mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-23 19:49:43 +00:00
3c2e80ad2f
Check if partition and process tables are properly aligned, in their size, according to PowerISA 3.1B, Book III 6.7.6 programming note. Hardware and KVM also raise an exception in these cases. Signed-off-by: Leandro Lupori <leandro.lupori@eldorado.org.br> Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com> Message-Id: <20220628133959.15131-2-leandro.lupori@eldorado.org.br> Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
1914 lines
58 KiB
C
1914 lines
58 KiB
C
#include "qemu/osdep.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qapi/error.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/module.h"
|
|
#include "qemu/error-report.h"
|
|
#include "exec/exec-all.h"
|
|
#include "helper_regs.h"
|
|
#include "hw/ppc/ppc.h"
|
|
#include "hw/ppc/spapr.h"
|
|
#include "hw/ppc/spapr_cpu_core.h"
|
|
#include "mmu-hash64.h"
|
|
#include "cpu-models.h"
|
|
#include "trace.h"
|
|
#include "kvm_ppc.h"
|
|
#include "hw/ppc/fdt.h"
|
|
#include "hw/ppc/spapr_ovec.h"
|
|
#include "hw/ppc/spapr_numa.h"
|
|
#include "mmu-book3s-v3.h"
|
|
#include "hw/mem/memory-device.h"
|
|
|
|
bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
DeviceMemoryState *dms = machine->device_memory;
|
|
|
|
if (addr < machine->ram_size) {
|
|
return true;
|
|
}
|
|
if ((addr >= dms->base)
|
|
&& ((addr - dms->base) < memory_region_size(&dms->mr))) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Convert a return code from the KVM ioctl()s implementing resize HPT
|
|
* into a PAPR hypercall return code */
|
|
static target_ulong resize_hpt_convert_rc(int ret)
|
|
{
|
|
if (ret >= 100000) {
|
|
return H_LONG_BUSY_ORDER_100_SEC;
|
|
} else if (ret >= 10000) {
|
|
return H_LONG_BUSY_ORDER_10_SEC;
|
|
} else if (ret >= 1000) {
|
|
return H_LONG_BUSY_ORDER_1_SEC;
|
|
} else if (ret >= 100) {
|
|
return H_LONG_BUSY_ORDER_100_MSEC;
|
|
} else if (ret >= 10) {
|
|
return H_LONG_BUSY_ORDER_10_MSEC;
|
|
} else if (ret > 0) {
|
|
return H_LONG_BUSY_ORDER_1_MSEC;
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
return H_SUCCESS;
|
|
case -EPERM:
|
|
return H_AUTHORITY;
|
|
case -EINVAL:
|
|
return H_PARAMETER;
|
|
case -ENXIO:
|
|
return H_CLOSED;
|
|
case -ENOSPC:
|
|
return H_PTEG_FULL;
|
|
case -EBUSY:
|
|
return H_BUSY;
|
|
case -ENOMEM:
|
|
return H_NO_MEM;
|
|
default:
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
|
|
static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
int shift = args[1];
|
|
uint64_t current_ram_size;
|
|
int rc;
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
|
|
return H_AUTHORITY;
|
|
}
|
|
|
|
if (!spapr->htab_shift) {
|
|
/* Radix guest, no HPT */
|
|
return H_NOT_AVAILABLE;
|
|
}
|
|
|
|
trace_spapr_h_resize_hpt_prepare(flags, shift);
|
|
|
|
if (flags != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (shift && ((shift < 18) || (shift > 46))) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
|
|
|
|
/* We only allow the guest to allocate an HPT one order above what
|
|
* we'd normally give them (to stop a small guest claiming a huge
|
|
* chunk of resources in the HPT */
|
|
if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
|
|
if (rc != -ENOSYS) {
|
|
return resize_hpt_convert_rc(rc);
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
return softmmu_resize_hpt_prepare(cpu, spapr, shift);
|
|
}
|
|
|
|
static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
|
|
{
|
|
int ret;
|
|
|
|
cpu_synchronize_state(cs);
|
|
|
|
ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
|
|
if (ret < 0) {
|
|
error_report("failed to push sregs to KVM: %s", strerror(-ret));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
|
|
{
|
|
CPUState *cs;
|
|
|
|
/*
|
|
* This is a hack for the benefit of KVM PR - it abuses the SDR1
|
|
* slot in kvm_sregs to communicate the userspace address of the
|
|
* HPT
|
|
*/
|
|
if (!kvm_enabled() || !spapr->htab) {
|
|
return;
|
|
}
|
|
|
|
CPU_FOREACH(cs) {
|
|
run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong shift = args[1];
|
|
int rc;
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
|
|
return H_AUTHORITY;
|
|
}
|
|
|
|
if (!spapr->htab_shift) {
|
|
/* Radix guest, no HPT */
|
|
return H_NOT_AVAILABLE;
|
|
}
|
|
|
|
trace_spapr_h_resize_hpt_commit(flags, shift);
|
|
|
|
rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
|
|
if (rc != -ENOSYS) {
|
|
rc = resize_hpt_convert_rc(rc);
|
|
if (rc == H_SUCCESS) {
|
|
/* Need to set the new htab_shift in the machine state */
|
|
spapr->htab_shift = shift;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
|
|
}
|
|
|
|
|
|
|
|
static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
cpu_synchronize_state(CPU(cpu));
|
|
cpu->env.spr[SPR_SPRG0] = args[0];
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
if (!ppc_has_spr(cpu, SPR_DABR)) {
|
|
return H_HARDWARE; /* DABR register not available */
|
|
}
|
|
cpu_synchronize_state(CPU(cpu));
|
|
|
|
if (ppc_has_spr(cpu, SPR_DABRX)) {
|
|
cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
|
|
} else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
|
|
return H_RESERVED_DABR;
|
|
}
|
|
|
|
cpu->env.spr[SPR_DABR] = args[0];
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong dabrx = args[1];
|
|
|
|
if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
|
|
|| (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
cpu_synchronize_state(CPU(cpu));
|
|
cpu->env.spr[SPR_DABRX] = dabrx;
|
|
cpu->env.spr[SPR_DABR] = args[0];
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
hwaddr dst = args[1];
|
|
hwaddr src = args[2];
|
|
hwaddr len = TARGET_PAGE_SIZE;
|
|
uint8_t *pdst, *psrc;
|
|
target_long ret = H_SUCCESS;
|
|
|
|
if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
|
|
| H_COPY_PAGE | H_ZERO_PAGE)) {
|
|
qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
|
|
flags);
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/* Map-in destination */
|
|
if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
pdst = cpu_physical_memory_map(dst, &len, true);
|
|
if (!pdst || len != TARGET_PAGE_SIZE) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (flags & H_COPY_PAGE) {
|
|
/* Map-in source, copy to destination, and unmap source again */
|
|
if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
|
|
ret = H_PARAMETER;
|
|
goto unmap_out;
|
|
}
|
|
psrc = cpu_physical_memory_map(src, &len, false);
|
|
if (!psrc || len != TARGET_PAGE_SIZE) {
|
|
ret = H_PARAMETER;
|
|
goto unmap_out;
|
|
}
|
|
memcpy(pdst, psrc, len);
|
|
cpu_physical_memory_unmap(psrc, len, 0, len);
|
|
} else if (flags & H_ZERO_PAGE) {
|
|
memset(pdst, 0, len); /* Just clear the destination page */
|
|
}
|
|
|
|
if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
|
|
kvmppc_dcbst_range(cpu, pdst, len);
|
|
}
|
|
if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
|
|
if (kvm_enabled()) {
|
|
kvmppc_icbi_range(cpu, pdst, len);
|
|
} else {
|
|
tb_flush(CPU(cpu));
|
|
}
|
|
}
|
|
|
|
unmap_out:
|
|
cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
|
|
return ret;
|
|
}
|
|
|
|
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL
|
|
#define FLAGS_REGISTER_DTL 0x0000400000000000ULL
|
|
#define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
|
|
#define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
|
|
#define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
|
|
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
|
|
|
|
static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
uint16_t size;
|
|
uint8_t tmp;
|
|
|
|
if (vpa == 0) {
|
|
hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
if (vpa % env->dcache_line_size) {
|
|
return H_PARAMETER;
|
|
}
|
|
/* FIXME: bounds check the address */
|
|
|
|
size = lduw_be_phys(cs->as, vpa + 0x4);
|
|
|
|
if (size < VPA_MIN_SIZE) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/* VPA is not allowed to cross a page boundary */
|
|
if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
spapr_cpu->vpa_addr = vpa;
|
|
|
|
tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
|
|
tmp |= VPA_SHARED_PROC_VAL;
|
|
stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
if (spapr_cpu->slb_shadow_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
if (spapr_cpu->dtl_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
spapr_cpu->vpa_addr = 0;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
uint32_t size;
|
|
|
|
if (addr == 0) {
|
|
hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
|
|
if (size < 0x8) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if ((addr / 4096) != ((addr + size - 1) / 4096)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!spapr_cpu->vpa_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
spapr_cpu->slb_shadow_addr = addr;
|
|
spapr_cpu->slb_shadow_size = size;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
spapr_cpu->slb_shadow_addr = 0;
|
|
spapr_cpu->slb_shadow_size = 0;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
uint32_t size;
|
|
|
|
if (addr == 0) {
|
|
hcall_dprintf("Can't cope with DTL at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
|
|
|
|
if (size < 48) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!spapr_cpu->vpa_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
spapr_cpu->dtl_addr = addr;
|
|
spapr_cpu->dtl_size = size;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
spapr_cpu->dtl_addr = 0;
|
|
spapr_cpu->dtl_size = 0;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong procno = args[1];
|
|
target_ulong vpa = args[2];
|
|
target_ulong ret = H_PARAMETER;
|
|
PowerPCCPU *tcpu;
|
|
|
|
tcpu = spapr_find_cpu(procno);
|
|
if (!tcpu) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
switch (flags) {
|
|
case FLAGS_REGISTER_VPA:
|
|
ret = register_vpa(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_VPA:
|
|
ret = deregister_vpa(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_REGISTER_SLBSHADOW:
|
|
ret = register_slb_shadow(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_SLBSHADOW:
|
|
ret = deregister_slb_shadow(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_REGISTER_DTL:
|
|
ret = register_dtl(tcpu, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_DTL:
|
|
ret = deregister_dtl(tcpu, vpa);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
env->msr |= (1ULL << MSR_EE);
|
|
hreg_compute_hflags(env);
|
|
|
|
if (spapr_cpu->prod) {
|
|
spapr_cpu->prod = false;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
if (!cpu_has_work(cs)) {
|
|
cs->halted = 1;
|
|
cs->exception_index = EXCP_HLT;
|
|
cs->exit_request = 1;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Confer to self, aka join. Cede could use the same pattern as well, if
|
|
* EXCP_HLT can be changed to ECXP_HALTED.
|
|
*/
|
|
static target_ulong h_confer_self(PowerPCCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
if (spapr_cpu->prod) {
|
|
spapr_cpu->prod = false;
|
|
return H_SUCCESS;
|
|
}
|
|
cs->halted = 1;
|
|
cs->exception_index = EXCP_HALTED;
|
|
cs->exit_request = 1;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs;
|
|
bool last_unjoined = true;
|
|
|
|
if (env->msr & (1ULL << MSR_EE)) {
|
|
return H_BAD_MODE;
|
|
}
|
|
|
|
/*
|
|
* Must not join the last CPU running. Interestingly, no such restriction
|
|
* for H_CONFER-to-self, but that is probably not intended to be used
|
|
* when H_JOIN is available.
|
|
*/
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *c = POWERPC_CPU(cs);
|
|
CPUPPCState *e = &c->env;
|
|
if (c == cpu) {
|
|
continue;
|
|
}
|
|
|
|
/* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
|
|
if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
|
|
last_unjoined = false;
|
|
break;
|
|
}
|
|
}
|
|
if (last_unjoined) {
|
|
return H_CONTINUE;
|
|
}
|
|
|
|
return h_confer_self(cpu);
|
|
}
|
|
|
|
static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_long target = args[0];
|
|
uint32_t dispatch = args[1];
|
|
CPUState *cs = CPU(cpu);
|
|
SpaprCpuState *spapr_cpu;
|
|
|
|
/*
|
|
* -1 means confer to all other CPUs without dispatch counter check,
|
|
* otherwise it's a targeted confer.
|
|
*/
|
|
if (target != -1) {
|
|
PowerPCCPU *target_cpu = spapr_find_cpu(target);
|
|
uint32_t target_dispatch;
|
|
|
|
if (!target_cpu) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/*
|
|
* target == self is a special case, we wait until prodded, without
|
|
* dispatch counter check.
|
|
*/
|
|
if (cpu == target_cpu) {
|
|
return h_confer_self(cpu);
|
|
}
|
|
|
|
spapr_cpu = spapr_cpu_state(target_cpu);
|
|
if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
target_dispatch = ldl_be_phys(cs->as,
|
|
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
|
|
if (target_dispatch != dispatch) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The targeted confer does not do anything special beyond yielding
|
|
* the current vCPU, but even this should be better than nothing.
|
|
* At least for single-threaded tcg, it gives the target a chance to
|
|
* run before we run again. Multi-threaded tcg does not really do
|
|
* anything with EXCP_YIELD yet.
|
|
*/
|
|
}
|
|
|
|
cs->exception_index = EXCP_YIELD;
|
|
cs->exit_request = 1;
|
|
cpu_loop_exit(cs);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_long target = args[0];
|
|
PowerPCCPU *tcpu;
|
|
CPUState *cs;
|
|
SpaprCpuState *spapr_cpu;
|
|
|
|
tcpu = spapr_find_cpu(target);
|
|
cs = CPU(tcpu);
|
|
if (!cs) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
spapr_cpu = spapr_cpu_state(tcpu);
|
|
spapr_cpu->prod = true;
|
|
cs->halted = 0;
|
|
qemu_cpu_kick(cs);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong rtas_r3 = args[0];
|
|
uint32_t token = rtas_ld(rtas_r3, 0);
|
|
uint32_t nargs = rtas_ld(rtas_r3, 1);
|
|
uint32_t nret = rtas_ld(rtas_r3, 2);
|
|
|
|
return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
|
|
nret, rtas_r3 + 12 + 4*nargs);
|
|
}
|
|
|
|
static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
target_ulong size = args[0];
|
|
target_ulong addr = args[1];
|
|
|
|
switch (size) {
|
|
case 1:
|
|
args[0] = ldub_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 2:
|
|
args[0] = lduw_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 4:
|
|
args[0] = ldl_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 8:
|
|
args[0] = ldq_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
target_ulong size = args[0];
|
|
target_ulong addr = args[1];
|
|
target_ulong val = args[2];
|
|
|
|
switch (size) {
|
|
case 1:
|
|
stb_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 2:
|
|
stw_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 4:
|
|
stl_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 8:
|
|
stq_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
target_ulong dst = args[0]; /* Destination address */
|
|
target_ulong src = args[1]; /* Source address */
|
|
target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
|
|
target_ulong count = args[3]; /* Element count */
|
|
target_ulong op = args[4]; /* 0 = copy, 1 = invert */
|
|
uint64_t tmp;
|
|
unsigned int mask = (1 << esize) - 1;
|
|
int step = 1 << esize;
|
|
|
|
if (count > 0x80000000) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if ((dst & mask) || (src & mask) || (op > 1)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (dst >= src && dst < (src + (count << esize))) {
|
|
dst = dst + ((count - 1) << esize);
|
|
src = src + ((count - 1) << esize);
|
|
step = -step;
|
|
}
|
|
|
|
while (count--) {
|
|
switch (esize) {
|
|
case 0:
|
|
tmp = ldub_phys(cs->as, src);
|
|
break;
|
|
case 1:
|
|
tmp = lduw_phys(cs->as, src);
|
|
break;
|
|
case 2:
|
|
tmp = ldl_phys(cs->as, src);
|
|
break;
|
|
case 3:
|
|
tmp = ldq_phys(cs->as, src);
|
|
break;
|
|
default:
|
|
return H_PARAMETER;
|
|
}
|
|
if (op == 1) {
|
|
tmp = ~tmp;
|
|
}
|
|
switch (esize) {
|
|
case 0:
|
|
stb_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 1:
|
|
stw_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 2:
|
|
stl_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 3:
|
|
stq_phys(cs->as, dst, tmp);
|
|
break;
|
|
}
|
|
dst = dst + step;
|
|
src = src + step;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
/* Nothing to do on emulation, KVM will trap this in the kernel */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
/* Nothing to do on emulation, KVM will trap this in the kernel */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong mflags,
|
|
target_ulong value1,
|
|
target_ulong value2)
|
|
{
|
|
if (value1) {
|
|
return H_P3;
|
|
}
|
|
if (value2) {
|
|
return H_P4;
|
|
}
|
|
|
|
switch (mflags) {
|
|
case H_SET_MODE_ENDIAN_BIG:
|
|
spapr_set_all_lpcrs(0, LPCR_ILE);
|
|
spapr_pci_switch_vga(spapr, true);
|
|
return H_SUCCESS;
|
|
|
|
case H_SET_MODE_ENDIAN_LITTLE:
|
|
spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
|
|
spapr_pci_switch_vga(spapr, false);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
|
|
target_ulong mflags,
|
|
target_ulong value1,
|
|
target_ulong value2)
|
|
{
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
|
|
|
|
if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
|
|
return H_P2;
|
|
}
|
|
if (value1) {
|
|
return H_P3;
|
|
}
|
|
if (value2) {
|
|
return H_P4;
|
|
}
|
|
|
|
if (mflags == 1) {
|
|
/* AIL=1 is reserved in POWER8/POWER9/POWER10 */
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
|
|
/* AIL=2 is reserved in POWER10 (ISA v3.1) */
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong resource = args[1];
|
|
target_ulong ret = H_P2;
|
|
|
|
switch (resource) {
|
|
case H_SET_MODE_RESOURCE_LE:
|
|
ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
|
|
break;
|
|
case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
|
|
ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
|
|
args[2], args[3]);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
|
|
opcode, " (H_CLEAN_SLB)");
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
|
|
opcode, " (H_INVALIDATE_PID)");
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
|
|
uint64_t patbe_old, uint64_t patbe_new)
|
|
{
|
|
/*
|
|
* We have 4 Options:
|
|
* HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
|
|
* HASH->RADIX : Free HPT
|
|
* RADIX->HASH : Allocate HPT
|
|
* NOTHING->HASH : Allocate HPT
|
|
* Note: NOTHING implies the case where we said the guest could choose
|
|
* later and so assumed radix and now it's called H_REG_PROC_TBL
|
|
*/
|
|
|
|
if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
|
|
/* We assume RADIX, so this catches all the "Do Nothing" cases */
|
|
} else if (!(patbe_old & PATE1_GR)) {
|
|
/* HASH->RADIX : Free HPT */
|
|
spapr_free_hpt(spapr);
|
|
} else if (!(patbe_new & PATE1_GR)) {
|
|
/* RADIX->HASH || NOTHING->HASH : Allocate HPT */
|
|
spapr_setup_hpt(spapr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#define FLAGS_MASK 0x01FULL
|
|
#define FLAG_MODIFY 0x10
|
|
#define FLAG_REGISTER 0x08
|
|
#define FLAG_RADIX 0x04
|
|
#define FLAG_HASH_PROC_TBL 0x02
|
|
#define FLAG_GTSE 0x01
|
|
|
|
static target_ulong h_register_process_table(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong proc_tbl = args[1];
|
|
target_ulong page_size = args[2];
|
|
target_ulong table_size = args[3];
|
|
target_ulong update_lpcr = 0;
|
|
target_ulong table_byte_size;
|
|
uint64_t cproc;
|
|
|
|
if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
|
|
return H_PARAMETER;
|
|
}
|
|
if (flags & FLAG_MODIFY) {
|
|
if (flags & FLAG_REGISTER) {
|
|
/* Check process table alignment */
|
|
table_byte_size = 1ULL << (table_size + 12);
|
|
if (proc_tbl & (table_byte_size - 1)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: process table not properly aligned: proc_tbl 0x"
|
|
TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
|
|
__func__, proc_tbl, table_byte_size);
|
|
}
|
|
if (flags & FLAG_RADIX) { /* Register new RADIX process table */
|
|
if (proc_tbl & 0xfff || proc_tbl >> 60) {
|
|
return H_P2;
|
|
} else if (page_size) {
|
|
return H_P3;
|
|
} else if (table_size > 24) {
|
|
return H_P4;
|
|
}
|
|
cproc = PATE1_GR | proc_tbl | table_size;
|
|
} else { /* Register new HPT process table */
|
|
if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
|
|
/* TODO - Not Supported */
|
|
/* Technically caused by flag bits => H_PARAMETER */
|
|
return H_PARAMETER;
|
|
} else { /* Hash with SLB */
|
|
if (proc_tbl >> 38) {
|
|
return H_P2;
|
|
} else if (page_size & ~0x7) {
|
|
return H_P3;
|
|
} else if (table_size > 24) {
|
|
return H_P4;
|
|
}
|
|
}
|
|
cproc = (proc_tbl << 25) | page_size << 5 | table_size;
|
|
}
|
|
|
|
} else { /* Deregister current process table */
|
|
/*
|
|
* Set to benign value: (current GR) | 0. This allows
|
|
* deregistration in KVM to succeed even if the radix bit
|
|
* in flags doesn't match the radix bit in the old PATE.
|
|
*/
|
|
cproc = spapr->patb_entry & PATE1_GR;
|
|
}
|
|
} else { /* Maintain current registration */
|
|
if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
|
|
/* Technically caused by flag bits => H_PARAMETER */
|
|
return H_PARAMETER; /* Existing Process Table Mismatch */
|
|
}
|
|
cproc = spapr->patb_entry;
|
|
}
|
|
|
|
/* Check if we need to setup OR free the hpt */
|
|
spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
|
|
|
|
spapr->patb_entry = cproc; /* Save new process table */
|
|
|
|
/* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
|
|
if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
|
|
update_lpcr |= (LPCR_UPRT | LPCR_HR);
|
|
else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
|
|
update_lpcr |= LPCR_UPRT;
|
|
if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
|
|
update_lpcr |= LPCR_GTSE;
|
|
|
|
spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
|
|
|
|
if (kvm_enabled()) {
|
|
return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
|
|
flags & FLAG_GTSE, cproc);
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
#define H_SIGNAL_SYS_RESET_ALL -1
|
|
#define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
|
|
|
|
static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_long target = args[0];
|
|
CPUState *cs;
|
|
|
|
if (target < 0) {
|
|
/* Broadcast */
|
|
if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *c = POWERPC_CPU(cs);
|
|
|
|
if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
|
|
if (c == cpu) {
|
|
continue;
|
|
}
|
|
}
|
|
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
|
|
}
|
|
return H_SUCCESS;
|
|
|
|
} else {
|
|
/* Unicast */
|
|
cs = CPU(spapr_find_cpu(target));
|
|
if (cs) {
|
|
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
}
|
|
|
|
/* Returns either a logical PVR or zero if none was found */
|
|
static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
|
|
target_ulong *addr, bool *raw_mode_supported)
|
|
{
|
|
bool explicit_match = false; /* Matched the CPU's real PVR */
|
|
uint32_t best_compat = 0;
|
|
int i;
|
|
|
|
/*
|
|
* We scan the supplied table of PVRs looking for two things
|
|
* 1. Is our real CPU PVR in the list?
|
|
* 2. What's the "best" listed logical PVR
|
|
*/
|
|
for (i = 0; i < 512; ++i) {
|
|
uint32_t pvr, pvr_mask;
|
|
|
|
pvr_mask = ldl_be_phys(&address_space_memory, *addr);
|
|
pvr = ldl_be_phys(&address_space_memory, *addr + 4);
|
|
*addr += 8;
|
|
|
|
if (~pvr_mask & pvr) {
|
|
break; /* Terminator record */
|
|
}
|
|
|
|
if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
|
|
explicit_match = true;
|
|
} else {
|
|
if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
|
|
best_compat = pvr;
|
|
}
|
|
}
|
|
}
|
|
|
|
*raw_mode_supported = explicit_match;
|
|
|
|
/* Parsing finished */
|
|
trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
|
|
|
|
return best_compat;
|
|
}
|
|
|
|
static
|
|
target_ulong do_client_architecture_support(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong vec,
|
|
target_ulong fdt_bufsize)
|
|
{
|
|
target_ulong ov_table; /* Working address in data buffer */
|
|
uint32_t cas_pvr;
|
|
SpaprOptionVector *ov1_guest, *ov5_guest;
|
|
bool guest_radix;
|
|
bool raw_mode_supported = false;
|
|
bool guest_xive;
|
|
CPUState *cs;
|
|
void *fdt;
|
|
uint32_t max_compat = spapr->max_compat_pvr;
|
|
|
|
/* CAS is supposed to be called early when only the boot vCPU is active. */
|
|
CPU_FOREACH(cs) {
|
|
if (cs == CPU(cpu)) {
|
|
continue;
|
|
}
|
|
if (!cs->halted) {
|
|
warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
|
|
return H_MULTI_THREADS_ACTIVE;
|
|
}
|
|
}
|
|
|
|
cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
|
|
if (!cas_pvr && (!raw_mode_supported || max_compat)) {
|
|
/*
|
|
* We couldn't find a suitable compatibility mode, and either
|
|
* the guest doesn't support "raw" mode for this CPU, or "raw"
|
|
* mode is disabled because a maximum compat mode is set.
|
|
*/
|
|
error_report("Couldn't negotiate a suitable PVR during CAS");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
/* Update CPUs */
|
|
if (cpu->compat_pvr != cas_pvr) {
|
|
Error *local_err = NULL;
|
|
|
|
if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
|
|
/* We fail to set compat mode (likely because running with KVM PR),
|
|
* but maybe we can fallback to raw mode if the guest supports it.
|
|
*/
|
|
if (!raw_mode_supported) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
error_free(local_err);
|
|
}
|
|
}
|
|
|
|
/* For the future use: here @ov_table points to the first option vector */
|
|
ov_table = vec;
|
|
|
|
ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
|
|
if (!ov1_guest) {
|
|
warn_report("guest didn't provide option vector 1");
|
|
return H_PARAMETER;
|
|
}
|
|
ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
|
|
if (!ov5_guest) {
|
|
spapr_ovec_cleanup(ov1_guest);
|
|
warn_report("guest didn't provide option vector 5");
|
|
return H_PARAMETER;
|
|
}
|
|
if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
|
|
error_report("guest requested hash and radix MMU, which is invalid.");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
|
|
error_report("guest requested an invalid interrupt mode");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
|
|
|
|
guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
|
|
|
|
/*
|
|
* HPT resizing is a bit of a special case, because when enabled
|
|
* we assume an HPT guest will support it until it says it
|
|
* doesn't, instead of assuming it won't support it until it says
|
|
* it does. Strictly speaking that approach could break for
|
|
* guests which don't make a CAS call, but those are so old we
|
|
* don't care about them. Without that assumption we'd have to
|
|
* make at least a temporary allocation of an HPT sized for max
|
|
* memory, which could be impossibly difficult under KVM HV if
|
|
* maxram is large.
|
|
*/
|
|
if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
|
|
int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
|
|
error_report(
|
|
"h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
|
|
exit(1);
|
|
}
|
|
|
|
if (spapr->htab_shift < maxshift) {
|
|
/* Guest doesn't know about HPT resizing, so we
|
|
* pre-emptively resize for the maximum permitted RAM. At
|
|
* the point this is called, nothing should have been
|
|
* entered into the existing HPT */
|
|
spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
|
|
push_sregs_to_kvm_pr(spapr);
|
|
}
|
|
}
|
|
|
|
/* NOTE: there are actually a number of ov5 bits where input from the
|
|
* guest is always zero, and the platform/QEMU enables them independently
|
|
* of guest input. To model these properly we'd want some sort of mask,
|
|
* but since they only currently apply to memory migration as defined
|
|
* by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
|
|
* to worry about this for now.
|
|
*/
|
|
|
|
/* full range of negotiated ov5 capabilities */
|
|
spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
|
|
spapr_ovec_cleanup(ov5_guest);
|
|
|
|
spapr_check_mmu_mode(guest_radix);
|
|
|
|
spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
|
|
spapr_ovec_cleanup(ov1_guest);
|
|
|
|
/*
|
|
* Check for NUMA affinity conditions now that we know which NUMA
|
|
* affinity the guest will use.
|
|
*/
|
|
spapr_numa_associativity_check(spapr);
|
|
|
|
/*
|
|
* Ensure the guest asks for an interrupt mode we support;
|
|
* otherwise terminate the boot.
|
|
*/
|
|
if (guest_xive) {
|
|
if (!spapr->irq->xive) {
|
|
error_report(
|
|
"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else {
|
|
if (!spapr->irq->xics) {
|
|
error_report(
|
|
"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
spapr_irq_update_active_intc(spapr);
|
|
|
|
/*
|
|
* Process all pending hot-plug/unplug requests now. An updated full
|
|
* rendered FDT will be returned to the guest.
|
|
*/
|
|
spapr_drc_reset_all(spapr);
|
|
spapr_clear_pending_hotplug_events(spapr);
|
|
|
|
/*
|
|
* If spapr_machine_reset() did not set up a HPT but one is necessary
|
|
* (because the guest isn't going to use radix) then set it up here.
|
|
*/
|
|
if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
|
|
/* legacy hash or new hash: */
|
|
spapr_setup_hpt(spapr);
|
|
}
|
|
|
|
fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
|
|
g_free(spapr->fdt_blob);
|
|
spapr->fdt_size = fdt_totalsize(fdt);
|
|
spapr->fdt_initial_size = spapr->fdt_size;
|
|
spapr->fdt_blob = fdt;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong vec = ppc64_phys_to_real(args[0]);
|
|
target_ulong fdt_buf = args[1];
|
|
target_ulong fdt_bufsize = args[2];
|
|
target_ulong ret;
|
|
SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
|
|
|
|
if (fdt_bufsize < sizeof(hdr)) {
|
|
error_report("SLOF provided insufficient CAS buffer "
|
|
TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
fdt_bufsize -= sizeof(hdr);
|
|
|
|
ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
|
|
if (ret == H_SUCCESS) {
|
|
_FDT((fdt_pack(spapr->fdt_blob)));
|
|
spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
|
|
spapr->fdt_initial_size = spapr->fdt_size;
|
|
|
|
cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
|
|
cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
|
|
spapr->fdt_size);
|
|
trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
target_ulong spapr_vof_client_architecture_support(MachineState *ms,
|
|
CPUState *cs,
|
|
target_ulong ovec_addr)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(ms);
|
|
|
|
target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
|
|
ovec_addr, FDT_MAX_SIZE);
|
|
|
|
/*
|
|
* This adds stdout and generates phandles for boottime and CAS FDTs.
|
|
* It is alright to update the FDT here as do_client_architecture_support()
|
|
* does not pack it.
|
|
*/
|
|
spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
|
|
~H_CPU_CHAR_THR_RECONF_TRIG;
|
|
uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
|
|
uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
|
|
uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
|
|
uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
|
|
uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
|
|
SPAPR_CAP_CCF_ASSIST);
|
|
|
|
switch (safe_cache) {
|
|
case SPAPR_CAP_WORKAROUND:
|
|
characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
|
|
characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
|
|
characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
|
|
behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
|
|
break;
|
|
case SPAPR_CAP_FIXED:
|
|
behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
|
|
behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
|
|
break;
|
|
default: /* broken */
|
|
assert(safe_cache == SPAPR_CAP_BROKEN);
|
|
behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
|
|
break;
|
|
}
|
|
|
|
switch (safe_bounds_check) {
|
|
case SPAPR_CAP_WORKAROUND:
|
|
characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
|
|
behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
|
|
break;
|
|
case SPAPR_CAP_FIXED:
|
|
break;
|
|
default: /* broken */
|
|
assert(safe_bounds_check == SPAPR_CAP_BROKEN);
|
|
behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
|
|
break;
|
|
}
|
|
|
|
switch (safe_indirect_branch) {
|
|
case SPAPR_CAP_FIXED_NA:
|
|
break;
|
|
case SPAPR_CAP_FIXED_CCD:
|
|
characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
|
|
break;
|
|
case SPAPR_CAP_FIXED_IBS:
|
|
characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
|
|
break;
|
|
case SPAPR_CAP_WORKAROUND:
|
|
behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
|
|
if (count_cache_flush_assist) {
|
|
characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
|
|
}
|
|
break;
|
|
default: /* broken */
|
|
assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
|
|
break;
|
|
}
|
|
|
|
args[0] = characteristics;
|
|
args[1] = behaviour;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong dt = ppc64_phys_to_real(args[0]);
|
|
struct fdt_header hdr = { 0 };
|
|
unsigned cb;
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
void *fdt;
|
|
|
|
cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
|
|
cb = fdt32_to_cpu(hdr.totalsize);
|
|
|
|
if (!smc->update_dt_enabled) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/* Check that the fdt did not grow out of proportion */
|
|
if (cb > spapr->fdt_initial_size * 2) {
|
|
trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
|
|
fdt32_to_cpu(hdr.magic));
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
fdt = g_malloc0(cb);
|
|
cpu_physical_memory_read(dt, fdt, cb);
|
|
|
|
/* Check the fdt consistency */
|
|
if (fdt_check_full(fdt, cb)) {
|
|
trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
|
|
fdt32_to_cpu(hdr.magic));
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
g_free(spapr->fdt_blob);
|
|
spapr->fdt_size = cb;
|
|
spapr->fdt_blob = fdt;
|
|
trace_spapr_update_dt(cb);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
|
|
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
|
|
static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
|
|
|
|
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
|
|
{
|
|
spapr_hcall_fn *slot;
|
|
|
|
if (opcode <= MAX_HCALL_OPCODE) {
|
|
assert((opcode & 0x3) == 0);
|
|
|
|
slot = &papr_hypercall_table[opcode / 4];
|
|
} else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
|
|
/* we only have SVM-related hcall numbers assigned in multiples of 4 */
|
|
assert((opcode & 0x3) == 0);
|
|
|
|
slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
|
|
} else {
|
|
assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
|
|
|
|
slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
|
|
}
|
|
|
|
assert(!(*slot));
|
|
*slot = fn;
|
|
}
|
|
|
|
target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
|
|
|
|
if ((opcode <= MAX_HCALL_OPCODE)
|
|
&& ((opcode & 0x3) == 0)) {
|
|
spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
} else if ((opcode >= SVM_HCALL_BASE) &&
|
|
(opcode <= SVM_HCALL_MAX)) {
|
|
spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
} else if ((opcode >= KVMPPC_HCALL_BASE) &&
|
|
(opcode <= KVMPPC_HCALL_MAX)) {
|
|
spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
|
|
opcode);
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
#ifdef CONFIG_TCG
|
|
#define PRTS_MASK 0x1f
|
|
|
|
static target_ulong h_set_ptbl(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong ptcr = args[0];
|
|
|
|
if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
spapr->nested_ptcr = ptcr; /* Save new partition table */
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
/*
|
|
* The spapr virtual hypervisor nested HV implementation retains no L2
|
|
* translation state except for TLB. And the TLB is always invalidated
|
|
* across L1<->L2 transitions, so nothing is required here.
|
|
*/
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
/*
|
|
* This HCALL is not required, L1 KVM will take a slow path and walk the
|
|
* page tables manually to do the data copy.
|
|
*/
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
/*
|
|
* When this handler returns, the environment is switched to the L2 guest
|
|
* and TCG begins running that. spapr_exit_nested() performs the switch from
|
|
* L2 back to L1 and returns from the H_ENTER_NESTED hcall.
|
|
*/
|
|
static target_ulong h_enter_nested(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
target_ulong hv_ptr = args[0];
|
|
target_ulong regs_ptr = args[1];
|
|
target_ulong hdec, now = cpu_ppc_load_tbl(env);
|
|
target_ulong lpcr, lpcr_mask;
|
|
struct kvmppc_hv_guest_state *hvstate;
|
|
struct kvmppc_hv_guest_state hv_state;
|
|
struct kvmppc_pt_regs *regs;
|
|
hwaddr len;
|
|
uint64_t cr;
|
|
int i;
|
|
|
|
if (spapr->nested_ptcr == 0) {
|
|
return H_NOT_AVAILABLE;
|
|
}
|
|
|
|
len = sizeof(*hvstate);
|
|
hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
if (len != sizeof(*hvstate)) {
|
|
address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
memcpy(&hv_state, hvstate, len);
|
|
|
|
address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
|
|
|
|
/*
|
|
* We accept versions 1 and 2. Version 2 fields are unused because TCG
|
|
* does not implement DAWR*.
|
|
*/
|
|
if (hv_state.version > HV_GUEST_STATE_VERSION) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
|
|
if (!spapr_cpu->nested_host_state) {
|
|
return H_NO_MEM;
|
|
}
|
|
|
|
memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
|
|
|
|
len = sizeof(*regs);
|
|
regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
if (!regs || len != sizeof(*regs)) {
|
|
address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
|
|
g_free(spapr_cpu->nested_host_state);
|
|
return H_P2;
|
|
}
|
|
|
|
len = sizeof(env->gpr);
|
|
assert(len == sizeof(regs->gpr));
|
|
memcpy(env->gpr, regs->gpr, len);
|
|
|
|
env->lr = regs->link;
|
|
env->ctr = regs->ctr;
|
|
cpu_write_xer(env, regs->xer);
|
|
|
|
cr = regs->ccr;
|
|
for (i = 7; i >= 0; i--) {
|
|
env->crf[i] = cr & 15;
|
|
cr >>= 4;
|
|
}
|
|
|
|
env->msr = regs->msr;
|
|
env->nip = regs->nip;
|
|
|
|
address_space_unmap(CPU(cpu)->as, regs, len, len, false);
|
|
|
|
env->cfar = hv_state.cfar;
|
|
|
|
assert(env->spr[SPR_LPIDR] == 0);
|
|
env->spr[SPR_LPIDR] = hv_state.lpid;
|
|
|
|
lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
|
|
lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
|
|
lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
|
|
lpcr &= ~LPCR_LPES0;
|
|
env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
|
|
|
|
env->spr[SPR_PCR] = hv_state.pcr;
|
|
/* hv_state.amor is not used */
|
|
env->spr[SPR_DPDES] = hv_state.dpdes;
|
|
env->spr[SPR_HFSCR] = hv_state.hfscr;
|
|
hdec = hv_state.hdec_expiry - now;
|
|
spapr_cpu->nested_tb_offset = hv_state.tb_offset;
|
|
/* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
|
|
env->spr[SPR_SRR0] = hv_state.srr0;
|
|
env->spr[SPR_SRR1] = hv_state.srr1;
|
|
env->spr[SPR_SPRG0] = hv_state.sprg[0];
|
|
env->spr[SPR_SPRG1] = hv_state.sprg[1];
|
|
env->spr[SPR_SPRG2] = hv_state.sprg[2];
|
|
env->spr[SPR_SPRG3] = hv_state.sprg[3];
|
|
env->spr[SPR_BOOKS_PID] = hv_state.pidr;
|
|
env->spr[SPR_PPR] = hv_state.ppr;
|
|
|
|
cpu_ppc_hdecr_init(env);
|
|
cpu_ppc_store_hdecr(env, hdec);
|
|
|
|
/*
|
|
* The hv_state.vcpu_token is not needed. It is used by the KVM
|
|
* implementation to remember which L2 vCPU last ran on which physical
|
|
* CPU so as to invalidate process scope translations if it is moved
|
|
* between physical CPUs. For now TLBs are always flushed on L1<->L2
|
|
* transitions so this is not a problem.
|
|
*
|
|
* Could validate that the same vcpu_token does not attempt to run on
|
|
* different L1 vCPUs at the same time, but that would be a L1 KVM bug
|
|
* and it's not obviously worth a new data structure to do it.
|
|
*/
|
|
|
|
env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
|
|
spapr_cpu->in_nested = true;
|
|
|
|
hreg_compute_hflags(env);
|
|
tlb_flush(cs);
|
|
env->reserve_addr = -1; /* Reset the reservation */
|
|
|
|
/*
|
|
* The spapr hcall helper sets env->gpr[3] to the return value, but at
|
|
* this point the L1 is not returning from the hcall but rather we
|
|
* start running the L2, so r3 must not be clobbered, so return env->gpr[3]
|
|
* to leave it unchanged.
|
|
*/
|
|
return env->gpr[3];
|
|
}
|
|
|
|
void spapr_exit_nested(PowerPCCPU *cpu, int excp)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
|
|
target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
|
|
target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
|
|
struct kvmppc_hv_guest_state *hvstate;
|
|
struct kvmppc_pt_regs *regs;
|
|
hwaddr len;
|
|
uint64_t cr;
|
|
int i;
|
|
|
|
assert(spapr_cpu->in_nested);
|
|
|
|
cpu_ppc_hdecr_exit(env);
|
|
|
|
len = sizeof(*hvstate);
|
|
hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
if (len != sizeof(*hvstate)) {
|
|
address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
|
|
r3_return = H_PARAMETER;
|
|
goto out_restore_l1;
|
|
}
|
|
|
|
hvstate->cfar = env->cfar;
|
|
hvstate->lpcr = env->spr[SPR_LPCR];
|
|
hvstate->pcr = env->spr[SPR_PCR];
|
|
hvstate->dpdes = env->spr[SPR_DPDES];
|
|
hvstate->hfscr = env->spr[SPR_HFSCR];
|
|
|
|
if (excp == POWERPC_EXCP_HDSI) {
|
|
hvstate->hdar = env->spr[SPR_HDAR];
|
|
hvstate->hdsisr = env->spr[SPR_HDSISR];
|
|
hvstate->asdr = env->spr[SPR_ASDR];
|
|
} else if (excp == POWERPC_EXCP_HISI) {
|
|
hvstate->asdr = env->spr[SPR_ASDR];
|
|
}
|
|
|
|
/* HEIR should be implemented for HV mode and saved here. */
|
|
hvstate->srr0 = env->spr[SPR_SRR0];
|
|
hvstate->srr1 = env->spr[SPR_SRR1];
|
|
hvstate->sprg[0] = env->spr[SPR_SPRG0];
|
|
hvstate->sprg[1] = env->spr[SPR_SPRG1];
|
|
hvstate->sprg[2] = env->spr[SPR_SPRG2];
|
|
hvstate->sprg[3] = env->spr[SPR_SPRG3];
|
|
hvstate->pidr = env->spr[SPR_BOOKS_PID];
|
|
hvstate->ppr = env->spr[SPR_PPR];
|
|
|
|
/* Is it okay to specify write length larger than actual data written? */
|
|
address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
|
|
|
|
len = sizeof(*regs);
|
|
regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
if (!regs || len != sizeof(*regs)) {
|
|
address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
|
|
r3_return = H_P2;
|
|
goto out_restore_l1;
|
|
}
|
|
|
|
len = sizeof(env->gpr);
|
|
assert(len == sizeof(regs->gpr));
|
|
memcpy(regs->gpr, env->gpr, len);
|
|
|
|
regs->link = env->lr;
|
|
regs->ctr = env->ctr;
|
|
regs->xer = cpu_read_xer(env);
|
|
|
|
cr = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
cr |= (env->crf[i] & 15) << (4 * (7 - i));
|
|
}
|
|
regs->ccr = cr;
|
|
|
|
if (excp == POWERPC_EXCP_MCHECK ||
|
|
excp == POWERPC_EXCP_RESET ||
|
|
excp == POWERPC_EXCP_SYSCALL) {
|
|
regs->nip = env->spr[SPR_SRR0];
|
|
regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
|
|
} else {
|
|
regs->nip = env->spr[SPR_HSRR0];
|
|
regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
|
|
}
|
|
|
|
/* Is it okay to specify write length larger than actual data written? */
|
|
address_space_unmap(CPU(cpu)->as, regs, len, len, true);
|
|
|
|
out_restore_l1:
|
|
memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
|
|
env->lr = spapr_cpu->nested_host_state->lr;
|
|
env->ctr = spapr_cpu->nested_host_state->ctr;
|
|
memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
|
|
env->cfar = spapr_cpu->nested_host_state->cfar;
|
|
env->xer = spapr_cpu->nested_host_state->xer;
|
|
env->so = spapr_cpu->nested_host_state->so;
|
|
env->ov = spapr_cpu->nested_host_state->ov;
|
|
env->ov32 = spapr_cpu->nested_host_state->ov32;
|
|
env->ca32 = spapr_cpu->nested_host_state->ca32;
|
|
env->msr = spapr_cpu->nested_host_state->msr;
|
|
env->nip = spapr_cpu->nested_host_state->nip;
|
|
|
|
assert(env->spr[SPR_LPIDR] != 0);
|
|
env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
|
|
env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
|
|
env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
|
|
env->spr[SPR_DPDES] = 0;
|
|
env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
|
|
env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
|
|
env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
|
|
env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
|
|
env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
|
|
env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
|
|
env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
|
|
env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
|
|
env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
|
|
|
|
/*
|
|
* Return the interrupt vector address from H_ENTER_NESTED to the L1
|
|
* (or error code).
|
|
*/
|
|
env->gpr[3] = r3_return;
|
|
|
|
env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
|
|
spapr_cpu->in_nested = false;
|
|
|
|
hreg_compute_hflags(env);
|
|
tlb_flush(cs);
|
|
env->reserve_addr = -1; /* Reset the reservation */
|
|
|
|
g_free(spapr_cpu->nested_host_state);
|
|
spapr_cpu->nested_host_state = NULL;
|
|
}
|
|
|
|
static void hypercall_register_nested(void)
|
|
{
|
|
spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
|
|
spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
|
|
spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
|
|
spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
|
|
}
|
|
|
|
static void hypercall_register_softmmu(void)
|
|
{
|
|
/* DO NOTHING */
|
|
}
|
|
#else
|
|
void spapr_exit_nested(PowerPCCPU *cpu, int excp)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
static void hypercall_register_nested(void)
|
|
{
|
|
/* DO NOTHING */
|
|
}
|
|
|
|
static void hypercall_register_softmmu(void)
|
|
{
|
|
/* hcall-pft */
|
|
spapr_register_hypercall(H_ENTER, h_softmmu);
|
|
spapr_register_hypercall(H_REMOVE, h_softmmu);
|
|
spapr_register_hypercall(H_PROTECT, h_softmmu);
|
|
spapr_register_hypercall(H_READ, h_softmmu);
|
|
|
|
/* hcall-bulk */
|
|
spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
|
|
}
|
|
#endif
|
|
|
|
static void hypercall_register_types(void)
|
|
{
|
|
hypercall_register_softmmu();
|
|
|
|
/* hcall-hpt-resize */
|
|
spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
|
|
spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
|
|
|
|
/* hcall-splpar */
|
|
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
|
|
spapr_register_hypercall(H_CEDE, h_cede);
|
|
spapr_register_hypercall(H_CONFER, h_confer);
|
|
spapr_register_hypercall(H_PROD, h_prod);
|
|
|
|
/* hcall-join */
|
|
spapr_register_hypercall(H_JOIN, h_join);
|
|
|
|
spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
|
|
|
|
/* processor register resource access h-calls */
|
|
spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
|
|
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
|
|
spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
|
|
spapr_register_hypercall(H_PAGE_INIT, h_page_init);
|
|
spapr_register_hypercall(H_SET_MODE, h_set_mode);
|
|
|
|
/* In Memory Table MMU h-calls */
|
|
spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
|
|
spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
|
|
spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
|
|
|
|
/* hcall-get-cpu-characteristics */
|
|
spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
|
|
h_get_cpu_characteristics);
|
|
|
|
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
|
|
* here between the "CI" and the "CACHE" variants, they will use whatever
|
|
* mapping attributes qemu is using. When using KVM, the kernel will
|
|
* enforce the attributes more strongly
|
|
*/
|
|
spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
|
|
spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
|
|
spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
|
|
spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
|
|
spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
|
|
spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
|
|
spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
|
|
|
|
/* qemu/KVM-PPC specific hcalls */
|
|
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
|
|
|
|
/* ibm,client-architecture-support support */
|
|
spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
|
|
|
|
spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
|
|
|
|
hypercall_register_nested();
|
|
}
|
|
|
|
type_init(hypercall_register_types)
|