
|
|
if (cmd & regk_dma_load_d) {
|
|
channel_load_d(ctrl, c);
|
|
if (cmd & regk_dma_burst)
|
|
channel_start(ctrl, c);
|
|
}
|
|
|
|
if (cmd & regk_dma_load_c) {
|
|
channel_load_c(ctrl, c);
|
|
channel_start(ctrl, c);
|
|
}
|
|
}
|
|
|
|
static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
D(printf("%s %d\n", __func__, c));
|
|
ctrl->channels[c].regs[R_INTR] &=
|
|
~(ctrl->channels[c].regs[RW_ACK_INTR]);
|
|
|
|
ctrl->channels[c].regs[R_MASKED_INTR] =
|
|
ctrl->channels[c].regs[R_INTR]
|
|
& ctrl->channels[c].regs[RW_INTR_MASK];
|
|
|
|
D(printf("%s: chan=%d masked_intr=%x\n", __func__,
|
|
c,
|
|
ctrl->channels[c].regs[R_MASKED_INTR]));
|
|
|
|
if (ctrl->channels[c].regs[R_MASKED_INTR])
|
|
qemu_irq_raise(ctrl->channels[c].irq[0]);
|
|
else
|
|
qemu_irq_lower(ctrl->channels[c].irq[0]);
|
|
}
|
|
|
|
static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
uint32_t len;
|
|
uint32_t saved_data_buf;
|
|
unsigned char buf[2 * 1024];
|
|
|
|
while (ctrl->channels[c].eol != 1) {
|
|
saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
|
|
|
|
D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
|
|
c,
|
|
(uint32_t)ctrl->channels[c].current_d.buf,
|
|
(uint32_t)ctrl->channels[c].current_d.after,
|
|
saved_data_buf));
|
|
|
|
len = (uint32_t)ctrl->channels[c].current_d.after;
|
|
len -= saved_data_buf;
|
|
|
|
if (len > sizeof buf)
|
|
len = sizeof buf;
|
|
cpu_physical_memory_read (saved_data_buf, buf, len);
|
|
|
|
D(printf("channel %d pushes %x %u bytes\n", c,
|
|
saved_data_buf, len));
|
|
|
|
if (ctrl->channels[c].client->client.push)
|
|
ctrl->channels[c].client->client.push(
|
|
ctrl->channels[c].client->client.opaque,
|
|
buf, len);
|
|
else
|
|
printf("WARNING: DMA ch%d dataloss,"
|
|
" no attached client.\n", c);
|
|
|
|
saved_data_buf += len;
|
|
|
|
if (saved_data_buf ==
|
|
(uint32_t)ctrl->channels[c].current_d.after) {
|
|
/* Done. Step to next. */
|
|
if (ctrl->channels[c].current_d.out_eop) {
|
|
/* TODO: signal eop to the client. */
|
|
D(printf("signal eop\n"));
|
|
}
|
|
if (ctrl->channels[c].current_d.intr) {
|
|
/* TODO: signal eop to the client. */
|
|
/* data intr. */
|
|
D(printf("signal intr\n"));
|
|
ctrl->channels[c].regs[R_INTR] |= (1 << 2);
|
|
channel_update_irq(ctrl, c);
|
|
}
|
|
if (ctrl->channels[c].current_d.eol) {
|
|
D(printf("channel %d EOL\n", c));
|
|
ctrl->channels[c].eol = 1;
|
|
|
|
/* Mark the context as disabled. */
|
|
ctrl->channels[c].current_c.dis = 1;
|
|
channel_store_c(ctrl, c);
|
|
|
|
channel_stop(ctrl, c);
|
|
} else {
|
|
ctrl->channels[c].regs[RW_SAVED_DATA] =
|
|
(uint32_t)ctrl->channels[c].current_d.next;
|
|
/* Load new descriptor. */
|
|
channel_load_d(ctrl, c);
|
|
saved_data_buf = (uint32_t)(unsigned long)
|
|
ctrl->channels[c].current_d.buf;
|
|
}
|
|
|
|
channel_store_d(ctrl, c);
|
|
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
|
|
saved_data_buf;
|
|
D(dump_d(c, &ctrl->channels[c].current_d));
|
|
}
|
|
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
|
|
}
|
|
}
|
|
|
|
static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
|
|
unsigned char *buf, int buflen, int eop)
|
|
{
|
|
uint32_t len;
|
|
uint32_t saved_data_buf;
|
|
|
|
if (ctrl->channels[c].eol == 1)
|
|
return 0;
|
|
|
|
saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
|
|
len = (uint32_t)ctrl->channels[c].current_d.after;
|
|
len -= saved_data_buf;
|
|
|
|
if (len > buflen)
|
|
len = buflen;
|
|
|
|
cpu_physical_memory_write (saved_data_buf, buf, len);
|
|
saved_data_buf += len;
|
|
|
|
if (saved_data_buf ==
|
|
(uint32_t)ctrl->channels[c].current_d.after
|
|
|| eop) {
|
|
uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
|
|
|
|
D(printf("in dscr end len=%d\n",
|
|
ctrl->channels[c].current_d.after
|
|
- ctrl->channels[c].current_d.buf));
|
|
ctrl->channels[c].current_d.after =
|
|
(void *)(unsigned long) saved_data_buf;
|
|
|
|
/* Done. Step to next. */
|
|
if (ctrl->channels[c].current_d.intr) {
|
|
/* TODO: signal eop to the client. */
|
|
/* data intr. */
|
|
ctrl->channels[c].regs[R_INTR] |= 3;
|
|
}
|
|
if (eop) {
|
|
ctrl->channels[c].current_d.in_eop = 1;
|
|
ctrl->channels[c].regs[R_INTR] |= 8;
|
|
}
|
|
if (r_intr != ctrl->channels[c].regs[R_INTR])
|
|
channel_update_irq(ctrl, c);
|
|
|
|
channel_store_d(ctrl, c);
|
|
D(dump_d(c, &ctrl->channels[c].current_d));
|
|
|
|
if (ctrl->channels[c].current_d.eol) {
|
|
D(printf("channel %d EOL\n", c));
|
|
ctrl->channels[c].eol = 1;
|
|
|
|
/* Mark the context as disabled. */
|
|
ctrl->channels[c].current_c.dis = 1;
|
|
channel_store_c(ctrl, c);
|
|
|
|
channel_stop(ctrl, c);
|
|
} else {
|
|
ctrl->channels[c].regs[RW_SAVED_DATA] =
|
|
(uint32_t)ctrl->channels[c].current_d.next;
|
|
/* Load new descriptor. */
|
|
channel_load_d(ctrl, c);
|
|
saved_data_buf = (uint32_t)
|
|
ctrl->channels[c].current_d.buf;
|
|
}
|
|
}
|
|
|
|
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
|
|
return len;
|
|
}
|
|
|
|
static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
if (ctrl->channels[c].client->client.pull)
|
|
ctrl->channels[c].client->client.pull(
|
|
ctrl->channels[c].client->client.opaque);
|
|
}
|
|
|
|
static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = opaque;
|
|
CPUState *env = ctrl->env;
|
|
cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
|
|
addr);
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
dma_readl (void *opaque, target_phys_addr_t addr)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = opaque;
|
|
int c;
|
|
uint32_t r = 0;
|
|
|
|
/* Make addr relative to this instances base. */
|
|
c = fs_channel(ctrl->base, addr);
|
|
addr &= 0x1fff;
|
|
switch (addr)
|
|
{
|
|
case RW_STAT:
|
|
r = ctrl->channels[c].state & 7;
|
|
r |= ctrl->channels[c].eol << 5;
|
|
r |= ctrl->channels[c].stream_cmd_src << 8;
|
|
break;
|
|
|
|
default:
|
|
r = ctrl->channels[c].regs[addr];
|
|
D(printf ("%s c=%d addr=%x\n",
|
|
__func__, c, addr));
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static void
|
|
dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = opaque;
|
|
CPUState *env = ctrl->env;
|
|
cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
|
|
addr);
|
|
}
|
|
|
|
static void
|
|
dma_update_state(struct fs_dma_ctrl *ctrl, int c)
|
|
{
|
|
if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
|
|
if (ctrl->channels[c].regs[RW_CFG] & 2)
|
|
ctrl->channels[c].state = STOPPED;
|
|
if (!(ctrl->channels[c].regs[RW_CFG] & 1))
|
|
ctrl->channels[c].state = RST;
|
|
}
|
|
}
|
|
|
|
static void
|
|
dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = opaque;
|
|
int c;
|
|
|
|
/* Make addr relative to this instances base. */
|
|
c = fs_channel(ctrl->base, addr);
|
|
addr &= 0x1fff;
|
|
switch (addr)
|
|
{
|
|
case RW_DATA:
|
|
ctrl->channels[c].regs[addr] = value;
|
|
break;
|
|
|
|
case RW_CFG:
|
|
ctrl->channels[c].regs[addr] = value;
|
|
dma_update_state(ctrl, c);
|
|
break;
|
|
case RW_CMD:
|
|
/* continue. */
|
|
if (value & ~1)
|
|
printf("Invalid store to ch=%d RW_CMD %x\n",
|
|
c, value);
|
|
ctrl->channels[c].regs[addr] = value;
|
|
channel_continue(ctrl, c);
|
|
break;
|
|
|
|
case RW_SAVED_DATA:
|
|
case RW_SAVED_DATA_BUF:
|
|
case RW_GROUP:
|
|
case RW_GROUP_DOWN:
|
|
ctrl->channels[c].regs[addr] = value;
|
|
break;
|
|
|
|
case RW_ACK_INTR:
|
|
case RW_INTR_MASK:
|
|
ctrl->channels[c].regs[addr] = value;
|
|
channel_update_irq(ctrl, c);
|
|
if (addr == RW_ACK_INTR)
|
|
ctrl->channels[c].regs[RW_ACK_INTR] = 0;
|
|
break;
|
|
|
|
case RW_STREAM_CMD:
|
|
if (value & ~1023)
|
|
printf("Invalid store to ch=%d "
|
|
"RW_STREAMCMD %x\n",
|
|
c, value);
|
|
ctrl->channels[c].regs[addr] = value;
|
|
D(printf("stream_cmd ch=%d\n", c));
|
|
channel_stream_cmd(ctrl, c, value);
|
|
break;
|
|
|
|
default:
|
|
D(printf ("%s c=%d %x %x\n", __func__, c, addr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *dma_read[] = {
|
|
&dma_rinvalid,
|
|
&dma_rinvalid,
|
|
&dma_readl,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *dma_write[] = {
|
|
&dma_winvalid,
|
|
&dma_winvalid,
|
|
&dma_writel,
|
|
};
|
|
|
|
void etraxfs_dmac_run(void *opaque)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = opaque;
|
|
int i;
|
|
int p = 0;
|
|
|
|
for (i = 0;
|
|
i < ctrl->nr_channels;
|
|
i++)
|
|
{
|
|
if (ctrl->channels[i].state == RUNNING)
|
|
{
|
|
p++;
|
|
if (ctrl->channels[i].input)
|
|
channel_in_run(ctrl, i);
|
|
else
|
|
channel_out_run(ctrl, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
int etraxfs_dmac_input(struct etraxfs_dma_client *client,
|
|
void *buf, int len, int eop)
|
|
{
|
|
return channel_in_process(client->ctrl, client->channel,
|
|
buf, len, eop);
|
|
}
|
|
|
|
/* Connect an IRQ line with a channel. */
|
|
void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = opaque;
|
|
ctrl->channels[c].irq = line;
|
|
ctrl->channels[c].input = input;
|
|
}
|
|
|
|
void etraxfs_dmac_connect_client(void *opaque, int c,
|
|
struct etraxfs_dma_client *cl)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = opaque;
|
|
cl->ctrl = ctrl;
|
|
cl->channel = c;
|
|
ctrl->channels[c].client = cl;
|
|
}
|
|
|
|
|
|
static void DMA_run(void *opaque)
|
|
{
|
|
struct fs_dma_ctrl *etraxfs_dmac = opaque;
|
|
if (vm_running)
|
|
etraxfs_dmac_run(etraxfs_dmac);
|
|
qemu_bh_schedule_idle(etraxfs_dmac->bh);
|
|
}
|
|
|
|
void *etraxfs_dmac_init(CPUState *env,
|
|
target_phys_addr_t base, int nr_channels)
|
|
{
|
|
struct fs_dma_ctrl *ctrl = NULL;
|
|
int i;
|
|
|
|
ctrl = qemu_mallocz(sizeof *ctrl);
|
|
if (!ctrl)
|
|
return NULL;
|
|
|
|
ctrl->bh = qemu_bh_new(DMA_run, ctrl);
|
|
qemu_bh_schedule_idle(ctrl->bh);
|
|
|
|
ctrl->base = base;
|
|
ctrl->env = env;
|
|
ctrl->nr_channels = nr_channels;
|
|
ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
|
|
if (!ctrl->channels)
|
|
goto err;
|
|
|
|
for (i = 0; i < nr_channels; i++)
|
|
{
|
|
ctrl->channels[i].regmap = cpu_register_io_memory(0,
|
|
dma_read,
|
|
dma_write,
|
|
ctrl);
|
|
cpu_register_physical_memory (base + i * 0x2000,
|
|
sizeof ctrl->channels[i].regs,
|
|
ctrl->channels[i].regmap);
|
|
}
|
|
|
|
return ctrl;
|
|
err:
|
|
qemu_free(ctrl->channels);
|
|
qemu_free(ctrl);
|
|
return NULL;
|
|
}
|