xemu/memory.c
Peter Maydell b08199c6fb memory.h: Add memory_region_init_{ram, rom, rom_device}() handling migration
Add new utility functions which both initialize a RAM
MemoryRegion and arrange for its contents to be migrated;
we give thes the memory_region_init_ram(), memory_region_init_rom()
and memory_region_init_rom_device() names that we just freed up
by renaming the old implementations to _nomigrate().

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 1499438577-7674-6-git-send-email-peter.maydell@linaro.org
2017-07-14 17:59:42 +01:00

2951 lines
93 KiB
C

/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "exec/ioport.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qom/object.h"
#include "trace-root.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "hw/misc/mmio_interface.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
//#define DEBUG_UNASSIGNED
static unsigned memory_region_transaction_depth;
static bool memory_region_update_pending;
static bool ioeventfd_update_pending;
static bool global_dirty_log = false;
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
= QTAILQ_HEAD_INITIALIZER(memory_listeners);
static QTAILQ_HEAD(, AddressSpace) address_spaces
= QTAILQ_HEAD_INITIALIZER(address_spaces);
typedef struct AddrRange AddrRange;
/*
* Note that signed integers are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
static AddrRange addrrange_make(Int128 start, Int128 size)
{
return (AddrRange) { start, size };
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
{
int128_addto(&range.start, delta);
return range;
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
enum ListenerDirection { Forward, Reverse };
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
do { \
MemoryListener *_listener; \
struct memory_listeners_as *list = &(_as)->listeners; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, list, link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
/* No need to ref/unref .mr, the FlatRange keeps it alive. */
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
do { \
MemoryRegionSection mrs = section_from_flat_range(fr, as); \
MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
} while(0)
struct CoalescedMemoryRange {
AddrRange addr;
QTAILQ_ENTRY(CoalescedMemoryRange) link;
};
struct MemoryRegionIoeventfd {
AddrRange addr;
bool match_data;
uint64_t data;
EventNotifier *e;
};
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
if (int128_lt(a.addr.start, b.addr.start)) {
return true;
} else if (int128_gt(a.addr.start, b.addr.start)) {
return false;
} else if (int128_lt(a.addr.size, b.addr.size)) {
return true;
} else if (int128_gt(a.addr.size, b.addr.size)) {
return false;
} else if (a.match_data < b.match_data) {
return true;
} else if (a.match_data > b.match_data) {
return false;
} else if (a.match_data) {
if (a.data < b.data) {
return true;
} else if (a.data > b.data) {
return false;
}
}
if (a.e < b.e) {
return true;
} else if (a.e > b.e) {
return false;
}
return false;
}
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
return !memory_region_ioeventfd_before(a, b)
&& !memory_region_ioeventfd_before(b, a);
}
typedef struct FlatRange FlatRange;
typedef struct FlatView FlatView;
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
hwaddr offset_in_region;
AddrRange addr;
uint8_t dirty_log_mask;
bool romd_mode;
bool readonly;
};
/* Flattened global view of current active memory hierarchy. Kept in sorted
* order.
*/
struct FlatView {
struct rcu_head rcu;
unsigned ref;
FlatRange *ranges;
unsigned nr;
unsigned nr_allocated;
};
typedef struct AddressSpaceOps AddressSpaceOps;
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static inline MemoryRegionSection
section_from_flat_range(FlatRange *fr, AddressSpace *as)
{
return (MemoryRegionSection) {
.mr = fr->mr,
.address_space = as,
.offset_within_region = fr->offset_in_region,
.size = fr->addr.size,
.offset_within_address_space = int128_get64(fr->addr.start),
.readonly = fr->readonly,
};
}
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->romd_mode == b->romd_mode
&& a->readonly == b->readonly;
}
static void flatview_init(FlatView *view)
{
view->ref = 1;
view->ranges = NULL;
view->nr = 0;
view->nr_allocated = 0;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
memory_region_ref(range->mr);
++view->nr;
}
static void flatview_destroy(FlatView *view)
{
int i;
for (i = 0; i < view->nr; i++) {
memory_region_unref(view->ranges[i].mr);
}
g_free(view->ranges);
g_free(view);
}
static void flatview_ref(FlatView *view)
{
atomic_inc(&view->ref);
}
static void flatview_unref(FlatView *view)
{
if (atomic_fetch_dec(&view->ref) == 1) {
flatview_destroy(view);
}
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->dirty_log_mask == r2->dirty_log_mask
&& r1->romd_mode == r2->romd_mode
&& r1->readonly == r2->readonly;
}
/* Attempt to simplify a view by merging adjacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static bool memory_region_big_endian(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static bool memory_region_wrong_endianness(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
{
if (memory_region_wrong_endianness(mr)) {
switch (size) {
case 1:
break;
case 2:
*data = bswap16(*data);
break;
case 4:
*data = bswap32(*data);
break;
case 8:
*data = bswap64(*data);
break;
default:
abort();
}
}
}
static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
{
MemoryRegion *root;
hwaddr abs_addr = offset;
abs_addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
abs_addr += root->addr;
}
return abs_addr;
}
static int get_cpu_index(void)
{
if (current_cpu) {
return current_cpu->cpu_index;
}
return -1;
}
static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->read(mr->opaque, addr, size);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = 0;
MemTxResult r;
r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return r;
}
static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
return MEMTX_OK;
}
static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
mr->ops->write(mr->opaque, addr, tmp, size);
return MEMTX_OK;
}
static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
}
static MemTxResult access_with_adjusted_size(hwaddr addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
MemTxResult (*access)(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs),
MemoryRegion *mr,
MemTxAttrs attrs)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
MemTxResult r = MEMTX_OK;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
/* FIXME: support unaligned access? */
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = -1ULL >> (64 - access_size * 8);
if (memory_region_big_endian(mr)) {
for (i = 0; i < size; i += access_size) {
r |= access(mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask, attrs);
}
} else {
for (i = 0; i < size; i += access_size) {
r |= access(mr, addr + i, value, access_size, i * 8,
access_mask, attrs);
}
}
return r;
}
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
AddressSpace *as;
while (mr->container) {
mr = mr->container;
}
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
if (mr == as->root) {
return as;
}
}
return NULL;
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly)
{
MemoryRegion *subregion;
unsigned i;
hwaddr offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
if (mr->alias) {
int128_subfrom(&base, int128_make64(mr->alias->addr));
int128_subfrom(&base, int128_make64(mr->alias_offset));
render_memory_region(view, mr->alias, base, clip, readonly);
return;
}
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip, readonly);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
fr.mr = mr;
fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
fr.romd_mode = mr->romd_mode;
fr.readonly = readonly;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
now = int128_sub(int128_min(int128_add(base, remain),
addrrange_end(view->ranges[i].addr)),
base);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_nz(remain)) {
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
flatview_insert(view, i, &fr);
}
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView *generate_memory_topology(MemoryRegion *mr)
{
FlatView *view;
view = g_new(FlatView, 1);
flatview_init(view);
if (mr) {
render_memory_region(view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()), false);
}
flatview_simplify(view);
return view;
}
static void address_space_add_del_ioeventfds(AddressSpace *as,
MemoryRegionIoeventfd *fds_new,
unsigned fds_new_nb,
MemoryRegionIoeventfd *fds_old,
unsigned fds_old_nb)
{
unsigned iold, inew;
MemoryRegionIoeventfd *fd;
MemoryRegionSection section;
/* Generate a symmetric difference of the old and new fd sets, adding
* and deleting as necessary.
*/
iold = inew = 0;
while (iold < fds_old_nb || inew < fds_new_nb) {
if (iold < fds_old_nb
&& (inew == fds_new_nb
|| memory_region_ioeventfd_before(fds_old[iold],
fds_new[inew]))) {
fd = &fds_old[iold];
section = (MemoryRegionSection) {
.address_space = as,
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
fd->match_data, fd->data, fd->e);
++iold;
} else if (inew < fds_new_nb
&& (iold == fds_old_nb
|| memory_region_ioeventfd_before(fds_new[inew],
fds_old[iold]))) {
fd = &fds_new[inew];
section = (MemoryRegionSection) {
.address_space = as,
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
fd->match_data, fd->data, fd->e);
++inew;
} else {
++iold;
++inew;
}
}
}
static FlatView *address_space_get_flatview(AddressSpace *as)
{
FlatView *view;
rcu_read_lock();
view = atomic_rcu_read(&as->current_map);
flatview_ref(view);
rcu_read_unlock();
return view;
}
static void address_space_update_ioeventfds(AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
unsigned ioeventfd_nb = 0;
MemoryRegionIoeventfd *ioeventfds = NULL;
AddrRange tmp;
unsigned i;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (addrrange_intersects(fr->addr, tmp)) {
++ioeventfd_nb;
ioeventfds = g_realloc(ioeventfds,
ioeventfd_nb * sizeof(*ioeventfds));
ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
ioeventfds[ioeventfd_nb-1].addr = tmp;
}
}
}
address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
as->ioeventfds, as->ioeventfd_nb);
g_free(as->ioeventfds);
as->ioeventfds = ioeventfds;
as->ioeventfd_nb = ioeventfd_nb;
flatview_unref(view);
}
static void address_space_update_topology_pass(AddressSpace *as,
const FlatView *old_view,
const FlatView *new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view->nr || inew < new_view->nr) {
if (iold < old_view->nr) {
frold = &old_view->ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view->nr) {
frnew = &new_view->ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old but not in new, or in both but attributes changed. */
if (!adding) {
MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both and unchanged (except logging may have changed) */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
}
++inew;
}
}
}
static void address_space_update_topology(AddressSpace *as)
{
FlatView *old_view = address_space_get_flatview(as);
FlatView *new_view = generate_memory_topology(as->root);
address_space_update_topology_pass(as, old_view, new_view, false);
address_space_update_topology_pass(as, old_view, new_view, true);
/* Writes are protected by the BQL. */
atomic_rcu_set(&as->current_map, new_view);
call_rcu(old_view, flatview_unref, rcu);
/* Note that all the old MemoryRegions are still alive up to this
* point. This relieves most MemoryListeners from the need to
* ref/unref the MemoryRegions they get---unless they use them
* outside the iothread mutex, in which case precise reference
* counting is necessary.
*/
flatview_unref(old_view);
address_space_update_ioeventfds(as);
}
void memory_region_transaction_begin(void)
{
qemu_flush_coalesced_mmio_buffer();
++memory_region_transaction_depth;
}
void memory_region_transaction_commit(void)
{
AddressSpace *as;
assert(memory_region_transaction_depth);
assert(qemu_mutex_iothread_locked());
--memory_region_transaction_depth;
if (!memory_region_transaction_depth) {
if (memory_region_update_pending) {
MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_update_topology(as);
}
memory_region_update_pending = false;
MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
} else if (ioeventfd_update_pending) {
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_update_ioeventfds(as);
}
ioeventfd_update_pending = false;
}
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_block);
}
static bool memory_region_need_escape(char c)
{
return c == '/' || c == '[' || c == '\\' || c == ']';
}
static char *memory_region_escape_name(const char *name)
{
const char *p;
char *escaped, *q;
uint8_t c;
size_t bytes = 0;
for (p = name; *p; p++) {
bytes += memory_region_need_escape(*p) ? 4 : 1;
}
if (bytes == p - name) {
return g_memdup(name, bytes + 1);
}
escaped = g_malloc(bytes + 1);
for (p = name, q = escaped; *p; p++) {
c = *p;
if (unlikely(memory_region_need_escape(c))) {
*q++ = '\\';
*q++ = 'x';
*q++ = "0123456789abcdef"[c >> 4];
c = "0123456789abcdef"[c & 15];
}
*q++ = c;
}
*q = 0;
return escaped;
}
static void memory_region_do_init(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
mr->name = g_strdup(name);
mr->owner = owner;
mr->ram_block = NULL;
if (name) {
char *escaped_name = memory_region_escape_name(name);
char *name_array = g_strdup_printf("%s[*]", escaped_name);
if (!owner) {
owner = container_get(qdev_get_machine(), "/unattached");
}
object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
object_unref(OBJECT(mr));
g_free(name_array);
g_free(escaped_name);
}
}
void memory_region_init(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
memory_region_do_init(mr, owner, name, size);
}
static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
uint64_t value = mr->addr;
visit_type_uint64(v, name, &value, errp);
}
static void memory_region_get_container(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
gchar *path = (gchar *)"";
if (mr->container) {
path = object_get_canonical_path(OBJECT(mr->container));
}
visit_type_str(v, name, &path, errp);
if (mr->container) {
g_free(path);
}
}
static Object *memory_region_resolve_container(Object *obj, void *opaque,
const char *part)
{
MemoryRegion *mr = MEMORY_REGION(obj);
return OBJECT(mr->container);
}
static void memory_region_get_priority(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
int32_t value = mr->priority;
visit_type_int32(v, name, &value, errp);
}
static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
uint64_t value = memory_region_size(mr);
visit_type_uint64(v, name, &value, errp);
}
static void memory_region_initfn(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
ObjectProperty *op;
mr->ops = &unassigned_mem_ops;
mr->enabled = true;
mr->romd_mode = true;
mr->global_locking = true;
mr->destructor = memory_region_destructor_none;
QTAILQ_INIT(&mr->subregions);
QTAILQ_INIT(&mr->coalesced);
op = object_property_add(OBJECT(mr), "container",
"link<" TYPE_MEMORY_REGION ">",
memory_region_get_container,
NULL, /* memory_region_set_container */
NULL, NULL, &error_abort);
op->resolve = memory_region_resolve_container;
object_property_add(OBJECT(mr), "addr", "uint64",
memory_region_get_addr,
NULL, /* memory_region_set_addr */
NULL, NULL, &error_abort);
object_property_add(OBJECT(mr), "priority", "uint32",
memory_region_get_priority,
NULL, /* memory_region_set_priority */
NULL, NULL, &error_abort);
object_property_add(OBJECT(mr), "size", "uint64",
memory_region_get_size,
NULL, /* memory_region_set_size, */
NULL, NULL, &error_abort);
}
static void iommu_memory_region_initfn(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
mr->is_iommu = true;
}
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
if (current_cpu != NULL) {
cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
}
return 0;
}
static void unassigned_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
#endif
if (current_cpu != NULL) {
cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
}
}
static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
return false;
}
const MemoryRegionOps unassigned_mem_ops = {
.valid.accepts = unassigned_mem_accepts,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static uint64_t memory_region_ram_device_read(void *opaque,
hwaddr addr, unsigned size)
{
MemoryRegion *mr = opaque;
uint64_t data = (uint64_t)~0;
switch (size) {
case 1:
data = *(uint8_t *)(mr->ram_block->host + addr);
break;
case 2:
data = *(uint16_t *)(mr->ram_block->host + addr);
break;
case 4:
data = *(uint32_t *)(mr->ram_block->host + addr);
break;
case 8:
data = *(uint64_t *)(mr->ram_block->host + addr);
break;
}
trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
return data;
}
static void memory_region_ram_device_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
MemoryRegion *mr = opaque;
trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
switch (size) {
case 1:
*(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
break;
case 2:
*(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
break;
case 4:
*(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
break;
case 8:
*(uint64_t *)(mr->ram_block->host + addr) = data;
break;
}
}
static const MemoryRegionOps ram_device_mem_ops = {
.read = memory_region_ram_device_read,
.write = memory_region_ram_device_write,
.endianness = DEVICE_HOST_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
.unaligned = true,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
.unaligned = true,
},
};
bool memory_region_access_valid(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool is_write)
{
int access_size_min, access_size_max;
int access_size, i;
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
return false;
}
if (!mr->ops->valid.accepts) {
return true;
}
access_size_min = mr->ops->valid.min_access_size;
if (!mr->ops->valid.min_access_size) {
access_size_min = 1;
}
access_size_max = mr->ops->valid.max_access_size;
if (!mr->ops->valid.max_access_size) {
access_size_max = 4;
}
access_size = MAX(MIN(size, access_size_max), access_size_min);
for (i = 0; i < size; i += access_size) {
if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
is_write)) {
return false;
}
}
return true;
}
static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
*pval = 0;
if (mr->ops->read) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor,
mr, attrs);
} else if (mr->ops->read_with_attrs) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_with_attrs_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(addr, pval, size, 1, 4,
memory_region_oldmmio_read_accessor,
mr, attrs);
}
}
MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
MemTxResult r;
if (!memory_region_access_valid(mr, addr, size, false)) {
*pval = unassigned_mem_read(mr, addr, size);
return MEMTX_DECODE_ERROR;
}
r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
adjust_endianness(mr, pval, size);
return r;
}
/* Return true if an eventfd was signalled */
static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs)
{
MemoryRegionIoeventfd ioeventfd = {
.addr = addrrange_make(int128_make64(addr), int128_make64(size)),
.data = data,
};
unsigned i;
for (i = 0; i < mr->ioeventfd_nb; i++) {
ioeventfd.match_data = mr->ioeventfds[i].match_data;
ioeventfd.e = mr->ioeventfds[i].e;
if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
event_notifier_set(ioeventfd.e);
return true;
}
}
return false;
}
MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs)
{
if (!memory_region_access_valid(mr, addr, size, true)) {
unassigned_mem_write(mr, addr, data, size);
return MEMTX_DECODE_ERROR;
}
adjust_endianness(mr, &data, size);
if ((!kvm_eventfds_enabled()) &&
memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
return MEMTX_OK;
}
if (mr->ops->write) {
return access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr,
attrs);
} else if (mr->ops->write_with_attrs) {
return
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_with_attrs_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_write_accessor,
mr, attrs);
}
}
void memory_region_init_io(MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, owner, name, size);
mr->ops = ops ? ops : &unassigned_mem_ops;
mr->opaque = opaque;
mr->terminates = true;
}
void memory_region_init_ram_nomigrate(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, mr, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_init_resizeable_ram(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint64_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
mr, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
#ifdef __linux__
void memory_region_init_ram_from_file(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
bool share,
const char *path,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_init_ram_from_fd(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
bool share,
int fd,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
#endif
void memory_region_init_ram_ptr(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
/* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
assert(ptr != NULL);
mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
}
void memory_region_init_ram_device_ptr(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init_ram_ptr(mr, owner, name, size, ptr);
mr->ram_device = true;
mr->ops = &ram_device_mem_ops;
mr->opaque = mr;
}
void memory_region_init_alias(MemoryRegion *mr,
Object *owner,
const char *name,
MemoryRegion *orig,
hwaddr offset,
uint64_t size)
{
memory_region_init(mr, owner, name, size);
mr->alias = orig;
mr->alias_offset = offset;
}
void memory_region_init_rom_nomigrate(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->readonly = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, mr, errp);
mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size,
Error **errp)
{
assert(ops);
memory_region_init(mr, owner, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->rom_device = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, mr, errp);
}
void memory_region_init_iommu(void *_iommu_mr,
size_t instance_size,
const char *mrtypename,
Object *owner,
const char *name,
uint64_t size)
{
struct IOMMUMemoryRegion *iommu_mr;
struct MemoryRegion *mr;
object_initialize(_iommu_mr, instance_size, mrtypename);
mr = MEMORY_REGION(_iommu_mr);
memory_region_do_init(mr, owner, name, size);
iommu_mr = IOMMU_MEMORY_REGION(mr);
mr->terminates = true; /* then re-forwards */
QLIST_INIT(&iommu_mr->iommu_notify);
iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
}
static void memory_region_finalize(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
assert(!mr->container);
/* We know the region is not visible in any address space (it
* does not have a container and cannot be a root either because
* it has no references, so we can blindly clear mr->enabled.
* memory_region_set_enabled instead could trigger a transaction
* and cause an infinite loop.
*/
mr->enabled = false;
memory_region_transaction_begin();
while (!QTAILQ_EMPTY(&mr->subregions)) {
MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
memory_region_del_subregion(mr, subregion);
}
memory_region_transaction_commit();
mr->destructor(mr);
memory_region_clear_coalescing(mr);
g_free((char *)mr->name);
g_free(mr->ioeventfds);
}
Object *memory_region_owner(MemoryRegion *mr)
{
Object *obj = OBJECT(mr);
return obj->parent;
}
void memory_region_ref(MemoryRegion *mr)
{
/* MMIO callbacks most likely will access data that belongs
* to the owner, hence the need to ref/unref the owner whenever
* the memory region is in use.
*
* The memory region is a child of its owner. As long as the
* owner doesn't call unparent itself on the memory region,
* ref-ing the owner will also keep the memory region alive.
* Memory regions without an owner are supposed to never go away;
* we do not ref/unref them because it slows down DMA sensibly.
*/
if (mr && mr->owner) {
object_ref(mr->owner);
}
}
void memory_region_unref(MemoryRegion *mr)
{
if (mr && mr->owner) {
object_unref(mr->owner);
}
}
uint64_t memory_region_size(MemoryRegion *mr)
{
if (int128_eq(mr->size, int128_2_64())) {
return UINT64_MAX;
}
return int128_get64(mr->size);
}
const char *memory_region_name(const MemoryRegion *mr)
{
if (!mr->name) {
((MemoryRegion *)mr)->name =
object_get_canonical_path_component(OBJECT(mr));
}
return mr->name;
}
bool memory_region_is_ram_device(MemoryRegion *mr)
{
return mr->ram_device;
}
uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
{
uint8_t mask = mr->dirty_log_mask;
if (global_dirty_log && mr->ram_block) {
mask |= (1 << DIRTY_MEMORY_MIGRATION);
}
return mask;
}
bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
{
return memory_region_get_dirty_log_mask(mr) & (1 << client);
}
static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
{
IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
IOMMUNotifier *iommu_notifier;
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
flags |= iommu_notifier->notifier_flags;
}
if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
imrc->notify_flag_changed(iommu_mr,
iommu_mr->iommu_notify_flags,
flags);
}
iommu_mr->iommu_notify_flags = flags;
}
void memory_region_register_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n)
{
IOMMUMemoryRegion *iommu_mr;
if (mr->alias) {
memory_region_register_iommu_notifier(mr->alias, n);
return;
}
/* We need to register for at least one bitfield */
iommu_mr = IOMMU_MEMORY_REGION(mr);
assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
assert(n->start <= n->end);
QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
memory_region_update_iommu_notify_flags(iommu_mr);
}
uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (imrc->get_min_page_size) {
return imrc->get_min_page_size(iommu_mr);
}
return TARGET_PAGE_SIZE;
}
void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
{
MemoryRegion *mr = MEMORY_REGION(iommu_mr);
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
hwaddr addr, granularity;
IOMMUTLBEntry iotlb;
/* If the IOMMU has its own replay callback, override */
if (imrc->replay) {
imrc->replay(iommu_mr, n);
return;
}
granularity = memory_region_iommu_get_min_page_size(iommu_mr);
for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE);
if (iotlb.perm != IOMMU_NONE) {
n->notify(n, &iotlb);
}
/* if (2^64 - MR size) < granularity, it's possible to get an
* infinite loop here. This should catch such a wraparound */
if ((addr + granularity) < addr) {
break;
}
}
}
void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
{
IOMMUNotifier *notifier;
IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
memory_region_iommu_replay(iommu_mr, notifier);
}
}
void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n)
{
IOMMUMemoryRegion *iommu_mr;
if (mr->alias) {
memory_region_unregister_iommu_notifier(mr->alias, n);
return;
}
QLIST_REMOVE(n, node);
iommu_mr = IOMMU_MEMORY_REGION(mr);
memory_region_update_iommu_notify_flags(iommu_mr);
}
void memory_region_notify_one(IOMMUNotifier *notifier,
IOMMUTLBEntry *entry)
{
IOMMUNotifierFlag request_flags;
/*
* Skip the notification if the notification does not overlap
* with registered range.
*/
if (notifier->start > entry->iova + entry->addr_mask + 1 ||
notifier->end < entry->iova) {
return;
}
if (entry->perm & IOMMU_RW) {
request_flags = IOMMU_NOTIFIER_MAP;
} else {
request_flags = IOMMU_NOTIFIER_UNMAP;
}
if (notifier->notifier_flags & request_flags) {
notifier->notify(notifier, entry);
}
}
void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
IOMMUTLBEntry entry)
{
IOMMUNotifier *iommu_notifier;
assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
memory_region_notify_one(iommu_notifier, &entry);
}
}
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
{
uint8_t mask = 1 << client;
uint8_t old_logging;
assert(client == DIRTY_MEMORY_VGA);
old_logging = mr->vga_logging_count;
mr->vga_logging_count += log ? 1 : -1;
if (!!old_logging == !!mr->vga_logging_count) {
return;
}
memory_region_transaction_begin();
mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client)
{
assert(mr->ram_block);
return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
size, client);
}
void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size)
{
assert(mr->ram_block);
cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
size,
memory_region_get_dirty_log_mask(mr));
}
bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client)
{
assert(mr->ram_block);
return cpu_physical_memory_test_and_clear_dirty(
memory_region_get_ram_addr(mr) + addr, size, client);
}
DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
hwaddr addr,
hwaddr size,
unsigned client)
{
assert(mr->ram_block);
return cpu_physical_memory_snapshot_and_clear_dirty(
memory_region_get_ram_addr(mr) + addr, size, client);
}
bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
hwaddr addr, hwaddr size)
{
assert(mr->ram_block);
return cpu_physical_memory_snapshot_get_dirty(snap,
memory_region_get_ram_addr(mr) + addr, size);
}
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
{
MemoryListener *listener;
AddressSpace *as;
FlatView *view;
FlatRange *fr;
/* If the same address space has multiple log_sync listeners, we
* visit that address space's FlatView multiple times. But because
* log_sync listeners are rare, it's still cheaper than walking each
* address space once.
*/
QTAILQ_FOREACH(listener, &memory_listeners, link) {
if (!listener->log_sync) {
continue;
}
as = listener->address_space;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (fr->mr == mr) {
MemoryRegionSection mrs = section_from_flat_range(fr, as);
listener->log_sync(listener, &mrs);
}
}
flatview_unref(view);
}
}
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
{
if (mr->readonly != readonly) {
memory_region_transaction_begin();
mr->readonly = readonly;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
}
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
{
if (mr->romd_mode != romd_mode) {
memory_region_transaction_begin();
mr->romd_mode = romd_mode;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
}
void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client)
{
assert(mr->ram_block);
cpu_physical_memory_test_and_clear_dirty(
memory_region_get_ram_addr(mr) + addr, size, client);
}
int memory_region_get_fd(MemoryRegion *mr)
{
int fd;
rcu_read_lock();
while (mr->alias) {
mr = mr->alias;
}
fd = mr->ram_block->fd;
rcu_read_unlock();
return fd;
}
void *memory_region_get_ram_ptr(MemoryRegion *mr)
{
void *ptr;
uint64_t offset = 0;
rcu_read_lock();
while (mr->alias) {
offset += mr->alias_offset;
mr = mr->alias;
}
assert(mr->ram_block);
ptr = qemu_map_ram_ptr(mr->ram_block, offset);
rcu_read_unlock();
return ptr;
}
MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
{
RAMBlock *block;
block = qemu_ram_block_from_host(ptr, false, offset);
if (!block) {
return NULL;
}
return block->mr;
}
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
{
return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
}
void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
{
assert(mr->ram_block);
qemu_ram_resize(mr->ram_block, newsize, errp);
}
static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
CoalescedMemoryRange *cmr;
AddrRange tmp;
MemoryRegionSection section;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (fr->mr == mr) {
section = (MemoryRegionSection) {
.address_space = as,
.offset_within_address_space = int128_get64(fr->addr.start),
.size = fr->addr.size,
};
MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
int128_get64(fr->addr.start),
int128_get64(fr->addr.size));
QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
tmp = addrrange_shift(cmr->addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (!addrrange_intersects(tmp, fr->addr)) {
continue;
}
tmp = addrrange_intersection(tmp, fr->addr);
MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
int128_get64(tmp.start),
int128_get64(tmp.size));
}
}
}
flatview_unref(view);
}
static void memory_region_update_coalesced_range(MemoryRegion *mr)
{
AddressSpace *as;
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
memory_region_update_coalesced_range_as(mr, as);
}
}
void memory_region_set_coalescing(MemoryRegion *mr)
{
memory_region_clear_coalescing(mr);
memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
}
void memory_region_add_coalescing(MemoryRegion *mr,
hwaddr offset,
uint64_t size)
{
CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
memory_region_update_coalesced_range(mr);
memory_region_set_flush_coalesced(mr);
}
void memory_region_clear_coalescing(MemoryRegion *mr)
{
CoalescedMemoryRange *cmr;
bool updated = false;
qemu_flush_coalesced_mmio_buffer();
mr->flush_coalesced_mmio = false;
while (!QTAILQ_EMPTY(&mr->coalesced)) {
cmr = QTAILQ_FIRST(&mr->coalesced);
QTAILQ_REMOVE(&mr->coalesced, cmr, link);
g_free(cmr);
updated = true;
}
if (updated) {
memory_region_update_coalesced_range(mr);
}
}
void memory_region_set_flush_coalesced(MemoryRegion *mr)
{
mr->flush_coalesced_mmio = true;
}
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
{
qemu_flush_coalesced_mmio_buffer();
if (QTAILQ_EMPTY(&mr->coalesced)) {
mr->flush_coalesced_mmio = false;
}
}
void memory_region_set_global_locking(MemoryRegion *mr)
{
mr->global_locking = true;
}
void memory_region_clear_global_locking(MemoryRegion *mr)
{
mr->global_locking = false;
}
static bool userspace_eventfd_warning;
void memory_region_add_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.e = e,
};
unsigned i;
if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
userspace_eventfd_warning))) {
userspace_eventfd_warning = true;
error_report("Using eventfd without MMIO binding in KVM. "
"Suboptimal performance expected");
}
if (size) {
adjust_endianness(mr, &mrfd.data, size);
}
memory_region_transaction_begin();
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
break;
}
}
++mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
mr->ioeventfds[i] = mrfd;
ioeventfd_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
void memory_region_del_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.e = e,
};
unsigned i;
if (size) {
adjust_endianness(mr, &mrfd.data, size);
}
memory_region_transaction_begin();
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
break;
}
}
assert(i != mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
--mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
ioeventfd_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
static void memory_region_update_container_subregions(MemoryRegion *subregion)
{
MemoryRegion *mr = subregion->container;
MemoryRegion *other;
memory_region_transaction_begin();
memory_region_ref(subregion);
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->priority >= other->priority) {
QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
goto done;
}
}
QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
done:
memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit();
}
static void memory_region_add_subregion_common(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
assert(!subregion->container);
subregion->container = mr;
subregion->addr = offset;
memory_region_update_container_subregions(subregion);
}
void memory_region_add_subregion(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
subregion->priority = 0;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_add_subregion_overlap(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion,
int priority)
{
subregion->priority = priority;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion)
{
memory_region_transaction_begin();
assert(subregion->container == mr);
subregion->container = NULL;
QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
memory_region_unref(subregion);
memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit();
}
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
{
if (enabled == mr->enabled) {
return;
}
memory_region_transaction_begin();
mr->enabled = enabled;
memory_region_update_pending = true;
memory_region_transaction_commit();
}
void memory_region_set_size(MemoryRegion *mr, uint64_t size)
{
Int128 s = int128_make64(size);
if (size == UINT64_MAX) {
s = int128_2_64();
}
if (int128_eq(s, mr->size)) {
return;
}
memory_region_transaction_begin();
mr->size = s;
memory_region_update_pending = true;
memory_region_transaction_commit();
}
static void memory_region_readd_subregion(MemoryRegion *mr)
{
MemoryRegion *container = mr->container;
if (container) {
memory_region_transaction_begin();
memory_region_ref(mr);
memory_region_del_subregion(container, mr);
mr->container = container;
memory_region_update_container_subregions(mr);
memory_region_unref(mr);
memory_region_transaction_commit();
}
}
void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
{
if (addr != mr->addr) {
mr->addr = addr;
memory_region_readd_subregion(mr);
}
}
void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
{
assert(mr->alias);
if (offset == mr->alias_offset) {
return;
}
memory_region_transaction_begin();
mr->alias_offset = offset;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
uint64_t memory_region_get_alignment(const MemoryRegion *mr)
{
return mr->align;
}
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
{
const AddrRange *addr = addr_;
const FlatRange *fr = fr_;
if (int128_le(addrrange_end(*addr), fr->addr.start)) {
return -1;
} else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
return 1;
}
return 0;
}
static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
{
return bsearch(&addr, view->ranges, view->nr,
sizeof(FlatRange), cmp_flatrange_addr);
}
bool memory_region_is_mapped(MemoryRegion *mr)
{
return mr->container ? true : false;
}
/* Same as memory_region_find, but it does not add a reference to the
* returned region. It must be called from an RCU critical section.
*/
static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret = { .mr = NULL };
MemoryRegion *root;
AddressSpace *as;
AddrRange range;
FlatView *view;
FlatRange *fr;
addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
addr += root->addr;
}
as = memory_region_to_address_space(root);
if (!as) {
return ret;
}
range = addrrange_make(int128_make64(addr), int128_make64(size));
view = atomic_rcu_read(&as->current_map);
fr = flatview_lookup(view, range);
if (!fr) {
return ret;
}
while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
--fr;
}
ret.mr = fr->mr;
ret.address_space = as;
range = addrrange_intersection(range, fr->addr);
ret.offset_within_region = fr->offset_in_region;
ret.offset_within_region += int128_get64(int128_sub(range.start,
fr->addr.start));
ret.size = range.size;
ret.offset_within_address_space = int128_get64(range.start);
ret.readonly = fr->readonly;
return ret;
}
MemoryRegionSection memory_region_find(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret;
rcu_read_lock();
ret = memory_region_find_rcu(mr, addr, size);
if (ret.mr) {
memory_region_ref(ret.mr);
}
rcu_read_unlock();
return ret;
}
bool memory_region_present(MemoryRegion *container, hwaddr addr)
{
MemoryRegion *mr;
rcu_read_lock();
mr = memory_region_find_rcu(container, addr, 1).mr;
rcu_read_unlock();
return mr && mr != container;
}
void memory_global_dirty_log_sync(void)
{
MemoryListener *listener;
AddressSpace *as;
FlatView *view;
FlatRange *fr;
QTAILQ_FOREACH(listener, &memory_listeners, link) {
if (!listener->log_sync) {
continue;
}
as = listener->address_space;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (fr->dirty_log_mask) {
MemoryRegionSection mrs = section_from_flat_range(fr, as);
listener->log_sync(listener, &mrs);
}
}
flatview_unref(view);
}
}
void memory_global_dirty_log_start(void)
{
global_dirty_log = true;
MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
/* Refresh DIRTY_LOG_MIGRATION bit. */
memory_region_transaction_begin();
memory_region_update_pending = true;
memory_region_transaction_commit();
}
void memory_global_dirty_log_stop(void)
{
global_dirty_log = false;
/* Refresh DIRTY_LOG_MIGRATION bit. */
memory_region_transaction_begin();
memory_region_update_pending = true;
memory_region_transaction_commit();
MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
}
static void listener_add_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->begin) {
listener->begin(listener);
}
if (global_dirty_log) {
if (listener->log_global_start) {
listener->log_global_start(listener);
}
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = {
.mr = fr->mr,
.address_space = as,
.offset_within_region = fr->offset_in_region,
.size = fr->addr.size,
.offset_within_address_space = int128_get64(fr->addr.start),
.readonly = fr->readonly,
};
if (fr->dirty_log_mask && listener->log_start) {
listener->log_start(listener, &section, 0, fr->dirty_log_mask);
}
if (listener->region_add) {
listener->region_add(listener, &section);
}
}
if (listener->commit) {
listener->commit(listener);
}
flatview_unref(view);
}
void memory_listener_register(MemoryListener *listener, AddressSpace *as)
{
MemoryListener *other = NULL;
listener->address_space = as;
if (QTAILQ_EMPTY(&memory_listeners)
|| listener->priority >= QTAILQ_LAST(&memory_listeners,
memory_listeners)->priority) {
QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
} else {
QTAILQ_FOREACH(other, &memory_listeners, link) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link);
}
if (QTAILQ_EMPTY(&as->listeners)
|| listener->priority >= QTAILQ_LAST(&as->listeners,
memory_listeners)->priority) {
QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
} else {
QTAILQ_FOREACH(other, &as->listeners, link_as) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link_as);
}
listener_add_address_space(listener, as);
}
void memory_listener_unregister(MemoryListener *listener)
{
if (!listener->address_space) {
return;
}
QTAILQ_REMOVE(&memory_listeners, listener, link);
QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
listener->address_space = NULL;
}
bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
{
void *host;
unsigned size = 0;
unsigned offset = 0;
Object *new_interface;
if (!mr || !mr->ops->request_ptr) {
return false;
}
/*
* Avoid an update if the request_ptr call
* memory_region_invalidate_mmio_ptr which seems to be likely when we use
* a cache.
*/
memory_region_transaction_begin();
host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
if (!host || !size) {
memory_region_transaction_commit();
return false;
}
new_interface = object_new("mmio_interface");
qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
memory_region_transaction_commit();
return true;
}
typedef struct MMIOPtrInvalidate {
MemoryRegion *mr;
hwaddr offset;
unsigned size;
int busy;
int allocated;
} MMIOPtrInvalidate;
#define MAX_MMIO_INVALIDATE 10
static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
run_on_cpu_data data)
{
MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
MemoryRegion *mr = invalidate_data->mr;
hwaddr offset = invalidate_data->offset;
unsigned size = invalidate_data->size;
MemoryRegionSection section = memory_region_find(mr, offset, size);
qemu_mutex_lock_iothread();
/* Reset dirty so this doesn't happen later. */
cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
if (section.mr != mr) {
/* memory_region_find add a ref on section.mr */
memory_region_unref(section.mr);
if (MMIO_INTERFACE(section.mr->owner)) {
/* We found the interface just drop it. */
object_property_set_bool(section.mr->owner, false, "realized",
NULL);
object_unref(section.mr->owner);
object_unparent(section.mr->owner);
}
}
qemu_mutex_unlock_iothread();
if (invalidate_data->allocated) {
g_free(invalidate_data);
} else {
invalidate_data->busy = 0;
}
}
void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
unsigned size)
{
size_t i;
MMIOPtrInvalidate *invalidate_data = NULL;
for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
invalidate_data = &mmio_ptr_invalidate_list[i];
break;
}
}
if (!invalidate_data) {
invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
invalidate_data->allocated = 1;
}
invalidate_data->mr = mr;
invalidate_data->offset = offset;
invalidate_data->size = size;
async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
RUN_ON_CPU_HOST_PTR(invalidate_data));
}
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
{
memory_region_ref(root);
memory_region_transaction_begin();
as->ref_count = 1;
as->root = root;
as->malloced = false;
as->current_map = g_new(FlatView, 1);
flatview_init(as->current_map);
as->ioeventfd_nb = 0;
as->ioeventfds = NULL;
QTAILQ_INIT(&as->listeners);
QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
as->name = g_strdup(name ? name : "anonymous");
address_space_init_dispatch(as);
memory_region_update_pending |= root->enabled;
memory_region_transaction_commit();
}
static void do_address_space_destroy(AddressSpace *as)
{
bool do_free = as->malloced;
address_space_destroy_dispatch(as);
assert(QTAILQ_EMPTY(&as->listeners));
flatview_unref(as->current_map);
g_free(as->name);
g_free(as->ioeventfds);
memory_region_unref(as->root);
if (do_free) {
g_free(as);
}
}
AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
{
AddressSpace *as;
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
if (root == as->root && as->malloced) {
as->ref_count++;
return as;
}
}
as = g_malloc0(sizeof *as);
address_space_init(as, root, name);
as->malloced = true;
return as;
}
void address_space_destroy(AddressSpace *as)
{
MemoryRegion *root = as->root;
as->ref_count--;
if (as->ref_count) {
return;
}
/* Flush out anything from MemoryListeners listening in on this */
memory_region_transaction_begin();
as->root = NULL;
memory_region_transaction_commit();
QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
address_space_unregister(as);
/* At this point, as->dispatch and as->current_map are dummy
* entries that the guest should never use. Wait for the old
* values to expire before freeing the data.
*/
as->root = root;
call_rcu(as, do_address_space_destroy, rcu);
}
static const char *memory_region_type(MemoryRegion *mr)
{
if (memory_region_is_ram_device(mr)) {
return "ramd";
} else if (memory_region_is_romd(mr)) {
return "romd";
} else if (memory_region_is_rom(mr)) {
return "rom";
} else if (memory_region_is_ram(mr)) {
return "ram";
} else {
return "i/o";
}
}
typedef struct MemoryRegionList MemoryRegionList;
struct MemoryRegionList {
const MemoryRegion *mr;
QTAILQ_ENTRY(MemoryRegionList) queue;
};
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
int128_sub((size), int128_one())) : 0)
#define MTREE_INDENT " "
static void mtree_print_mr(fprintf_function mon_printf, void *f,
const MemoryRegion *mr, unsigned int level,
hwaddr base,
MemoryRegionListHead *alias_print_queue)
{
MemoryRegionList *new_ml, *ml, *next_ml;
MemoryRegionListHead submr_print_queue;
const MemoryRegion *submr;
unsigned int i;
hwaddr cur_start, cur_end;
if (!mr) {
return;
}
for (i = 0; i < level; i++) {
mon_printf(f, MTREE_INDENT);
}
cur_start = base + mr->addr;
cur_end = cur_start + MR_SIZE(mr->size);
/*
* Try to detect overflow of memory region. This should never
* happen normally. When it happens, we dump something to warn the
* user who is observing this.
*/
if (cur_start < base || cur_end < cur_start) {
mon_printf(f, "[DETECTED OVERFLOW!] ");
}
if (mr->alias) {
MemoryRegionList *ml;
bool found = false;
/* check if the alias is already in the queue */
QTAILQ_FOREACH(ml, alias_print_queue, queue) {
if (ml->mr == mr->alias) {
found = true;
}
}
if (!found) {
ml = g_new(MemoryRegionList, 1);
ml->mr = mr->alias;
QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
}
mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
" (prio %d, %s): alias %s @%s " TARGET_FMT_plx
"-" TARGET_FMT_plx "%s\n",
cur_start, cur_end,
mr->priority,
memory_region_type((MemoryRegion *)mr),
memory_region_name(mr),
memory_region_name(mr->alias),
mr->alias_offset,
mr->alias_offset + MR_SIZE(mr->size),
mr->enabled ? "" : " [disabled]");
} else {
mon_printf(f,
TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
cur_start, cur_end,
mr->priority,
memory_region_type((MemoryRegion *)mr),
memory_region_name(mr),
mr->enabled ? "" : " [disabled]");
}
QTAILQ_INIT(&submr_print_queue);
QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
new_ml = g_new(MemoryRegionList, 1);
new_ml->mr = submr;
QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
if (new_ml->mr->addr < ml->mr->addr ||
(new_ml->mr->addr == ml->mr->addr &&
new_ml->mr->priority > ml->mr->priority)) {
QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
new_ml = NULL;
break;
}
}
if (new_ml) {
QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
}
}
QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
alias_print_queue);
}
QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
g_free(ml);
}
}
static void mtree_print_flatview(fprintf_function p, void *f,
AddressSpace *as)
{
FlatView *view = address_space_get_flatview(as);
FlatRange *range = &view->ranges[0];
MemoryRegion *mr;
int n = view->nr;
if (n <= 0) {
p(f, MTREE_INDENT "No rendered FlatView for "
"address space '%s'\n", as->name);
flatview_unref(view);
return;
}
while (n--) {
mr = range->mr;
if (range->offset_in_region) {
p(f, MTREE_INDENT TARGET_FMT_plx "-"
TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
int128_get64(range->addr.start),
int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
mr->priority,
range->readonly ? "rom" : memory_region_type(mr),
memory_region_name(mr),
range->offset_in_region);
} else {
p(f, MTREE_INDENT TARGET_FMT_plx "-"
TARGET_FMT_plx " (prio %d, %s): %s\n",
int128_get64(range->addr.start),
int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
mr->priority,
range->readonly ? "rom" : memory_region_type(mr),
memory_region_name(mr));
}
range++;
}
flatview_unref(view);
}
void mtree_info(fprintf_function mon_printf, void *f, bool flatview)
{
MemoryRegionListHead ml_head;
MemoryRegionList *ml, *ml2;
AddressSpace *as;
if (flatview) {
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
mon_printf(f, "address-space (flat view): %s\n", as->name);
mtree_print_flatview(mon_printf, f, as);
mon_printf(f, "\n");
}
return;
}
QTAILQ_INIT(&ml_head);
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
mon_printf(f, "address-space: %s\n", as->name);
mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
mon_printf(f, "\n");
}
/* print aliased regions */
QTAILQ_FOREACH(ml, &ml_head, queue) {
mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
mon_printf(f, "\n");
}
QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
g_free(ml);
}
}
void memory_region_init_ram(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
void memory_region_init_rom(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
void memory_region_init_rom_device(MemoryRegion *mr,
struct Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
static const TypeInfo memory_region_info = {
.parent = TYPE_OBJECT,
.name = TYPE_MEMORY_REGION,
.instance_size = sizeof(MemoryRegion),
.instance_init = memory_region_initfn,
.instance_finalize = memory_region_finalize,
};
static const TypeInfo iommu_memory_region_info = {
.parent = TYPE_MEMORY_REGION,
.name = TYPE_IOMMU_MEMORY_REGION,
.class_size = sizeof(IOMMUMemoryRegionClass),
.instance_size = sizeof(IOMMUMemoryRegion),
.instance_init = iommu_memory_region_initfn,
.abstract = true,
};
static void memory_register_types(void)
{
type_register_static(&memory_region_info);
type_register_static(&iommu_memory_region_info);
}
type_init(memory_register_types)