xemu/target/hppa/gdbstub.c
Alex Bennée a010bdbe71 gdbstub: extend GByteArray to read register helpers
Instead of passing a pointer to memory now just extend the GByteArray
to all the read register helpers. They can then safely append their
data through the normal way. We don't bother with this abstraction for
write registers as we have already ensured the buffer being copied
from is the correct size.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Damien Hedde <damien.hedde@greensocs.com>

Message-Id: <20200316172155.971-15-alex.bennee@linaro.org>
2020-03-17 17:38:38 +00:00

283 lines
6.1 KiB
C

/*
* HPPA gdb server stub
*
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/gdbstub.h"
int hppa_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
target_ureg val;
switch (n) {
case 0:
val = cpu_hppa_get_psw(env);
break;
case 1 ... 31:
val = env->gr[n];
break;
case 32:
val = env->cr[CR_SAR];
break;
case 33:
val = env->iaoq_f;
break;
case 34:
val = env->iasq_f >> 32;
break;
case 35:
val = env->iaoq_b;
break;
case 36:
val = env->iasq_b >> 32;
break;
case 37:
val = env->cr[CR_EIEM];
break;
case 38:
val = env->cr[CR_IIR];
break;
case 39:
val = env->cr[CR_ISR];
break;
case 40:
val = env->cr[CR_IOR];
break;
case 41:
val = env->cr[CR_IPSW];
break;
case 43:
val = env->sr[4] >> 32;
break;
case 44:
val = env->sr[0] >> 32;
break;
case 45:
val = env->sr[1] >> 32;
break;
case 46:
val = env->sr[2] >> 32;
break;
case 47:
val = env->sr[3] >> 32;
break;
case 48:
val = env->sr[5] >> 32;
break;
case 49:
val = env->sr[6] >> 32;
break;
case 50:
val = env->sr[7] >> 32;
break;
case 51:
val = env->cr[CR_RC];
break;
case 52:
val = env->cr[CR_PID1];
break;
case 53:
val = env->cr[CR_PID2];
break;
case 54:
val = env->cr[CR_SCRCCR];
break;
case 55:
val = env->cr[CR_PID3];
break;
case 56:
val = env->cr[CR_PID4];
break;
case 57:
val = env->cr[24];
break;
case 58:
val = env->cr[25];
break;
case 59:
val = env->cr[26];
break;
case 60:
val = env->cr[27];
break;
case 61:
val = env->cr[28];
break;
case 62:
val = env->cr[29];
break;
case 63:
val = env->cr[30];
break;
case 64 ... 127:
val = extract64(env->fr[(n - 64) / 2], (n & 1 ? 0 : 32), 32);
break;
default:
if (n < 128) {
val = 0;
} else {
return 0;
}
break;
}
if (TARGET_REGISTER_BITS == 64) {
return gdb_get_reg64(mem_buf, val);
} else {
return gdb_get_reg32(mem_buf, val);
}
}
int hppa_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
target_ureg val;
if (TARGET_REGISTER_BITS == 64) {
val = ldq_p(mem_buf);
} else {
val = ldl_p(mem_buf);
}
switch (n) {
case 0:
cpu_hppa_put_psw(env, val);
break;
case 1 ... 31:
env->gr[n] = val;
break;
case 32:
env->cr[CR_SAR] = val;
break;
case 33:
env->iaoq_f = val;
break;
case 34:
env->iasq_f = (uint64_t)val << 32;
break;
case 35:
env->iaoq_b = val;
break;
case 36:
env->iasq_b = (uint64_t)val << 32;
break;
case 37:
env->cr[CR_EIEM] = val;
break;
case 38:
env->cr[CR_IIR] = val;
break;
case 39:
env->cr[CR_ISR] = val;
break;
case 40:
env->cr[CR_IOR] = val;
break;
case 41:
env->cr[CR_IPSW] = val;
break;
case 43:
env->sr[4] = (uint64_t)val << 32;
break;
case 44:
env->sr[0] = (uint64_t)val << 32;
break;
case 45:
env->sr[1] = (uint64_t)val << 32;
break;
case 46:
env->sr[2] = (uint64_t)val << 32;
break;
case 47:
env->sr[3] = (uint64_t)val << 32;
break;
case 48:
env->sr[5] = (uint64_t)val << 32;
break;
case 49:
env->sr[6] = (uint64_t)val << 32;
break;
case 50:
env->sr[7] = (uint64_t)val << 32;
break;
case 51:
env->cr[CR_RC] = val;
break;
case 52:
env->cr[CR_PID1] = val;
cpu_hppa_change_prot_id(env);
break;
case 53:
env->cr[CR_PID2] = val;
cpu_hppa_change_prot_id(env);
break;
case 54:
env->cr[CR_SCRCCR] = val;
break;
case 55:
env->cr[CR_PID3] = val;
cpu_hppa_change_prot_id(env);
break;
case 56:
env->cr[CR_PID4] = val;
cpu_hppa_change_prot_id(env);
break;
case 57:
env->cr[24] = val;
break;
case 58:
env->cr[25] = val;
break;
case 59:
env->cr[26] = val;
break;
case 60:
env->cr[27] = val;
break;
case 61:
env->cr[28] = val;
break;
case 62:
env->cr[29] = val;
break;
case 63:
env->cr[30] = val;
break;
case 64:
env->fr[0] = deposit64(env->fr[0], 32, 32, val);
cpu_hppa_loaded_fr0(env);
break;
case 65 ... 127:
{
uint64_t *fr = &env->fr[(n - 64) / 2];
*fr = deposit64(*fr, (n & 1 ? 0 : 32), 32, val);
}
break;
default:
if (n >= 128) {
return 0;
}
break;
}
return sizeof(target_ureg);
}