xemu/hw/mips/boston.c
Bernhard Beschow b1f66fab45 hw/mips/boston: Initialize g_autofree pointers
Fixes compilation due to false positives with -Werror:

  In file included from /usr/include/glib-2.0/glib.h:114,
                   from qemu/src/include/glib-compat.h:32,
                   from qemu/src/include/qemu/osdep.h:144,
                   from ../src/hw/mips/boston.c:20:
  In function ‘g_autoptr_cleanup_generic_gfree’,
      inlined from ‘boston_mach_init’ at ../src/hw/mips/boston.c:790:52:
  /usr/include/glib-2.0/glib/glib-autocleanups.h:28:3: error: ‘dtb_load_data’ may be used uninitialized [-Werror=maybe-uninitialized]
     28 |   g_free (*pp);
        |   ^~~~~~~~~~~~
  ../src/hw/mips/boston.c: In function ‘boston_mach_init’:
  ../src/hw/mips/boston.c:790:52: note: ‘dtb_load_data’ was declared here
    790 |             g_autofree const void *dtb_file_data, *dtb_load_data;
        |                                                    ^~~~~~~~~~~~~
  In function ‘g_autoptr_cleanup_generic_gfree’,
    inlined from ‘boston_mach_init’ at ../src/hw/mips/boston.c:790:36:
  /usr/include/glib-2.0/glib/glib-autocleanups.h:28:3: error: ‘dtb_file_data’ may be used uninitialized [-Werror=maybe-uninitialized]
     28 |   g_free (*pp);
        |   ^~~~~~~~~~~~
  ../src/hw/mips/boston.c: In function ‘boston_mach_init’:
  ../src/hw/mips/boston.c:790:36: note: ‘dtb_file_data’ was declared here
    790 |             g_autofree const void *dtb_file_data, *dtb_load_data;
        |                                    ^~~~~~~~~~~~~
  cc1: all warnings being treated as errors

Signed-off-by: Bernhard Beschow <shentey@gmail.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220605151908.30566-1-shentey@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
2022-06-11 23:50:35 +02:00

837 lines
29 KiB
C

/*
* MIPS Boston development board emulation.
*
* Copyright (c) 2016 Imagination Technologies
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "elf.h"
#include "hw/boards.h"
#include "hw/char/serial.h"
#include "hw/ide/pci.h"
#include "hw/ide/ahci.h"
#include "hw/loader.h"
#include "hw/loader-fit.h"
#include "hw/mips/bootloader.h"
#include "hw/mips/cps.h"
#include "hw/pci-host/xilinx-pcie.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "sysemu/runstate.h"
#include <libfdt.h>
#include "qom/object.h"
#define TYPE_BOSTON "mips-boston"
typedef struct BostonState BostonState;
DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
TYPE_BOSTON)
#define FDT_IRQ_TYPE_NONE 0
#define FDT_IRQ_TYPE_LEVEL_HIGH 4
#define FDT_GIC_SHARED 0
#define FDT_GIC_LOCAL 1
#define FDT_BOSTON_CLK_SYS 1
#define FDT_BOSTON_CLK_CPU 2
#define FDT_PCI_IRQ_MAP_PINS 4
#define FDT_PCI_IRQ_MAP_DESCS 6
struct BostonState {
SysBusDevice parent_obj;
MachineState *mach;
MIPSCPSState cps;
SerialMM *uart;
Clock *cpuclk;
CharBackend lcd_display;
char lcd_content[8];
bool lcd_inited;
hwaddr kernel_entry;
hwaddr fdt_base;
};
enum {
BOSTON_LOWDDR,
BOSTON_PCIE0,
BOSTON_PCIE1,
BOSTON_PCIE2,
BOSTON_PCIE2_MMIO,
BOSTON_CM,
BOSTON_GIC,
BOSTON_CDMM,
BOSTON_CPC,
BOSTON_PLATREG,
BOSTON_UART,
BOSTON_LCD,
BOSTON_FLASH,
BOSTON_PCIE1_MMIO,
BOSTON_PCIE0_MMIO,
BOSTON_HIGHDDR,
};
static const MemMapEntry boston_memmap[] = {
[BOSTON_LOWDDR] = { 0x0, 0x10000000 },
[BOSTON_PCIE0] = { 0x10000000, 0x2000000 },
[BOSTON_PCIE1] = { 0x12000000, 0x2000000 },
[BOSTON_PCIE2] = { 0x14000000, 0x2000000 },
[BOSTON_PCIE2_MMIO] = { 0x16000000, 0x100000 },
[BOSTON_CM] = { 0x16100000, 0x20000 },
[BOSTON_GIC] = { 0x16120000, 0x20000 },
[BOSTON_CDMM] = { 0x16140000, 0x8000 },
[BOSTON_CPC] = { 0x16200000, 0x8000 },
[BOSTON_PLATREG] = { 0x17ffd000, 0x1000 },
[BOSTON_UART] = { 0x17ffe000, 0x20 },
[BOSTON_LCD] = { 0x17fff000, 0x8 },
[BOSTON_FLASH] = { 0x18000000, 0x8000000 },
[BOSTON_PCIE1_MMIO] = { 0x20000000, 0x20000000 },
[BOSTON_PCIE0_MMIO] = { 0x40000000, 0x40000000 },
[BOSTON_HIGHDDR] = { 0x80000000, 0x0 },
};
enum boston_plat_reg {
PLAT_FPGA_BUILD = 0x00,
PLAT_CORE_CL = 0x04,
PLAT_WRAPPER_CL = 0x08,
PLAT_SYSCLK_STATUS = 0x0c,
PLAT_SOFTRST_CTL = 0x10,
#define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
PLAT_DDR3_STATUS = 0x14,
#define PLAT_DDR3_STATUS_LOCKED (1 << 0)
#define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
PLAT_PCIE_STATUS = 0x18,
#define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
#define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
#define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
PLAT_FLASH_CTL = 0x1c,
PLAT_SPARE0 = 0x20,
PLAT_SPARE1 = 0x24,
PLAT_SPARE2 = 0x28,
PLAT_SPARE3 = 0x2c,
PLAT_MMCM_DIV = 0x30,
#define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
#define PLAT_MMCM_DIV_INPUT_SHIFT 8
#define PLAT_MMCM_DIV_MUL_SHIFT 16
#define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
PLAT_BUILD_CFG = 0x34,
#define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
#define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
#define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
#define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
PLAT_DDR_CFG = 0x38,
#define PLAT_DDR_CFG_SIZE (0xf << 0)
#define PLAT_DDR_CFG_MHZ (0xfff << 4)
PLAT_NOC_PCIE0_ADDR = 0x3c,
PLAT_NOC_PCIE1_ADDR = 0x40,
PLAT_NOC_PCIE2_ADDR = 0x44,
PLAT_SYS_CTL = 0x48,
};
static void boston_lcd_event(void *opaque, QEMUChrEvent event)
{
BostonState *s = opaque;
if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
qemu_chr_fe_printf(&s->lcd_display, " ");
s->lcd_inited = true;
}
}
static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
unsigned size)
{
BostonState *s = opaque;
uint64_t val = 0;
switch (size) {
case 8:
val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
/* fall through */
case 4:
val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
/* fall through */
case 2:
val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
/* fall through */
case 1:
val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
break;
}
return val;
}
static void boston_lcd_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
BostonState *s = opaque;
switch (size) {
case 8:
s->lcd_content[(addr + 7) & 0x7] = val >> 56;
s->lcd_content[(addr + 6) & 0x7] = val >> 48;
s->lcd_content[(addr + 5) & 0x7] = val >> 40;
s->lcd_content[(addr + 4) & 0x7] = val >> 32;
/* fall through */
case 4:
s->lcd_content[(addr + 3) & 0x7] = val >> 24;
s->lcd_content[(addr + 2) & 0x7] = val >> 16;
/* fall through */
case 2:
s->lcd_content[(addr + 1) & 0x7] = val >> 8;
/* fall through */
case 1:
s->lcd_content[(addr + 0) & 0x7] = val;
break;
}
qemu_chr_fe_printf(&s->lcd_display,
"\r%-8.8s", s->lcd_content);
}
static const MemoryRegionOps boston_lcd_ops = {
.read = boston_lcd_read,
.write = boston_lcd_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
unsigned size)
{
BostonState *s = opaque;
uint32_t gic_freq, val;
if (size != 4) {
qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
return 0;
}
switch (addr & 0xffff) {
case PLAT_FPGA_BUILD:
case PLAT_CORE_CL:
case PLAT_WRAPPER_CL:
return 0;
case PLAT_DDR3_STATUS:
return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
case PLAT_MMCM_DIV:
gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
return val;
case PLAT_BUILD_CFG:
val = PLAT_BUILD_CFG_PCIE0_EN;
val |= PLAT_BUILD_CFG_PCIE1_EN;
val |= PLAT_BUILD_CFG_PCIE2_EN;
return val;
case PLAT_DDR_CFG:
val = s->mach->ram_size / GiB;
assert(!(val & ~PLAT_DDR_CFG_SIZE));
val |= PLAT_DDR_CFG_MHZ;
return val;
default:
qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
addr & 0xffff);
return 0;
}
}
static void boston_platreg_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
if (size != 4) {
qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
return;
}
switch (addr & 0xffff) {
case PLAT_FPGA_BUILD:
case PLAT_CORE_CL:
case PLAT_WRAPPER_CL:
case PLAT_DDR3_STATUS:
case PLAT_PCIE_STATUS:
case PLAT_MMCM_DIV:
case PLAT_BUILD_CFG:
case PLAT_DDR_CFG:
/* read only */
break;
case PLAT_SOFTRST_CTL:
if (val & PLAT_SOFTRST_CTL_SYSRESET) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
default:
qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
" = 0x%" PRIx64 "\n", addr & 0xffff, val);
break;
}
}
static const MemoryRegionOps boston_platreg_ops = {
.read = boston_platreg_read,
.write = boston_platreg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void mips_boston_instance_init(Object *obj)
{
BostonState *s = BOSTON(obj);
s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
}
static const TypeInfo boston_device = {
.name = TYPE_BOSTON,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(BostonState),
.instance_init = mips_boston_instance_init,
};
static void boston_register_types(void)
{
type_register_static(&boston_device);
}
type_init(boston_register_types)
static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
{
uint64_t regaddr;
/* Move CM GCRs */
regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
bl_gen_write_ulong(&p, regaddr,
boston_memmap[BOSTON_CM].base);
/* Move & enable GIC GCRs */
regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
+ GCR_GIC_BASE_OFS),
bl_gen_write_ulong(&p, regaddr,
boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
/* Move & enable CPC GCRs */
regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
+ GCR_CPC_BASE_OFS),
bl_gen_write_ulong(&p, regaddr,
boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
/*
* Setup argument registers to follow the UHI boot protocol:
*
* a0/$4 = -2
* a1/$5 = virtual address of FDT
* a2/$6 = 0
* a3/$7 = 0
*/
bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
}
static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
const void *match_data, hwaddr *load_addr)
{
BostonState *s = BOSTON(opaque);
MachineState *machine = s->mach;
const char *cmdline;
int err;
size_t ram_low_sz, ram_high_sz;
size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
g_autofree void *fdt = g_malloc0(fdt_sz);
err = fdt_open_into(fdt_orig, fdt, fdt_sz);
if (err) {
fprintf(stderr, "unable to open FDT\n");
return NULL;
}
cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
? machine->kernel_cmdline : " ";
err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
if (err < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n");
return NULL;
}
ram_low_sz = MIN(256 * MiB, machine->ram_size);
ram_high_sz = machine->ram_size - ram_low_sz;
qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
1, ram_high_sz);
fdt = g_realloc(fdt, fdt_totalsize(fdt));
qemu_fdt_dumpdtb(fdt, fdt_sz);
s->fdt_base = *load_addr;
return g_steal_pointer(&fdt);
}
static const void *boston_kernel_filter(void *opaque, const void *kernel,
hwaddr *load_addr, hwaddr *entry_addr)
{
BostonState *s = BOSTON(opaque);
s->kernel_entry = *entry_addr;
return kernel;
}
static const struct fit_loader_match boston_matches[] = {
{ "img,boston" },
{ NULL },
};
static const struct fit_loader boston_fit_loader = {
.matches = boston_matches,
.addr_to_phys = cpu_mips_kseg0_to_phys,
.fdt_filter = boston_fdt_filter,
.kernel_filter = boston_kernel_filter,
};
static inline XilinxPCIEHost *
xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
hwaddr cfg_base, uint64_t cfg_size,
hwaddr mmio_base, uint64_t mmio_size,
qemu_irq irq, bool link_up)
{
DeviceState *dev;
MemoryRegion *cfg, *mmio;
dev = qdev_new(TYPE_XILINX_PCIE_HOST);
qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
qdev_prop_set_bit(dev, "link_up", link_up);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
return XILINX_PCIE_HOST(dev);
}
static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
{
int i;
char *name, *intc_name;
uint32_t intc_ph;
uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
intc_ph = qemu_fdt_alloc_phandle(fdt);
name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible",
"xlnx,axi-pcie-host-1.00.a");
qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
FDT_IRQ_TYPE_LEVEL_HIGH);
qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
mmio_base, 0, mmio_size);
qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
intc_name = g_strdup_printf("%s/interrupt-controller", name);
qemu_fdt_add_subnode(fdt, intc_name);
qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
uint32_t *irqmap = interrupt_map[i];
irqmap[0] = cpu_to_be32(0);
irqmap[1] = cpu_to_be32(0);
irqmap[2] = cpu_to_be32(0);
irqmap[3] = cpu_to_be32(i + 1);
irqmap[4] = cpu_to_be32(intc_ph);
irqmap[5] = cpu_to_be32(i + 1);
}
qemu_fdt_setprop(fdt, name, "interrupt-map",
&interrupt_map, sizeof(interrupt_map));
g_free(intc_name);
g_free(name);
}
static const void *create_fdt(BostonState *s,
const MemMapEntry *memmap, int *dt_size)
{
void *fdt;
int cpu;
MachineState *mc = s->mach;
uint32_t platreg_ph, gic_ph, clk_ph;
char *name, *gic_name, *platreg_name, *stdout_name;
static const char * const syscon_compat[2] = {
"img,boston-platform-regs", "syscon"
};
fdt = create_device_tree(dt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
platreg_ph = qemu_fdt_alloc_phandle(fdt);
gic_ph = qemu_fdt_alloc_phandle(fdt);
clk_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
name = g_strdup_printf("/cpus/cpu@%d", cpu);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
qemu_fdt_setprop_string(fdt, name, "status", "okay");
qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
g_free(name);
}
qemu_fdt_add_subnode(fdt, "/soc");
qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
fdt_create_pcie(fdt, gic_ph, 2,
memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
fdt_create_pcie(fdt, gic_ph, 1,
memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
fdt_create_pcie(fdt, gic_ph, 0,
memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
/* GIC with it's timer node */
gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
memmap[BOSTON_GIC].base);
qemu_fdt_add_subnode(fdt, gic_name);
qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
memmap[BOSTON_GIC].size);
qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
name = g_strdup_printf("%s/timer", gic_name);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
FDT_IRQ_TYPE_NONE);
qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
g_free(name);
g_free(gic_name);
/* CDMM node */
name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
memmap[BOSTON_CDMM].size);
g_free(name);
/* CPC node */
name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
memmap[BOSTON_CPC].size);
g_free(name);
/* platreg and it's clk node */
platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
memmap[BOSTON_PLATREG].base);
qemu_fdt_add_subnode(fdt, platreg_name);
qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
(char **)&syscon_compat,
ARRAY_SIZE(syscon_compat));
qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
memmap[BOSTON_PLATREG].base,
memmap[BOSTON_PLATREG].size);
qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
name = g_strdup_printf("%s/clock", platreg_name);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
g_free(name);
g_free(platreg_name);
/* reboot node */
name = g_strdup_printf("/soc/reboot");
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
g_free(name);
/* uart node */
name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
memmap[BOSTON_UART].size);
qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
FDT_IRQ_TYPE_LEVEL_HIGH);
qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
qemu_fdt_add_subnode(fdt, "/chosen");
stdout_name = g_strdup_printf("%s:115200", name);
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
g_free(stdout_name);
g_free(name);
/* lcd node */
name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
memmap[BOSTON_LCD].size);
g_free(name);
name = g_strdup_printf("/memory@0");
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
g_free(name);
return fdt;
}
static void boston_mach_init(MachineState *machine)
{
DeviceState *dev;
BostonState *s;
MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
MemoryRegion *sys_mem = get_system_memory();
XilinxPCIEHost *pcie2;
PCIDevice *ahci;
DriveInfo *hd[6];
Chardev *chr;
int fw_size, fit_err;
if ((machine->ram_size % GiB) ||
(machine->ram_size > (2 * GiB))) {
error_report("Memory size must be 1GB or 2GB");
exit(1);
}
dev = qdev_new(TYPE_BOSTON);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
s = BOSTON(dev);
s->mach = machine;
if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
error_report("Boston requires CPUs which support CPS");
exit(1);
}
object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
&error_fatal);
object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
&error_fatal);
qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
qdev_get_clock_out(dev, "cpu-refclk"));
sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
flash = g_new(MemoryRegion, 1);
memory_region_init_rom(flash, NULL, "boston.flash",
boston_memmap[BOSTON_FLASH].size, &error_fatal);
memory_region_add_subregion_overlap(sys_mem,
boston_memmap[BOSTON_FLASH].base,
flash, 0);
memory_region_add_subregion_overlap(sys_mem,
boston_memmap[BOSTON_HIGHDDR].base,
machine->ram, 0);
ddr_low_alias = g_new(MemoryRegion, 1);
memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
machine->ram, 0,
MIN(machine->ram_size, (256 * MiB)));
memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
xilinx_pcie_init(sys_mem, 0,
boston_memmap[BOSTON_PCIE0].base,
boston_memmap[BOSTON_PCIE0].size,
boston_memmap[BOSTON_PCIE0_MMIO].base,
boston_memmap[BOSTON_PCIE0_MMIO].size,
get_cps_irq(&s->cps, 2), false);
xilinx_pcie_init(sys_mem, 1,
boston_memmap[BOSTON_PCIE1].base,
boston_memmap[BOSTON_PCIE1].size,
boston_memmap[BOSTON_PCIE1_MMIO].base,
boston_memmap[BOSTON_PCIE1_MMIO].size,
get_cps_irq(&s->cps, 1), false);
pcie2 = xilinx_pcie_init(sys_mem, 2,
boston_memmap[BOSTON_PCIE2].base,
boston_memmap[BOSTON_PCIE2].size,
boston_memmap[BOSTON_PCIE2_MMIO].base,
boston_memmap[BOSTON_PCIE2_MMIO].size,
get_cps_irq(&s->cps, 0), true);
platreg = g_new(MemoryRegion, 1);
memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
"boston-platregs",
boston_memmap[BOSTON_PLATREG].size);
memory_region_add_subregion_overlap(sys_mem,
boston_memmap[BOSTON_PLATREG].base, platreg, 0);
s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
get_cps_irq(&s->cps, 3), 10000000,
serial_hd(0), DEVICE_NATIVE_ENDIAN);
lcd = g_new(MemoryRegion, 1);
memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
memory_region_add_subregion_overlap(sys_mem,
boston_memmap[BOSTON_LCD].base, lcd, 0);
chr = qemu_chr_new("lcd", "vc:320x240", NULL);
qemu_chr_fe_init(&s->lcd_display, chr, NULL);
qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
boston_lcd_event, NULL, s, NULL, true);
ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
PCI_DEVFN(0, 0),
true, TYPE_ICH9_AHCI);
g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
ide_drive_get(hd, ahci_get_num_ports(ahci));
ahci_ide_create_devs(ahci, hd);
if (machine->firmware) {
fw_size = load_image_targphys(machine->firmware,
0x1fc00000, 4 * MiB);
if (fw_size == -1) {
error_report("unable to load firmware image '%s'",
machine->firmware);
exit(1);
}
} else if (machine->kernel_filename) {
uint64_t kernel_entry, kernel_high;
ssize_t kernel_size;
kernel_size = load_elf(machine->kernel_filename, NULL,
cpu_mips_kseg0_to_phys, NULL,
&kernel_entry, NULL, &kernel_high,
NULL, 0, EM_MIPS, 1, 0);
if (kernel_size > 0) {
int dt_size;
g_autofree const void *dtb_file_data = NULL;
g_autofree const void *dtb_load_data = NULL;
hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
s->kernel_entry = kernel_entry;
if (machine->dtb) {
dtb_file_data = load_device_tree(machine->dtb, &dt_size);
} else {
dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
}
dtb_load_data = boston_fdt_filter(s, dtb_file_data,
NULL, &dtb_vaddr);
/* Calculate real fdt size after filter */
dt_size = fdt_totalsize(dtb_load_data);
rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
} else {
/* Try to load file as FIT */
fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
if (fit_err) {
error_report("unable to load kernel image");
exit(1);
}
}
gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
s->kernel_entry, s->fdt_base);
} else if (!qtest_enabled()) {
error_report("Please provide either a -kernel or -bios argument");
exit(1);
}
}
static void boston_mach_class_init(MachineClass *mc)
{
mc->desc = "MIPS Boston";
mc->init = boston_mach_init;
mc->block_default_type = IF_IDE;
mc->default_ram_size = 1 * GiB;
mc->default_ram_id = "boston.ddr";
mc->max_cpus = 16;
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
}
DEFINE_MACHINE("boston", boston_mach_class_init)