mirror of
https://github.com/xemu-project/xemu.git
synced 2025-01-22 03:45:30 +00:00
4366e1db16
This patch adds an optional function pointer, 'elf_note_fn', to load_elf() which causes load_elf() to additionally parse any ELF program headers of type PT_NOTE and check to see if the ELF Note is of the type specified by the 'translate_opaque' arg. If a matching ELF Note is found then the specfied function pointer is called to process the ELF note. Passing a NULL function pointer results in ELF Notes being skipped. The first consumer of this functionality is the PVHboot support which needs to read the XEN_ELFNOTE_PHYS32_ENTRY ELF Note while loading the uncompressed kernel binary in order to discover the boot entry address for the x86/HVM direct boot ABI. Signed-off-by: Liam Merwick <liam.merwick@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
285 lines
9.3 KiB
C
285 lines
9.3 KiB
C
/*
|
|
* QEMU HPPA hardware system emulator.
|
|
* Copyright 2018 Helge Deller <deller@gmx.de>
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "hw/hw.h"
|
|
#include "elf.h"
|
|
#include "hw/loader.h"
|
|
#include "hw/boards.h"
|
|
#include "qemu/error-report.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "hw/timer/mc146818rtc.h"
|
|
#include "hw/ide.h"
|
|
#include "hw/timer/i8254.h"
|
|
#include "hw/char/serial.h"
|
|
#include "hppa_sys.h"
|
|
#include "qemu/units.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/log.h"
|
|
|
|
#define MAX_IDE_BUS 2
|
|
|
|
static ISABus *hppa_isa_bus(void)
|
|
{
|
|
ISABus *isa_bus;
|
|
qemu_irq *isa_irqs;
|
|
MemoryRegion *isa_region;
|
|
|
|
isa_region = g_new(MemoryRegion, 1);
|
|
memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
|
|
NULL, "isa-io", 0x800);
|
|
memory_region_add_subregion(get_system_memory(), IDE_HPA,
|
|
isa_region);
|
|
|
|
isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
|
|
&error_abort);
|
|
isa_irqs = i8259_init(isa_bus,
|
|
/* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */
|
|
NULL);
|
|
isa_bus_irqs(isa_bus, isa_irqs);
|
|
|
|
return isa_bus;
|
|
}
|
|
|
|
static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr)
|
|
{
|
|
addr &= (0x10000000 - 1);
|
|
return addr;
|
|
}
|
|
|
|
static HPPACPU *cpu[HPPA_MAX_CPUS];
|
|
static uint64_t firmware_entry;
|
|
|
|
static void machine_hppa_init(MachineState *machine)
|
|
{
|
|
const char *kernel_filename = machine->kernel_filename;
|
|
const char *kernel_cmdline = machine->kernel_cmdline;
|
|
const char *initrd_filename = machine->initrd_filename;
|
|
DeviceState *dev;
|
|
PCIBus *pci_bus;
|
|
ISABus *isa_bus;
|
|
qemu_irq rtc_irq, serial_irq;
|
|
char *firmware_filename;
|
|
uint64_t firmware_low, firmware_high;
|
|
long size;
|
|
uint64_t kernel_entry = 0, kernel_low, kernel_high;
|
|
MemoryRegion *addr_space = get_system_memory();
|
|
MemoryRegion *rom_region;
|
|
MemoryRegion *ram_region;
|
|
MemoryRegion *cpu_region;
|
|
long i;
|
|
|
|
ram_size = machine->ram_size;
|
|
|
|
/* Create CPUs. */
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
|
|
|
|
cpu_region = g_new(MemoryRegion, 1);
|
|
memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
|
|
cpu[i], g_strdup_printf("cpu%ld-io-eir", i), 4);
|
|
memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000,
|
|
cpu_region);
|
|
}
|
|
|
|
/* Limit main memory. */
|
|
if (ram_size > FIRMWARE_START) {
|
|
machine->ram_size = ram_size = FIRMWARE_START;
|
|
}
|
|
|
|
/* Main memory region. */
|
|
ram_region = g_new(MemoryRegion, 1);
|
|
memory_region_allocate_system_memory(ram_region, OBJECT(machine),
|
|
"ram", ram_size);
|
|
memory_region_add_subregion(addr_space, 0, ram_region);
|
|
|
|
/* Init Dino (PCI host bus chip). */
|
|
pci_bus = dino_init(addr_space, &rtc_irq, &serial_irq);
|
|
assert(pci_bus);
|
|
|
|
/* Create ISA bus. */
|
|
isa_bus = hppa_isa_bus();
|
|
assert(isa_bus);
|
|
|
|
/* Realtime clock, used by firmware for PDC_TOD call. */
|
|
mc146818_rtc_init(isa_bus, 2000, rtc_irq);
|
|
|
|
/* Serial code setup. */
|
|
if (serial_hd(0)) {
|
|
uint32_t addr = DINO_UART_HPA + 0x800;
|
|
serial_mm_init(addr_space, addr, 0, serial_irq,
|
|
115200, serial_hd(0), DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* SCSI disk setup. */
|
|
dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a"));
|
|
lsi53c8xx_handle_legacy_cmdline(dev);
|
|
|
|
/* Network setup. e1000 is good enough, failing Tulip support. */
|
|
for (i = 0; i < nb_nics; i++) {
|
|
pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL);
|
|
}
|
|
|
|
/* Load firmware. Given that this is not "real" firmware,
|
|
but one explicitly written for the emulation, we might as
|
|
well load it directly from an ELF image. */
|
|
firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
|
|
bios_name ? bios_name :
|
|
"hppa-firmware.img");
|
|
if (firmware_filename == NULL) {
|
|
error_report("no firmware provided");
|
|
exit(1);
|
|
}
|
|
|
|
size = load_elf(firmware_filename, NULL, NULL, NULL,
|
|
&firmware_entry, &firmware_low, &firmware_high,
|
|
true, EM_PARISC, 0, 0);
|
|
|
|
/* Unfortunately, load_elf sign-extends reading elf32. */
|
|
firmware_entry = (target_ureg)firmware_entry;
|
|
firmware_low = (target_ureg)firmware_low;
|
|
firmware_high = (target_ureg)firmware_high;
|
|
|
|
if (size < 0) {
|
|
error_report("could not load firmware '%s'", firmware_filename);
|
|
exit(1);
|
|
}
|
|
qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64
|
|
"-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n",
|
|
firmware_low, firmware_high, firmware_entry);
|
|
if (firmware_low < ram_size || firmware_high >= FIRMWARE_END) {
|
|
error_report("Firmware overlaps with memory or IO space");
|
|
exit(1);
|
|
}
|
|
g_free(firmware_filename);
|
|
|
|
rom_region = g_new(MemoryRegion, 1);
|
|
memory_region_allocate_system_memory(rom_region, OBJECT(machine),
|
|
"firmware",
|
|
(FIRMWARE_END - FIRMWARE_START));
|
|
memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region);
|
|
|
|
/* Load kernel */
|
|
if (kernel_filename) {
|
|
size = load_elf(kernel_filename, NULL, &cpu_hppa_to_phys,
|
|
NULL, &kernel_entry, &kernel_low, &kernel_high,
|
|
true, EM_PARISC, 0, 0);
|
|
|
|
/* Unfortunately, load_elf sign-extends reading elf32. */
|
|
kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry);
|
|
kernel_low = (target_ureg)kernel_low;
|
|
kernel_high = (target_ureg)kernel_high;
|
|
|
|
if (size < 0) {
|
|
error_report("could not load kernel '%s'", kernel_filename);
|
|
exit(1);
|
|
}
|
|
qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64
|
|
"-0x%08" PRIx64 ", entry at 0x%08" PRIx64
|
|
", size %" PRIu64 " kB\n",
|
|
kernel_low, kernel_high, kernel_entry, size / KiB);
|
|
|
|
if (kernel_cmdline) {
|
|
cpu[0]->env.gr[24] = 0x4000;
|
|
pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
|
|
TARGET_PAGE_SIZE, kernel_cmdline);
|
|
}
|
|
|
|
if (initrd_filename) {
|
|
ram_addr_t initrd_base;
|
|
int64_t initrd_size;
|
|
|
|
initrd_size = get_image_size(initrd_filename);
|
|
if (initrd_size < 0) {
|
|
error_report("could not load initial ram disk '%s'",
|
|
initrd_filename);
|
|
exit(1);
|
|
}
|
|
|
|
/* Load the initrd image high in memory.
|
|
Mirror the algorithm used by palo:
|
|
(1) Due to sign-extension problems and PDC,
|
|
put the initrd no higher than 1G.
|
|
(2) Reserve 64k for stack. */
|
|
initrd_base = MIN(ram_size, 1 * GiB);
|
|
initrd_base = initrd_base - 64 * KiB;
|
|
initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
|
|
|
|
if (initrd_base < kernel_high) {
|
|
error_report("kernel and initial ram disk too large!");
|
|
exit(1);
|
|
}
|
|
|
|
load_image_targphys(initrd_filename, initrd_base, initrd_size);
|
|
cpu[0]->env.gr[23] = initrd_base;
|
|
cpu[0]->env.gr[22] = initrd_base + initrd_size;
|
|
}
|
|
}
|
|
|
|
if (!kernel_entry) {
|
|
/* When booting via firmware, tell firmware if we want interactive
|
|
* mode (kernel_entry=1), and to boot from CD (gr[24]='d')
|
|
* or hard disc * (gr[24]='c').
|
|
*/
|
|
kernel_entry = boot_menu ? 1 : 0;
|
|
cpu[0]->env.gr[24] = machine->boot_order[0];
|
|
}
|
|
|
|
/* We jump to the firmware entry routine and pass the
|
|
* various parameters in registers. After firmware initialization,
|
|
* firmware will start the Linux kernel with ramdisk and cmdline.
|
|
*/
|
|
cpu[0]->env.gr[26] = ram_size;
|
|
cpu[0]->env.gr[25] = kernel_entry;
|
|
|
|
/* tell firmware how many SMP CPUs to present in inventory table */
|
|
cpu[0]->env.gr[21] = smp_cpus;
|
|
}
|
|
|
|
static void hppa_machine_reset(void)
|
|
{
|
|
int i;
|
|
|
|
qemu_devices_reset();
|
|
|
|
/* Start all CPUs at the firmware entry point.
|
|
* Monarch CPU will initialize firmware, secondary CPUs
|
|
* will enter a small idle look and wait for rendevouz. */
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
cpu_set_pc(CPU(cpu[i]), firmware_entry);
|
|
cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
|
|
}
|
|
|
|
/* already initialized by machine_hppa_init()? */
|
|
if (cpu[0]->env.gr[26] == ram_size) {
|
|
return;
|
|
}
|
|
|
|
cpu[0]->env.gr[26] = ram_size;
|
|
cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
|
|
cpu[0]->env.gr[24] = 'c';
|
|
/* gr22/gr23 unused, no initrd while reboot. */
|
|
cpu[0]->env.gr[21] = smp_cpus;
|
|
}
|
|
|
|
|
|
static void machine_hppa_machine_init(MachineClass *mc)
|
|
{
|
|
mc->desc = "HPPA generic machine";
|
|
mc->default_cpu_type = TYPE_HPPA_CPU;
|
|
mc->init = machine_hppa_init;
|
|
mc->reset = hppa_machine_reset;
|
|
mc->block_default_type = IF_SCSI;
|
|
mc->max_cpus = HPPA_MAX_CPUS;
|
|
mc->default_cpus = 1;
|
|
mc->is_default = 1;
|
|
mc->default_ram_size = 512 * MiB;
|
|
mc->default_boot_order = "cd";
|
|
}
|
|
|
|
DEFINE_MACHINE("hppa", machine_hppa_machine_init)
|