xemu/hw/musicpal.c
balrog af83e09e9e Use external clock in wm8750 slave mode.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4325 c046a42c-6fe2-441c-8c8c-71466251a162
2008-05-04 12:15:51 +00:00

1493 lines
39 KiB
C

/*
* Marvell MV88W8618 / Freecom MusicPal emulation.
*
* Copyright (c) 2008 Jan Kiszka
*
* This code is licenced under the GNU GPL v2.
*/
#include "hw.h"
#include "arm-misc.h"
#include "devices.h"
#include "net.h"
#include "sysemu.h"
#include "boards.h"
#include "pc.h"
#include "qemu-timer.h"
#include "block.h"
#include "flash.h"
#include "console.h"
#include "audio/audio.h"
#include "i2c.h"
#define MP_ETH_BASE 0x80008000
#define MP_ETH_SIZE 0x00001000
#define MP_UART1_BASE 0x8000C840
#define MP_UART2_BASE 0x8000C940
#define MP_FLASHCFG_BASE 0x90006000
#define MP_FLASHCFG_SIZE 0x00001000
#define MP_AUDIO_BASE 0x90007000
#define MP_AUDIO_SIZE 0x00001000
#define MP_PIC_BASE 0x90008000
#define MP_PIC_SIZE 0x00001000
#define MP_PIT_BASE 0x90009000
#define MP_PIT_SIZE 0x00001000
#define MP_LCD_BASE 0x9000c000
#define MP_LCD_SIZE 0x00001000
#define MP_SRAM_BASE 0xC0000000
#define MP_SRAM_SIZE 0x00020000
#define MP_RAM_DEFAULT_SIZE 32*1024*1024
#define MP_FLASH_SIZE_MAX 32*1024*1024
#define MP_TIMER1_IRQ 4
/* ... */
#define MP_TIMER4_IRQ 7
#define MP_EHCI_IRQ 8
#define MP_ETH_IRQ 9
#define MP_UART1_IRQ 11
#define MP_UART2_IRQ 11
#define MP_GPIO_IRQ 12
#define MP_RTC_IRQ 28
#define MP_AUDIO_IRQ 30
static uint32_t gpio_in_state = 0xffffffff;
static uint32_t gpio_out_state;
static ram_addr_t sram_off;
/* Address conversion helpers */
static void *target2host_addr(uint32_t addr)
{
if (addr < MP_SRAM_BASE) {
if (addr >= MP_RAM_DEFAULT_SIZE)
return NULL;
return (void *)(phys_ram_base + addr);
} else {
if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
return NULL;
return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
}
}
static uint32_t host2target_addr(void *addr)
{
if (addr < ((void *)phys_ram_base) + sram_off)
return (unsigned long)addr - (unsigned long)phys_ram_base;
else
return (unsigned long)addr - (unsigned long)phys_ram_base -
sram_off + MP_SRAM_BASE;
}
typedef enum i2c_state {
STOPPED = 0,
INITIALIZING,
SENDING_BIT7,
SENDING_BIT6,
SENDING_BIT5,
SENDING_BIT4,
SENDING_BIT3,
SENDING_BIT2,
SENDING_BIT1,
SENDING_BIT0,
WAITING_FOR_ACK,
RECEIVING_BIT7,
RECEIVING_BIT6,
RECEIVING_BIT5,
RECEIVING_BIT4,
RECEIVING_BIT3,
RECEIVING_BIT2,
RECEIVING_BIT1,
RECEIVING_BIT0,
SENDING_ACK
} i2c_state;
typedef struct i2c_interface {
i2c_bus *bus;
i2c_state state;
int last_data;
int last_clock;
uint8_t buffer;
int current_addr;
} i2c_interface;
static void i2c_enter_stop(i2c_interface *i2c)
{
if (i2c->current_addr >= 0)
i2c_end_transfer(i2c->bus);
i2c->current_addr = -1;
i2c->state = STOPPED;
}
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
{
if (!i2c)
return;
switch (i2c->state) {
case STOPPED:
if (data == 0 && i2c->last_data == 1 && clock == 1)
i2c->state = INITIALIZING;
break;
case INITIALIZING:
if (clock == 0 && i2c->last_clock == 1 && data == 0)
i2c->state = SENDING_BIT7;
else
i2c_enter_stop(i2c);
break;
case SENDING_BIT7 ... SENDING_BIT0:
if (clock == 0 && i2c->last_clock == 1) {
i2c->buffer = (i2c->buffer << 1) | data;
i2c->state++; /* will end up in WAITING_FOR_ACK */
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
case WAITING_FOR_ACK:
if (clock == 0 && i2c->last_clock == 1) {
if (i2c->current_addr < 0) {
i2c->current_addr = i2c->buffer;
i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
i2c->buffer & 1);
} else
i2c_send(i2c->bus, i2c->buffer);
if (i2c->current_addr & 1) {
i2c->state = RECEIVING_BIT7;
i2c->buffer = i2c_recv(i2c->bus);
} else
i2c->state = SENDING_BIT7;
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
case RECEIVING_BIT7 ... RECEIVING_BIT0:
if (clock == 0 && i2c->last_clock == 1) {
i2c->state++; /* will end up in SENDING_ACK */
i2c->buffer <<= 1;
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
case SENDING_ACK:
if (clock == 0 && i2c->last_clock == 1) {
i2c->state = RECEIVING_BIT7;
if (data == 0)
i2c->buffer = i2c_recv(i2c->bus);
else
i2c_nack(i2c->bus);
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
}
i2c->last_data = data;
i2c->last_clock = clock;
}
static int i2c_get_data(i2c_interface *i2c)
{
if (!i2c)
return 0;
switch (i2c->state) {
case RECEIVING_BIT7 ... RECEIVING_BIT0:
return (i2c->buffer >> 7);
case WAITING_FOR_ACK:
default:
return 0;
}
}
static i2c_interface *mixer_i2c;
#ifdef HAS_AUDIO
/* Audio register offsets */
#define MP_AUDIO_PLAYBACK_MODE 0x00
#define MP_AUDIO_CLOCK_DIV 0x18
#define MP_AUDIO_IRQ_STATUS 0x20
#define MP_AUDIO_IRQ_ENABLE 0x24
#define MP_AUDIO_TX_START_LO 0x28
#define MP_AUDIO_TX_THRESHOLD 0x2C
#define MP_AUDIO_TX_STATUS 0x38
#define MP_AUDIO_TX_START_HI 0x40
/* Status register and IRQ enable bits */
#define MP_AUDIO_TX_HALF (1 << 6)
#define MP_AUDIO_TX_FULL (1 << 7)
/* Playback mode bits */
#define MP_AUDIO_16BIT_SAMPLE (1 << 0)
#define MP_AUDIO_PLAYBACK_EN (1 << 7)
#define MP_AUDIO_CLOCK_24MHZ (1 << 9)
/* Wolfson 8750 I2C address */
#define MP_WM_ADDR 0x34
const char audio_name[] = "mv88w8618";
typedef struct musicpal_audio_state {
uint32_t base;
qemu_irq irq;
uint32_t playback_mode;
uint32_t status;
uint32_t irq_enable;
unsigned long phys_buf;
void *target_buffer;
unsigned int threshold;
unsigned int play_pos;
unsigned int last_free;
uint32_t clock_div;
i2c_slave *wm;
} musicpal_audio_state;
static void audio_callback(void *opaque, int free_out, int free_in)
{
musicpal_audio_state *s = opaque;
int16_t *codec_buffer;
int pos, block_size;
if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
return;
if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
free_out <<= 2;
else
free_out <<= 1;
block_size = s->threshold/2;
if (free_out - s->last_free < block_size)
return;
if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
(uint32_t *)(s->target_buffer + s->play_pos),
block_size);
else {
codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
for (pos = 0; pos < block_size; pos += 2) {
*codec_buffer++ = cpu_to_le16(256 *
*(int8_t *)(s->target_buffer + s->play_pos + pos));
*codec_buffer++ = cpu_to_le16(256 *
*(int8_t *)(s->target_buffer + s->play_pos + pos + 1));
}
}
wm8750_dac_commit(s->wm);
s->last_free = free_out - block_size;
if (s->play_pos == 0) {
s->status |= MP_AUDIO_TX_HALF;
s->play_pos = block_size;
} else {
s->status |= MP_AUDIO_TX_FULL;
s->play_pos = 0;
}
if (s->status & s->irq_enable)
qemu_irq_raise(s->irq);
}
static void musicpal_audio_clock_update(musicpal_audio_state *s)
{
int rate;
if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
rate = 24576000 / 64; /* 24.576MHz */
else
rate = 11289600 / 64; /* 11.2896MHz */
rate /= ((s->clock_div >> 8) & 0xff) + 1;
wm8750_set_bclk_in(s->wm, rate / 2);
}
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
{
musicpal_audio_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_AUDIO_PLAYBACK_MODE:
return s->playback_mode;
case MP_AUDIO_CLOCK_DIV:
return s->clock_div;
case MP_AUDIO_IRQ_STATUS:
return s->status;
case MP_AUDIO_IRQ_ENABLE:
return s->irq_enable;
case MP_AUDIO_TX_STATUS:
return s->play_pos >> 2;
default:
return 0;
}
}
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
musicpal_audio_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_AUDIO_PLAYBACK_MODE:
if (value & MP_AUDIO_PLAYBACK_EN &&
!(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
s->status = 0;
s->last_free = 0;
s->play_pos = 0;
}
s->playback_mode = value;
musicpal_audio_clock_update(s);
break;
case MP_AUDIO_CLOCK_DIV:
s->clock_div = value;
s->last_free = 0;
s->play_pos = 0;
musicpal_audio_clock_update(s);
break;
case MP_AUDIO_IRQ_STATUS:
s->status &= ~value;
break;
case MP_AUDIO_IRQ_ENABLE:
s->irq_enable = value;
if (s->status & s->irq_enable)
qemu_irq_raise(s->irq);
break;
case MP_AUDIO_TX_START_LO:
s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
s->target_buffer = target2host_addr(s->phys_buf);
s->play_pos = 0;
s->last_free = 0;
break;
case MP_AUDIO_TX_THRESHOLD:
s->threshold = (value + 1) * 4;
break;
case MP_AUDIO_TX_START_HI:
s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
s->target_buffer = target2host_addr(s->phys_buf);
s->play_pos = 0;
s->last_free = 0;
break;
}
}
static void musicpal_audio_reset(void *opaque)
{
musicpal_audio_state *s = opaque;
s->playback_mode = 0;
s->status = 0;
s->irq_enable = 0;
}
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
musicpal_audio_read,
musicpal_audio_read,
musicpal_audio_read
};
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
musicpal_audio_write,
musicpal_audio_write,
musicpal_audio_write
};
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
AudioState *audio;
musicpal_audio_state *s;
i2c_interface *i2c;
int iomemtype;
audio = AUD_init();
if (!audio) {
AUD_log(audio_name, "No audio state\n");
return NULL;
}
s = qemu_mallocz(sizeof(musicpal_audio_state));
if (!s)
return NULL;
s->base = base;
s->irq = irq;
i2c = qemu_mallocz(sizeof(i2c_interface));
if (!i2c)
return NULL;
i2c->bus = i2c_init_bus();
i2c->current_addr = -1;
s->wm = wm8750_init(i2c->bus, audio);
if (!s->wm)
return NULL;
i2c_set_slave_address(s->wm, MP_WM_ADDR);
wm8750_data_req_set(s->wm, audio_callback, s);
iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
musicpal_audio_writefn, s);
cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
qemu_register_reset(musicpal_audio_reset, s);
return i2c;
}
#else /* !HAS_AUDIO */
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
return NULL;
}
#endif /* !HAS_AUDIO */
/* Ethernet register offsets */
#define MP_ETH_SMIR 0x010
#define MP_ETH_PCXR 0x408
#define MP_ETH_SDCMR 0x448
#define MP_ETH_ICR 0x450
#define MP_ETH_IMR 0x458
#define MP_ETH_FRDP0 0x480
#define MP_ETH_FRDP1 0x484
#define MP_ETH_FRDP2 0x488
#define MP_ETH_FRDP3 0x48C
#define MP_ETH_CRDP0 0x4A0
#define MP_ETH_CRDP1 0x4A4
#define MP_ETH_CRDP2 0x4A8
#define MP_ETH_CRDP3 0x4AC
#define MP_ETH_CTDP0 0x4E0
#define MP_ETH_CTDP1 0x4E4
#define MP_ETH_CTDP2 0x4E8
#define MP_ETH_CTDP3 0x4EC
/* MII PHY access */
#define MP_ETH_SMIR_DATA 0x0000FFFF
#define MP_ETH_SMIR_ADDR 0x03FF0000
#define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
#define MP_ETH_SMIR_RDVALID (1 << 27)
/* PHY registers */
#define MP_ETH_PHY1_BMSR 0x00210000
#define MP_ETH_PHY1_PHYSID1 0x00410000
#define MP_ETH_PHY1_PHYSID2 0x00610000
#define MP_PHY_BMSR_LINK 0x0004
#define MP_PHY_BMSR_AUTONEG 0x0008
#define MP_PHY_88E3015 0x01410E20
/* TX descriptor status */
#define MP_ETH_TX_OWN (1 << 31)
/* RX descriptor status */
#define MP_ETH_RX_OWN (1 << 31)
/* Interrupt cause/mask bits */
#define MP_ETH_IRQ_RX_BIT 0
#define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
#define MP_ETH_IRQ_TXHI_BIT 2
#define MP_ETH_IRQ_TXLO_BIT 3
/* Port config bits */
#define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
/* SDMA command bits */
#define MP_ETH_CMD_TXHI (1 << 23)
#define MP_ETH_CMD_TXLO (1 << 22)
typedef struct mv88w8618_tx_desc {
uint32_t cmdstat;
uint16_t res;
uint16_t bytes;
uint32_t buffer;
uint32_t next;
} mv88w8618_tx_desc;
typedef struct mv88w8618_rx_desc {
uint32_t cmdstat;
uint16_t bytes;
uint16_t buffer_size;
uint32_t buffer;
uint32_t next;
} mv88w8618_rx_desc;
typedef struct mv88w8618_eth_state {
uint32_t base;
qemu_irq irq;
uint32_t smir;
uint32_t icr;
uint32_t imr;
int vlan_header;
mv88w8618_tx_desc *tx_queue[2];
mv88w8618_rx_desc *rx_queue[4];
mv88w8618_rx_desc *frx_queue[4];
mv88w8618_rx_desc *cur_rx[4];
VLANClientState *vc;
} mv88w8618_eth_state;
static int eth_can_receive(void *opaque)
{
return 1;
}
static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
mv88w8618_eth_state *s = opaque;
mv88w8618_rx_desc *desc;
int i;
for (i = 0; i < 4; i++) {
desc = s->cur_rx[i];
if (!desc)
continue;
do {
if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
le16_to_cpu(desc->buffer_size) >= size) {
memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
s->vlan_header),
buf, size);
desc->bytes = cpu_to_le16(size + s->vlan_header);
desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
s->icr |= MP_ETH_IRQ_RX;
if (s->icr & s->imr)
qemu_irq_raise(s->irq);
return;
}
desc = target2host_addr(le32_to_cpu(desc->next));
} while (desc != s->rx_queue[i]);
}
}
static void eth_send(mv88w8618_eth_state *s, int queue_index)
{
mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
do {
if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
qemu_send_packet(s->vc,
target2host_addr(le32_to_cpu(desc->buffer)),
le16_to_cpu(desc->bytes));
desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
}
desc = target2host_addr(le32_to_cpu(desc->next));
} while (desc != s->tx_queue[queue_index]);
}
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
{
mv88w8618_eth_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_ETH_SMIR:
if (s->smir & MP_ETH_SMIR_OPCODE) {
switch (s->smir & MP_ETH_SMIR_ADDR) {
case MP_ETH_PHY1_BMSR:
return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
MP_ETH_SMIR_RDVALID;
case MP_ETH_PHY1_PHYSID1:
return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
case MP_ETH_PHY1_PHYSID2:
return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
default:
return MP_ETH_SMIR_RDVALID;
}
}
return 0;
case MP_ETH_ICR:
return s->icr;
case MP_ETH_IMR:
return s->imr;
case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
default:
return 0;
}
}
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_eth_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_ETH_SMIR:
s->smir = value;
break;
case MP_ETH_PCXR:
s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
break;
case MP_ETH_SDCMR:
if (value & MP_ETH_CMD_TXHI)
eth_send(s, 1);
if (value & MP_ETH_CMD_TXLO)
eth_send(s, 0);
if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
qemu_irq_raise(s->irq);
break;
case MP_ETH_ICR:
s->icr &= value;
break;
case MP_ETH_IMR:
s->imr = value;
if (s->icr & s->imr)
qemu_irq_raise(s->irq);
break;
case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
break;
case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
break;
case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
break;
}
}
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
mv88w8618_eth_read,
mv88w8618_eth_read,
mv88w8618_eth_read
};
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
mv88w8618_eth_write,
mv88w8618_eth_write,
mv88w8618_eth_write
};
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
{
mv88w8618_eth_state *s;
int iomemtype;
s = qemu_mallocz(sizeof(mv88w8618_eth_state));
if (!s)
return;
s->base = base;
s->irq = irq;
s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
mv88w8618_eth_writefn, s);
cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
}
/* LCD register offsets */
#define MP_LCD_IRQCTRL 0x180
#define MP_LCD_IRQSTAT 0x184
#define MP_LCD_SPICTRL 0x1ac
#define MP_LCD_INST 0x1bc
#define MP_LCD_DATA 0x1c0
/* Mode magics */
#define MP_LCD_SPI_DATA 0x00100011
#define MP_LCD_SPI_CMD 0x00104011
#define MP_LCD_SPI_INVALID 0x00000000
/* Commmands */
#define MP_LCD_INST_SETPAGE0 0xB0
/* ... */
#define MP_LCD_INST_SETPAGE7 0xB7
#define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
typedef struct musicpal_lcd_state {
uint32_t base;
uint32_t mode;
uint32_t irqctrl;
int page;
int page_off;
DisplayState *ds;
uint8_t video_ram[128*64/8];
} musicpal_lcd_state;
static uint32_t lcd_brightness;
static uint8_t scale_lcd_color(uint8_t col)
{
int tmp = col;
switch (lcd_brightness) {
case 0x00000007: /* 0 */
return 0;
case 0x00020000: /* 1 */
return (tmp * 1) / 7;
case 0x00020001: /* 2 */
return (tmp * 2) / 7;
case 0x00040000: /* 3 */
return (tmp * 3) / 7;
case 0x00010006: /* 4 */
return (tmp * 4) / 7;
case 0x00020005: /* 5 */
return (tmp * 5) / 7;
case 0x00040003: /* 6 */
return (tmp * 6) / 7;
case 0x00030004: /* 7 */
default:
return col;
}
}
#define SET_LCD_PIXEL(depth, type) \
static inline void glue(set_lcd_pixel, depth) \
(musicpal_lcd_state *s, int x, int y, type col) \
{ \
int dx, dy; \
type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
\
for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
for (dx = 0; dx < 3; dx++, pixel++) \
*pixel = col; \
}
SET_LCD_PIXEL(8, uint8_t)
SET_LCD_PIXEL(16, uint16_t)
SET_LCD_PIXEL(32, uint32_t)
#include "pixel_ops.h"
static void lcd_refresh(void *opaque)
{
musicpal_lcd_state *s = opaque;
int x, y, col;
switch (s->ds->depth) {
case 0:
return;
#define LCD_REFRESH(depth, func) \
case depth: \
col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
for (x = 0; x < 128; x++) \
for (y = 0; y < 64; y++) \
if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
glue(set_lcd_pixel, depth)(s, x, y, col); \
else \
glue(set_lcd_pixel, depth)(s, x, y, 0); \
break;
LCD_REFRESH(8, rgb_to_pixel8)
LCD_REFRESH(16, rgb_to_pixel16)
LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
default:
cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
s->ds->depth);
}
dpy_update(s->ds, 0, 0, 128*3, 64*3);
}
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
{
musicpal_lcd_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_LCD_IRQCTRL:
return s->irqctrl;
default:
return 0;
}
}
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
musicpal_lcd_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_LCD_IRQCTRL:
s->irqctrl = value;
break;
case MP_LCD_SPICTRL:
if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
s->mode = value;
else
s->mode = MP_LCD_SPI_INVALID;
break;
case MP_LCD_INST:
if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
s->page = value - MP_LCD_INST_SETPAGE0;
s->page_off = 0;
}
break;
case MP_LCD_DATA:
if (s->mode == MP_LCD_SPI_CMD) {
if (value >= MP_LCD_INST_SETPAGE0 &&
value <= MP_LCD_INST_SETPAGE7) {
s->page = value - MP_LCD_INST_SETPAGE0;
s->page_off = 0;
}
} else if (s->mode == MP_LCD_SPI_DATA) {
s->video_ram[s->page*128 + s->page_off] = value;
s->page_off = (s->page_off + 1) & 127;
}
break;
}
}
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
musicpal_lcd_read,
musicpal_lcd_read,
musicpal_lcd_read
};
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
musicpal_lcd_write,
musicpal_lcd_write,
musicpal_lcd_write
};
static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
{
musicpal_lcd_state *s;
int iomemtype;
s = qemu_mallocz(sizeof(musicpal_lcd_state));
if (!s)
return;
s->base = base;
s->ds = ds;
iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
musicpal_lcd_writefn, s);
cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
dpy_resize(ds, 128*3, 64*3);
}
/* PIC register offsets */
#define MP_PIC_STATUS 0x00
#define MP_PIC_ENABLE_SET 0x08
#define MP_PIC_ENABLE_CLR 0x0C
typedef struct mv88w8618_pic_state
{
uint32_t base;
uint32_t level;
uint32_t enabled;
qemu_irq parent_irq;
} mv88w8618_pic_state;
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
{
qemu_set_irq(s->parent_irq, (s->level & s->enabled));
}
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
{
mv88w8618_pic_state *s = opaque;
if (level)
s->level |= 1 << irq;
else
s->level &= ~(1 << irq);
mv88w8618_pic_update(s);
}
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
{
mv88w8618_pic_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_PIC_STATUS:
return s->level & s->enabled;
default:
return 0;
}
}
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_pic_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_PIC_ENABLE_SET:
s->enabled |= value;
break;
case MP_PIC_ENABLE_CLR:
s->enabled &= ~value;
s->level &= ~value;
break;
}
mv88w8618_pic_update(s);
}
static void mv88w8618_pic_reset(void *opaque)
{
mv88w8618_pic_state *s = opaque;
s->level = 0;
s->enabled = 0;
}
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
mv88w8618_pic_read,
mv88w8618_pic_read,
mv88w8618_pic_read
};
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
mv88w8618_pic_write,
mv88w8618_pic_write,
mv88w8618_pic_write
};
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
{
mv88w8618_pic_state *s;
int iomemtype;
qemu_irq *qi;
s = qemu_mallocz(sizeof(mv88w8618_pic_state));
if (!s)
return NULL;
qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
s->base = base;
s->parent_irq = parent_irq;
iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
mv88w8618_pic_writefn, s);
cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
qemu_register_reset(mv88w8618_pic_reset, s);
return qi;
}
/* PIT register offsets */
#define MP_PIT_TIMER1_LENGTH 0x00
/* ... */
#define MP_PIT_TIMER4_LENGTH 0x0C
#define MP_PIT_CONTROL 0x10
#define MP_PIT_TIMER1_VALUE 0x14
/* ... */
#define MP_PIT_TIMER4_VALUE 0x20
#define MP_BOARD_RESET 0x34
/* Magic board reset value (probably some watchdog behind it) */
#define MP_BOARD_RESET_MAGIC 0x10000
typedef struct mv88w8618_timer_state {
ptimer_state *timer;
uint32_t limit;
int freq;
qemu_irq irq;
} mv88w8618_timer_state;
typedef struct mv88w8618_pit_state {
void *timer[4];
uint32_t control;
uint32_t base;
} mv88w8618_pit_state;
static void mv88w8618_timer_tick(void *opaque)
{
mv88w8618_timer_state *s = opaque;
qemu_irq_raise(s->irq);
}
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
{
mv88w8618_timer_state *s;
QEMUBH *bh;
s = qemu_mallocz(sizeof(mv88w8618_timer_state));
s->irq = irq;
s->freq = freq;
bh = qemu_bh_new(mv88w8618_timer_tick, s);
s->timer = ptimer_init(bh);
return s;
}
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
{
mv88w8618_pit_state *s = opaque;
mv88w8618_timer_state *t;
offset -= s->base;
switch (offset) {
case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
return ptimer_get_count(t->timer);
default:
return 0;
}
}
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_pit_state *s = opaque;
mv88w8618_timer_state *t;
int i;
offset -= s->base;
switch (offset) {
case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
t = s->timer[offset >> 2];
t->limit = value;
ptimer_set_limit(t->timer, t->limit, 1);
break;
case MP_PIT_CONTROL:
for (i = 0; i < 4; i++) {
if (value & 0xf) {
t = s->timer[i];
ptimer_set_limit(t->timer, t->limit, 0);
ptimer_set_freq(t->timer, t->freq);
ptimer_run(t->timer, 0);
}
value >>= 4;
}
break;
case MP_BOARD_RESET:
if (value == MP_BOARD_RESET_MAGIC)
qemu_system_reset_request();
break;
}
}
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
mv88w8618_pit_read,
mv88w8618_pit_read,
mv88w8618_pit_read
};
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
mv88w8618_pit_write,
mv88w8618_pit_write,
mv88w8618_pit_write
};
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
{
int iomemtype;
mv88w8618_pit_state *s;
s = qemu_mallocz(sizeof(mv88w8618_pit_state));
if (!s)
return;
s->base = base;
/* Letting them all run at 1 MHz is likely just a pragmatic
* simplification. */
s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
mv88w8618_pit_writefn, s);
cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
}
/* Flash config register offsets */
#define MP_FLASHCFG_CFGR0 0x04
typedef struct mv88w8618_flashcfg_state {
uint32_t base;
uint32_t cfgr0;
} mv88w8618_flashcfg_state;
static uint32_t mv88w8618_flashcfg_read(void *opaque,
target_phys_addr_t offset)
{
mv88w8618_flashcfg_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_FLASHCFG_CFGR0:
return s->cfgr0;
default:
return 0;
}
}
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_flashcfg_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_FLASHCFG_CFGR0:
s->cfgr0 = value;
break;
}
}
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
mv88w8618_flashcfg_read,
mv88w8618_flashcfg_read,
mv88w8618_flashcfg_read
};
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
mv88w8618_flashcfg_write,
mv88w8618_flashcfg_write,
mv88w8618_flashcfg_write
};
static void mv88w8618_flashcfg_init(uint32_t base)
{
int iomemtype;
mv88w8618_flashcfg_state *s;
s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
if (!s)
return;
s->base = base;
s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
mv88w8618_flashcfg_writefn, s);
cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
}
/* Various registers in the 0x80000000 domain */
#define MP_BOARD_REVISION 0x2018
#define MP_WLAN_MAGIC1 0xc11c
#define MP_WLAN_MAGIC2 0xc124
#define MP_GPIO_OE_LO 0xd008
#define MP_GPIO_OUT_LO 0xd00c
#define MP_GPIO_IN_LO 0xd010
#define MP_GPIO_ISR_LO 0xd020
#define MP_GPIO_OE_HI 0xd508
#define MP_GPIO_OUT_HI 0xd50c
#define MP_GPIO_IN_HI 0xd510
#define MP_GPIO_ISR_HI 0xd520
/* GPIO bits & masks */
#define MP_GPIO_WHEEL_VOL (1 << 8)
#define MP_GPIO_WHEEL_VOL_INV (1 << 9)
#define MP_GPIO_WHEEL_NAV (1 << 10)
#define MP_GPIO_WHEEL_NAV_INV (1 << 11)
#define MP_GPIO_LCD_BRIGHTNESS 0x00070000
#define MP_GPIO_BTN_FAVORITS (1 << 19)
#define MP_GPIO_BTN_MENU (1 << 20)
#define MP_GPIO_BTN_VOLUME (1 << 21)
#define MP_GPIO_BTN_NAVIGATION (1 << 22)
#define MP_GPIO_I2C_DATA_BIT 29
#define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
#define MP_GPIO_I2C_CLOCK_BIT 30
/* LCD brightness bits in GPIO_OE_HI */
#define MP_OE_LCD_BRIGHTNESS 0x0007
static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
{
offset -= 0x80000000;
switch (offset) {
case MP_BOARD_REVISION:
return 0x0031;
case MP_GPIO_OE_HI: /* used for LCD brightness control */
return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
case MP_GPIO_OUT_LO:
return gpio_out_state & 0xFFFF;
case MP_GPIO_OUT_HI:
return gpio_out_state >> 16;
case MP_GPIO_IN_LO:
return gpio_in_state & 0xFFFF;
case MP_GPIO_IN_HI:
/* Update received I2C data */
gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
(i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
return gpio_in_state >> 16;
/* This is a simplification of reality */
case MP_GPIO_ISR_LO:
return ~gpio_in_state & 0xFFFF;
case MP_GPIO_ISR_HI:
return ~gpio_in_state >> 16;
/* Workaround to allow loading the binary-only wlandrv.ko crap
* from the original Freecom firmware. */
case MP_WLAN_MAGIC1:
return ~3;
case MP_WLAN_MAGIC2:
return -1;
default:
return 0;
}
}
static void musicpal_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
offset -= 0x80000000;
switch (offset) {
case MP_GPIO_OE_HI: /* used for LCD brightness control */
lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
(value & MP_OE_LCD_BRIGHTNESS);
break;
case MP_GPIO_OUT_LO:
gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
break;
case MP_GPIO_OUT_HI:
gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
lcd_brightness = (lcd_brightness & 0xFFFF) |
(gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
i2c_state_update(mixer_i2c,
(gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
(gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
break;
}
}
/* Keyboard codes & masks */
#define KEY_PRESSED 0x80
#define KEY_CODE 0x7f
#define KEYCODE_TAB 0x0f
#define KEYCODE_ENTER 0x1c
#define KEYCODE_F 0x21
#define KEYCODE_M 0x32
#define KEYCODE_EXTENDED 0xe0
#define KEYCODE_UP 0x48
#define KEYCODE_DOWN 0x50
#define KEYCODE_LEFT 0x4b
#define KEYCODE_RIGHT 0x4d
static void musicpal_key_event(void *opaque, int keycode)
{
qemu_irq irq = opaque;
uint32_t event = 0;
static int kbd_extended;
if (keycode == KEYCODE_EXTENDED) {
kbd_extended = 1;
return;
}
if (kbd_extended)
switch (keycode & KEY_CODE) {
case KEYCODE_UP:
event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
break;
case KEYCODE_DOWN:
event = MP_GPIO_WHEEL_NAV;
break;
case KEYCODE_LEFT:
event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
break;
case KEYCODE_RIGHT:
event = MP_GPIO_WHEEL_VOL;
break;
}
else
switch (keycode & KEY_CODE) {
case KEYCODE_F:
event = MP_GPIO_BTN_FAVORITS;
break;
case KEYCODE_TAB:
event = MP_GPIO_BTN_VOLUME;
break;
case KEYCODE_ENTER:
event = MP_GPIO_BTN_NAVIGATION;
break;
case KEYCODE_M:
event = MP_GPIO_BTN_MENU;
break;
}
if (keycode & KEY_PRESSED)
gpio_in_state |= event;
else if (gpio_in_state & event) {
gpio_in_state &= ~event;
qemu_irq_raise(irq);
}
kbd_extended = 0;
}
static CPUReadMemoryFunc *musicpal_readfn[] = {
musicpal_read,
musicpal_read,
musicpal_read,
};
static CPUWriteMemoryFunc *musicpal_writefn[] = {
musicpal_write,
musicpal_write,
musicpal_write,
};
static struct arm_boot_info musicpal_binfo = {
.loader_start = 0x0,
.board_id = 0x20e,
};
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
qemu_irq *pic;
int index;
int iomemtype;
unsigned long flash_size;
if (!cpu_model)
cpu_model = "arm926";
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
pic = arm_pic_init_cpu(env);
/* For now we use a fixed - the original - RAM size */
cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
/* Catch various stuff not handled by separate subsystems */
iomemtype = cpu_register_io_memory(0, musicpal_readfn,
musicpal_writefn, env);
cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
if (serial_hds[0])
serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], /*1825000,*/
serial_hds[0], 1);
if (serial_hds[1])
serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], /*1825000,*/
serial_hds[1], 1);
/* Register flash */
index = drive_get_index(IF_PFLASH, 0, 0);
if (index != -1) {
flash_size = bdrv_getlength(drives_table[index].bdrv);
if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
flash_size != 32*1024*1024) {
fprintf(stderr, "Invalid flash image size\n");
exit(1);
}
/*
* The original U-Boot accesses the flash at 0xFE000000 instead of
* 0xFF800000 (if there is 8 MB flash). So remap flash access if the
* image is smaller than 32 MB.
*/
pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
drives_table[index].bdrv, 0x10000,
(flash_size + 0xffff) >> 16,
MP_FLASH_SIZE_MAX / flash_size,
2, 0x00BF, 0x236D, 0x0000, 0x0000,
0x5555, 0x2AAA);
}
mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
musicpal_lcd_init(ds, MP_LCD_BASE);
qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
/*
* Wait a bit to catch menu button during U-Boot start-up
* (to trigger emergency update).
*/
sleep(1);
mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
musicpal_binfo.kernel_filename = kernel_filename;
musicpal_binfo.kernel_cmdline = kernel_cmdline;
musicpal_binfo.initrd_filename = initrd_filename;
arm_load_kernel(env, &musicpal_binfo);
}
QEMUMachine musicpal_machine = {
"musicpal",
"Marvell 88w8618 / MusicPal (ARM926EJ-S)",
musicpal_init,
MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
};