xemu/exec-obsolete.h
Anthony PERARD e226939de5 exec, memory: Call to xen_modified_memory.
This patch add some calls to xen_modified_memory to notify Xen about dirtybits
during migration.

Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Avi Kivity <avi@redhat.com>
2012-10-03 13:49:22 +00:00

139 lines
4.2 KiB
C

/*
* Declarations for obsolete exec.c functions
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
/*
* This header is for use by exec.c and memory.c ONLY. Do not include it.
* The functions declared here will be removed soon.
*/
#ifndef EXEC_OBSOLETE_H
#define EXEC_OBSOLETE_H
#ifndef WANT_EXEC_OBSOLETE
#error Do not include exec-obsolete.h
#endif
#ifndef CONFIG_USER_ONLY
#include "hw/xen.h"
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr);
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr);
void qemu_ram_free(ram_addr_t addr);
void qemu_ram_free_from_ptr(ram_addr_t addr);
struct MemoryRegion;
struct MemoryRegionSection;
void cpu_register_physical_memory_log(struct MemoryRegionSection *section,
bool readonly);
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
int cpu_physical_memory_set_dirty_tracking(int enable);
#define VGA_DIRTY_FLAG 0x01
#define CODE_DIRTY_FLAG 0x02
#define MIGRATION_DIRTY_FLAG 0x08
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
{
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
}
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
{
return cpu_physical_memory_get_dirty_flags(addr) == 0xff;
}
static inline int cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
int dirty_flags)
{
int ret = 0;
ram_addr_t addr, end;
end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
ret |= cpu_physical_memory_get_dirty_flags(addr) & dirty_flags;
}
return ret;
}
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
int dirty_flags)
{
if ((dirty_flags & MIGRATION_DIRTY_FLAG) &&
!cpu_physical_memory_get_dirty(addr, TARGET_PAGE_SIZE,
MIGRATION_DIRTY_FLAG)) {
ram_list.dirty_pages++;
}
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
}
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
{
cpu_physical_memory_set_dirty_flags(addr, 0xff);
}
static inline int cpu_physical_memory_clear_dirty_flags(ram_addr_t addr,
int dirty_flags)
{
int mask = ~dirty_flags;
if ((dirty_flags & MIGRATION_DIRTY_FLAG) &&
cpu_physical_memory_get_dirty(addr, TARGET_PAGE_SIZE,
MIGRATION_DIRTY_FLAG)) {
ram_list.dirty_pages--;
}
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] &= mask;
}
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
ram_addr_t length,
int dirty_flags)
{
ram_addr_t addr, end;
end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
cpu_physical_memory_set_dirty_flags(addr, dirty_flags);
}
xen_modified_memory(addr, length);
}
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
ram_addr_t length,
int dirty_flags)
{
ram_addr_t addr, end;
end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
cpu_physical_memory_clear_dirty_flags(addr, dirty_flags);
}
}
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags);
extern const IORangeOps memory_region_iorange_ops;
#endif
#endif