mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-27 05:20:50 +00:00
a5a8b84772
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br> Message-Id: <20210601125143.191165-1-luis.pires@eldorado.org.br> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
191 lines
8.5 KiB
ReStructuredText
191 lines
8.5 KiB
ReStructuredText
====================
|
||
Translator Internals
|
||
====================
|
||
|
||
QEMU is a dynamic translator. When it first encounters a piece of code,
|
||
it converts it to the host instruction set. Usually dynamic translators
|
||
are very complicated and highly CPU dependent. QEMU uses some tricks
|
||
which make it relatively easily portable and simple while achieving good
|
||
performances.
|
||
|
||
QEMU's dynamic translation backend is called TCG, for "Tiny Code
|
||
Generator". For more information, please take a look at ``tcg/README``.
|
||
|
||
The following sections outline some notable features and implementation
|
||
details of QEMU's dynamic translator.
|
||
|
||
CPU state optimisations
|
||
-----------------------
|
||
|
||
The target CPUs have many internal states which change the way they
|
||
evaluate instructions. In order to achieve a good speed, the
|
||
translation phase considers that some state information of the virtual
|
||
CPU cannot change in it. The state is recorded in the Translation
|
||
Block (TB). If the state changes (e.g. privilege level), a new TB will
|
||
be generated and the previous TB won't be used anymore until the state
|
||
matches the state recorded in the previous TB. The same idea can be applied
|
||
to other aspects of the CPU state. For example, on x86, if the SS,
|
||
DS and ES segments have a zero base, then the translator does not even
|
||
generate an addition for the segment base.
|
||
|
||
Direct block chaining
|
||
---------------------
|
||
|
||
After each translated basic block is executed, QEMU uses the simulated
|
||
Program Counter (PC) and other CPU state information (such as the CS
|
||
segment base value) to find the next basic block.
|
||
|
||
In its simplest, less optimized form, this is done by exiting from the
|
||
current TB, going through the TB epilogue, and then back to the
|
||
main loop. That’s where QEMU looks for the next TB to execute,
|
||
translating it from the guest architecture if it isn’t already available
|
||
in memory. Then QEMU proceeds to execute this next TB, starting at the
|
||
prologue and then moving on to the translated instructions.
|
||
|
||
Exiting from the TB this way will cause the ``cpu_exec_interrupt()``
|
||
callback to be re-evaluated before executing additional instructions.
|
||
It is mandatory to exit this way after any CPU state changes that may
|
||
unmask interrupts.
|
||
|
||
In order to accelerate the cases where the TB for the new
|
||
simulated PC is already available, QEMU has mechanisms that allow
|
||
multiple TBs to be chained directly, without having to go back to the
|
||
main loop as described above. These mechanisms are:
|
||
|
||
``lookup_and_goto_ptr``
|
||
^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
Calling ``tcg_gen_lookup_and_goto_ptr()`` will emit a call to
|
||
``helper_lookup_tb_ptr``. This helper will look for an existing TB that
|
||
matches the current CPU state. If the destination TB is available its
|
||
code address is returned, otherwise the address of the JIT epilogue is
|
||
returned. The call to the helper is always followed by the tcg ``goto_ptr``
|
||
opcode, which branches to the returned address. In this way, we either
|
||
branch to the next TB or return to the main loop.
|
||
|
||
``goto_tb + exit_tb``
|
||
^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
The translation code usually implements branching by performing the
|
||
following steps:
|
||
|
||
1. Call ``tcg_gen_goto_tb()`` passing a jump slot index (either 0 or 1)
|
||
as a parameter.
|
||
|
||
2. Emit TCG instructions to update the CPU state with any information
|
||
that has been assumed constant and is required by the main loop to
|
||
correctly locate and execute the next TB. For most guests, this is
|
||
just the PC of the branch destination, but others may store additional
|
||
data. The information updated in this step must be inferable from both
|
||
``cpu_get_tb_cpu_state()`` and ``cpu_restore_state()``.
|
||
|
||
3. Call ``tcg_gen_exit_tb()`` passing the address of the current TB and
|
||
the jump slot index again.
|
||
|
||
Step 1, ``tcg_gen_goto_tb()``, will emit a ``goto_tb`` TCG
|
||
instruction that later on gets translated to a jump to an address
|
||
associated with the specified jump slot. Initially, this is the address
|
||
of step 2's instructions, which update the CPU state information. Step 3,
|
||
``tcg_gen_exit_tb()``, exits from the current TB returning a tagged
|
||
pointer composed of the last executed TB’s address and the jump slot
|
||
index.
|
||
|
||
The first time this whole sequence is executed, step 1 simply jumps
|
||
to step 2. Then the CPU state information gets updated and we exit from
|
||
the current TB. As a result, the behavior is very similar to the less
|
||
optimized form described earlier in this section.
|
||
|
||
Next, the main loop looks for the next TB to execute using the
|
||
current CPU state information (creating the TB if it wasn’t already
|
||
available) and, before starting to execute the new TB’s instructions,
|
||
patches the previously executed TB by associating one of its jump
|
||
slots (the one specified in the call to ``tcg_gen_exit_tb()``) with the
|
||
address of the new TB.
|
||
|
||
The next time this previous TB is executed and we get to that same
|
||
``goto_tb`` step, it will already be patched (assuming the destination TB
|
||
is still in memory) and will jump directly to the first instruction of
|
||
the destination TB, without going back to the main loop.
|
||
|
||
For the ``goto_tb + exit_tb`` mechanism to be used, the following
|
||
conditions need to be satisfied:
|
||
|
||
* The change in CPU state must be constant, e.g., a direct branch and
|
||
not an indirect branch.
|
||
|
||
* The direct branch cannot cross a page boundary. Memory mappings
|
||
may change, causing the code at the destination address to change.
|
||
|
||
Note that, on step 3 (``tcg_gen_exit_tb()``), in addition to the
|
||
jump slot index, the address of the TB just executed is also returned.
|
||
This address corresponds to the TB that will be patched; it may be
|
||
different than the one that was directly executed from the main loop
|
||
if the latter had already been chained to other TBs.
|
||
|
||
Self-modifying code and translated code invalidation
|
||
----------------------------------------------------
|
||
|
||
Self-modifying code is a special challenge in x86 emulation because no
|
||
instruction cache invalidation is signaled by the application when code
|
||
is modified.
|
||
|
||
User-mode emulation marks a host page as write-protected (if it is
|
||
not already read-only) every time translated code is generated for a
|
||
basic block. Then, if a write access is done to the page, Linux raises
|
||
a SEGV signal. QEMU then invalidates all the translated code in the page
|
||
and enables write accesses to the page. For system emulation, write
|
||
protection is achieved through the software MMU.
|
||
|
||
Correct translated code invalidation is done efficiently by maintaining
|
||
a linked list of every translated block contained in a given page. Other
|
||
linked lists are also maintained to undo direct block chaining.
|
||
|
||
On RISC targets, correctly written software uses memory barriers and
|
||
cache flushes, so some of the protection above would not be
|
||
necessary. However, QEMU still requires that the generated code always
|
||
matches the target instructions in memory in order to handle
|
||
exceptions correctly.
|
||
|
||
Exception support
|
||
-----------------
|
||
|
||
longjmp() is used when an exception such as division by zero is
|
||
encountered.
|
||
|
||
The host SIGSEGV and SIGBUS signal handlers are used to get invalid
|
||
memory accesses. QEMU keeps a map from host program counter to
|
||
target program counter, and looks up where the exception happened
|
||
based on the host program counter at the exception point.
|
||
|
||
On some targets, some bits of the virtual CPU's state are not flushed to the
|
||
memory until the end of the translation block. This is done for internal
|
||
emulation state that is rarely accessed directly by the program and/or changes
|
||
very often throughout the execution of a translation block---this includes
|
||
condition codes on x86, delay slots on SPARC, conditional execution on
|
||
Arm, and so on. This state is stored for each target instruction, and
|
||
looked up on exceptions.
|
||
|
||
MMU emulation
|
||
-------------
|
||
|
||
For system emulation QEMU uses a software MMU. In that mode, the MMU
|
||
virtual to physical address translation is done at every memory
|
||
access.
|
||
|
||
QEMU uses an address translation cache (TLB) to speed up the translation.
|
||
In order to avoid flushing the translated code each time the MMU
|
||
mappings change, all caches in QEMU are physically indexed. This
|
||
means that each basic block is indexed with its physical address.
|
||
|
||
In order to avoid invalidating the basic block chain when MMU mappings
|
||
change, chaining is only performed when the destination of the jump
|
||
shares a page with the basic block that is performing the jump.
|
||
|
||
The MMU can also distinguish RAM and ROM memory areas from MMIO memory
|
||
areas. Access is faster for RAM and ROM because the translation cache also
|
||
hosts the offset between guest address and host memory. Accessing MMIO
|
||
memory areas instead calls out to C code for device emulation.
|
||
Finally, the MMU helps tracking dirty pages and pages pointed to by
|
||
translation blocks.
|
||
|