mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-23 11:39:53 +00:00
c3affe5670
Move it to qom/cpu.h to avoid issues with include order. Change pc_acpi_smi_interrupt() opaque to X86CPU. Signed-off-by: Andreas Färber <afaerber@suse.de>
2036 lines
51 KiB
C
2036 lines
51 KiB
C
/*
|
|
* QEMU KVM support
|
|
*
|
|
* Copyright IBM, Corp. 2008
|
|
* Red Hat, Inc. 2008
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
* Glauber Costa <gcosta@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <stdarg.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu/atomic.h"
|
|
#include "qemu/option.h"
|
|
#include "qemu/config-file.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/pci/msi.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "qemu/bswap.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "qemu/event_notifier.h"
|
|
|
|
/* This check must be after config-host.h is included */
|
|
#ifdef CONFIG_EVENTFD
|
|
#include <sys/eventfd.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_VALGRIND_H
|
|
#include <valgrind/memcheck.h>
|
|
#endif
|
|
|
|
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
|
|
#define PAGE_SIZE TARGET_PAGE_SIZE
|
|
|
|
//#define DEBUG_KVM
|
|
|
|
#ifdef DEBUG_KVM
|
|
#define DPRINTF(fmt, ...) \
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
#define KVM_MSI_HASHTAB_SIZE 256
|
|
|
|
typedef struct KVMSlot
|
|
{
|
|
hwaddr start_addr;
|
|
ram_addr_t memory_size;
|
|
void *ram;
|
|
int slot;
|
|
int flags;
|
|
} KVMSlot;
|
|
|
|
typedef struct kvm_dirty_log KVMDirtyLog;
|
|
|
|
struct KVMState
|
|
{
|
|
KVMSlot slots[32];
|
|
int fd;
|
|
int vmfd;
|
|
int coalesced_mmio;
|
|
struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
|
|
bool coalesced_flush_in_progress;
|
|
int broken_set_mem_region;
|
|
int migration_log;
|
|
int vcpu_events;
|
|
int robust_singlestep;
|
|
int debugregs;
|
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
|
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
|
|
#endif
|
|
int pit_state2;
|
|
int xsave, xcrs;
|
|
int many_ioeventfds;
|
|
int intx_set_mask;
|
|
/* The man page (and posix) say ioctl numbers are signed int, but
|
|
* they're not. Linux, glibc and *BSD all treat ioctl numbers as
|
|
* unsigned, and treating them as signed here can break things */
|
|
unsigned irq_set_ioctl;
|
|
#ifdef KVM_CAP_IRQ_ROUTING
|
|
struct kvm_irq_routing *irq_routes;
|
|
int nr_allocated_irq_routes;
|
|
uint32_t *used_gsi_bitmap;
|
|
unsigned int gsi_count;
|
|
QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
|
|
bool direct_msi;
|
|
#endif
|
|
};
|
|
|
|
KVMState *kvm_state;
|
|
bool kvm_kernel_irqchip;
|
|
bool kvm_async_interrupts_allowed;
|
|
bool kvm_irqfds_allowed;
|
|
bool kvm_msi_via_irqfd_allowed;
|
|
bool kvm_gsi_routing_allowed;
|
|
|
|
static const KVMCapabilityInfo kvm_required_capabilites[] = {
|
|
KVM_CAP_INFO(USER_MEMORY),
|
|
KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static KVMSlot *kvm_alloc_slot(KVMState *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
if (s->slots[i].memory_size == 0) {
|
|
return &s->slots[i];
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s: no free slot available\n", __func__);
|
|
abort();
|
|
}
|
|
|
|
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
|
|
hwaddr start_addr,
|
|
hwaddr end_addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
KVMSlot *mem = &s->slots[i];
|
|
|
|
if (start_addr == mem->start_addr &&
|
|
end_addr == mem->start_addr + mem->memory_size) {
|
|
return mem;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find overlapping slot with lowest start address
|
|
*/
|
|
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
|
|
hwaddr start_addr,
|
|
hwaddr end_addr)
|
|
{
|
|
KVMSlot *found = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
KVMSlot *mem = &s->slots[i];
|
|
|
|
if (mem->memory_size == 0 ||
|
|
(found && found->start_addr < mem->start_addr)) {
|
|
continue;
|
|
}
|
|
|
|
if (end_addr > mem->start_addr &&
|
|
start_addr < mem->start_addr + mem->memory_size) {
|
|
found = mem;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
|
|
hwaddr *phys_addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
KVMSlot *mem = &s->slots[i];
|
|
|
|
if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
|
|
*phys_addr = mem->start_addr + (ram - mem->ram);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
|
|
{
|
|
struct kvm_userspace_memory_region mem;
|
|
|
|
mem.slot = slot->slot;
|
|
mem.guest_phys_addr = slot->start_addr;
|
|
mem.memory_size = slot->memory_size;
|
|
mem.userspace_addr = (unsigned long)slot->ram;
|
|
mem.flags = slot->flags;
|
|
if (s->migration_log) {
|
|
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
|
|
}
|
|
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
|
|
}
|
|
|
|
static void kvm_reset_vcpu(void *opaque)
|
|
{
|
|
CPUState *cpu = opaque;
|
|
|
|
kvm_arch_reset_vcpu(cpu);
|
|
}
|
|
|
|
int kvm_init_vcpu(CPUState *cpu)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
long mmap_size;
|
|
int ret;
|
|
|
|
DPRINTF("kvm_init_vcpu\n");
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
|
|
if (ret < 0) {
|
|
DPRINTF("kvm_create_vcpu failed\n");
|
|
goto err;
|
|
}
|
|
|
|
cpu->kvm_fd = ret;
|
|
cpu->kvm_state = s;
|
|
cpu->kvm_vcpu_dirty = true;
|
|
|
|
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
|
|
if (mmap_size < 0) {
|
|
ret = mmap_size;
|
|
DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
|
|
goto err;
|
|
}
|
|
|
|
cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
cpu->kvm_fd, 0);
|
|
if (cpu->kvm_run == MAP_FAILED) {
|
|
ret = -errno;
|
|
DPRINTF("mmap'ing vcpu state failed\n");
|
|
goto err;
|
|
}
|
|
|
|
if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
|
|
s->coalesced_mmio_ring =
|
|
(void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
|
|
}
|
|
|
|
ret = kvm_arch_init_vcpu(cpu);
|
|
if (ret == 0) {
|
|
qemu_register_reset(kvm_reset_vcpu, cpu);
|
|
kvm_arch_reset_vcpu(cpu);
|
|
}
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* dirty pages logging control
|
|
*/
|
|
|
|
static int kvm_mem_flags(KVMState *s, bool log_dirty)
|
|
{
|
|
return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
|
|
}
|
|
|
|
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
|
|
int old_flags;
|
|
|
|
old_flags = mem->flags;
|
|
|
|
flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
|
|
mem->flags = flags;
|
|
|
|
/* If nothing changed effectively, no need to issue ioctl */
|
|
if (s->migration_log) {
|
|
flags |= KVM_MEM_LOG_DIRTY_PAGES;
|
|
}
|
|
|
|
if (flags == old_flags) {
|
|
return 0;
|
|
}
|
|
|
|
return kvm_set_user_memory_region(s, mem);
|
|
}
|
|
|
|
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
|
|
ram_addr_t size, bool log_dirty)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
|
|
|
|
if (mem == NULL) {
|
|
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
|
|
TARGET_FMT_plx "\n", __func__, phys_addr,
|
|
(hwaddr)(phys_addr + size - 1));
|
|
return -EINVAL;
|
|
}
|
|
return kvm_slot_dirty_pages_log_change(mem, log_dirty);
|
|
}
|
|
|
|
static void kvm_log_start(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
|
|
section->size, true);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_log_stop(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
|
|
section->size, false);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static int kvm_set_migration_log(int enable)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
KVMSlot *mem;
|
|
int i, err;
|
|
|
|
s->migration_log = enable;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
mem = &s->slots[i];
|
|
|
|
if (!mem->memory_size) {
|
|
continue;
|
|
}
|
|
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
|
|
continue;
|
|
}
|
|
err = kvm_set_user_memory_region(s, mem);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* get kvm's dirty pages bitmap and update qemu's */
|
|
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
|
|
unsigned long *bitmap)
|
|
{
|
|
unsigned int i, j;
|
|
unsigned long page_number, c;
|
|
hwaddr addr, addr1;
|
|
unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
|
|
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
|
|
|
|
/*
|
|
* bitmap-traveling is faster than memory-traveling (for addr...)
|
|
* especially when most of the memory is not dirty.
|
|
*/
|
|
for (i = 0; i < len; i++) {
|
|
if (bitmap[i] != 0) {
|
|
c = leul_to_cpu(bitmap[i]);
|
|
do {
|
|
j = ffsl(c) - 1;
|
|
c &= ~(1ul << j);
|
|
page_number = (i * HOST_LONG_BITS + j) * hpratio;
|
|
addr1 = page_number * TARGET_PAGE_SIZE;
|
|
addr = section->offset_within_region + addr1;
|
|
memory_region_set_dirty(section->mr, addr,
|
|
TARGET_PAGE_SIZE * hpratio);
|
|
} while (c != 0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
|
|
|
|
/**
|
|
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
|
|
* This function updates qemu's dirty bitmap using
|
|
* memory_region_set_dirty(). This means all bits are set
|
|
* to dirty.
|
|
*
|
|
* @start_add: start of logged region.
|
|
* @end_addr: end of logged region.
|
|
*/
|
|
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
unsigned long size, allocated_size = 0;
|
|
KVMDirtyLog d;
|
|
KVMSlot *mem;
|
|
int ret = 0;
|
|
hwaddr start_addr = section->offset_within_address_space;
|
|
hwaddr end_addr = start_addr + section->size;
|
|
|
|
d.dirty_bitmap = NULL;
|
|
while (start_addr < end_addr) {
|
|
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
|
|
if (mem == NULL) {
|
|
break;
|
|
}
|
|
|
|
/* XXX bad kernel interface alert
|
|
* For dirty bitmap, kernel allocates array of size aligned to
|
|
* bits-per-long. But for case when the kernel is 64bits and
|
|
* the userspace is 32bits, userspace can't align to the same
|
|
* bits-per-long, since sizeof(long) is different between kernel
|
|
* and user space. This way, userspace will provide buffer which
|
|
* may be 4 bytes less than the kernel will use, resulting in
|
|
* userspace memory corruption (which is not detectable by valgrind
|
|
* too, in most cases).
|
|
* So for now, let's align to 64 instead of HOST_LONG_BITS here, in
|
|
* a hope that sizeof(long) wont become >8 any time soon.
|
|
*/
|
|
size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
|
|
/*HOST_LONG_BITS*/ 64) / 8;
|
|
if (!d.dirty_bitmap) {
|
|
d.dirty_bitmap = g_malloc(size);
|
|
} else if (size > allocated_size) {
|
|
d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
|
|
}
|
|
allocated_size = size;
|
|
memset(d.dirty_bitmap, 0, allocated_size);
|
|
|
|
d.slot = mem->slot;
|
|
|
|
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
|
|
DPRINTF("ioctl failed %d\n", errno);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
|
|
start_addr = mem->start_addr + mem->memory_size;
|
|
}
|
|
g_free(d.dirty_bitmap);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_coalesce_mmio_region(MemoryListener *listener,
|
|
MemoryRegionSection *secion,
|
|
hwaddr start, hwaddr size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_mmio) {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
zone.addr = start;
|
|
zone.size = size;
|
|
zone.pad = 0;
|
|
|
|
(void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
|
|
}
|
|
}
|
|
|
|
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
|
|
MemoryRegionSection *secion,
|
|
hwaddr start, hwaddr size)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_mmio) {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
|
|
zone.addr = start;
|
|
zone.size = size;
|
|
zone.pad = 0;
|
|
|
|
(void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
|
|
}
|
|
}
|
|
|
|
int kvm_check_extension(KVMState *s, unsigned int extension)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_check_many_ioeventfds(void)
|
|
{
|
|
/* Userspace can use ioeventfd for io notification. This requires a host
|
|
* that supports eventfd(2) and an I/O thread; since eventfd does not
|
|
* support SIGIO it cannot interrupt the vcpu.
|
|
*
|
|
* Older kernels have a 6 device limit on the KVM io bus. Find out so we
|
|
* can avoid creating too many ioeventfds.
|
|
*/
|
|
#if defined(CONFIG_EVENTFD)
|
|
int ioeventfds[7];
|
|
int i, ret = 0;
|
|
for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
|
|
ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
|
|
if (ioeventfds[i] < 0) {
|
|
break;
|
|
}
|
|
ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
|
|
if (ret < 0) {
|
|
close(ioeventfds[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Decide whether many devices are supported or not */
|
|
ret = i == ARRAY_SIZE(ioeventfds);
|
|
|
|
while (i-- > 0) {
|
|
kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
|
|
close(ioeventfds[i]);
|
|
}
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static const KVMCapabilityInfo *
|
|
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
|
|
{
|
|
while (list->name) {
|
|
if (!kvm_check_extension(s, list->value)) {
|
|
return list;
|
|
}
|
|
list++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
KVMSlot *mem, old;
|
|
int err;
|
|
MemoryRegion *mr = section->mr;
|
|
bool log_dirty = memory_region_is_logging(mr);
|
|
hwaddr start_addr = section->offset_within_address_space;
|
|
ram_addr_t size = section->size;
|
|
void *ram = NULL;
|
|
unsigned delta;
|
|
|
|
/* kvm works in page size chunks, but the function may be called
|
|
with sub-page size and unaligned start address. */
|
|
delta = TARGET_PAGE_ALIGN(size) - size;
|
|
if (delta > size) {
|
|
return;
|
|
}
|
|
start_addr += delta;
|
|
size -= delta;
|
|
size &= TARGET_PAGE_MASK;
|
|
if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
|
|
return;
|
|
}
|
|
|
|
if (!memory_region_is_ram(mr)) {
|
|
return;
|
|
}
|
|
|
|
ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
|
|
|
|
while (1) {
|
|
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
|
|
if (!mem) {
|
|
break;
|
|
}
|
|
|
|
if (add && start_addr >= mem->start_addr &&
|
|
(start_addr + size <= mem->start_addr + mem->memory_size) &&
|
|
(ram - start_addr == mem->ram - mem->start_addr)) {
|
|
/* The new slot fits into the existing one and comes with
|
|
* identical parameters - update flags and done. */
|
|
kvm_slot_dirty_pages_log_change(mem, log_dirty);
|
|
return;
|
|
}
|
|
|
|
old = *mem;
|
|
|
|
if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
kvm_physical_sync_dirty_bitmap(section);
|
|
}
|
|
|
|
/* unregister the overlapping slot */
|
|
mem->memory_size = 0;
|
|
err = kvm_set_user_memory_region(s, mem);
|
|
if (err) {
|
|
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
|
|
__func__, strerror(-err));
|
|
abort();
|
|
}
|
|
|
|
/* Workaround for older KVM versions: we can't join slots, even not by
|
|
* unregistering the previous ones and then registering the larger
|
|
* slot. We have to maintain the existing fragmentation. Sigh.
|
|
*
|
|
* This workaround assumes that the new slot starts at the same
|
|
* address as the first existing one. If not or if some overlapping
|
|
* slot comes around later, we will fail (not seen in practice so far)
|
|
* - and actually require a recent KVM version. */
|
|
if (s->broken_set_mem_region &&
|
|
old.start_addr == start_addr && old.memory_size < size && add) {
|
|
mem = kvm_alloc_slot(s);
|
|
mem->memory_size = old.memory_size;
|
|
mem->start_addr = old.start_addr;
|
|
mem->ram = old.ram;
|
|
mem->flags = kvm_mem_flags(s, log_dirty);
|
|
|
|
err = kvm_set_user_memory_region(s, mem);
|
|
if (err) {
|
|
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
|
|
strerror(-err));
|
|
abort();
|
|
}
|
|
|
|
start_addr += old.memory_size;
|
|
ram += old.memory_size;
|
|
size -= old.memory_size;
|
|
continue;
|
|
}
|
|
|
|
/* register prefix slot */
|
|
if (old.start_addr < start_addr) {
|
|
mem = kvm_alloc_slot(s);
|
|
mem->memory_size = start_addr - old.start_addr;
|
|
mem->start_addr = old.start_addr;
|
|
mem->ram = old.ram;
|
|
mem->flags = kvm_mem_flags(s, log_dirty);
|
|
|
|
err = kvm_set_user_memory_region(s, mem);
|
|
if (err) {
|
|
fprintf(stderr, "%s: error registering prefix slot: %s\n",
|
|
__func__, strerror(-err));
|
|
#ifdef TARGET_PPC
|
|
fprintf(stderr, "%s: This is probably because your kernel's " \
|
|
"PAGE_SIZE is too big. Please try to use 4k " \
|
|
"PAGE_SIZE!\n", __func__);
|
|
#endif
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/* register suffix slot */
|
|
if (old.start_addr + old.memory_size > start_addr + size) {
|
|
ram_addr_t size_delta;
|
|
|
|
mem = kvm_alloc_slot(s);
|
|
mem->start_addr = start_addr + size;
|
|
size_delta = mem->start_addr - old.start_addr;
|
|
mem->memory_size = old.memory_size - size_delta;
|
|
mem->ram = old.ram + size_delta;
|
|
mem->flags = kvm_mem_flags(s, log_dirty);
|
|
|
|
err = kvm_set_user_memory_region(s, mem);
|
|
if (err) {
|
|
fprintf(stderr, "%s: error registering suffix slot: %s\n",
|
|
__func__, strerror(-err));
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* in case the KVM bug workaround already "consumed" the new slot */
|
|
if (!size) {
|
|
return;
|
|
}
|
|
if (!add) {
|
|
return;
|
|
}
|
|
mem = kvm_alloc_slot(s);
|
|
mem->memory_size = size;
|
|
mem->start_addr = start_addr;
|
|
mem->ram = ram;
|
|
mem->flags = kvm_mem_flags(s, log_dirty);
|
|
|
|
err = kvm_set_user_memory_region(s, mem);
|
|
if (err) {
|
|
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
|
|
strerror(-err));
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_region_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
kvm_set_phys_mem(section, true);
|
|
}
|
|
|
|
static void kvm_region_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
kvm_set_phys_mem(section, false);
|
|
}
|
|
|
|
static void kvm_log_sync(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_physical_sync_dirty_bitmap(section);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_log_global_start(struct MemoryListener *listener)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_set_migration_log(1);
|
|
assert(r >= 0);
|
|
}
|
|
|
|
static void kvm_log_global_stop(struct MemoryListener *listener)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_set_migration_log(0);
|
|
assert(r >= 0);
|
|
}
|
|
|
|
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
assert(match_data && section->size <= 8);
|
|
|
|
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
|
|
data, true, section->size);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
|
|
data, false, section->size);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_io_ioeventfd_add(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
assert(match_data && section->size == 2);
|
|
|
|
r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
|
|
data, true);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_io_ioeventfd_del(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data,
|
|
EventNotifier *e)
|
|
|
|
{
|
|
int fd = event_notifier_get_fd(e);
|
|
int r;
|
|
|
|
r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
|
|
data, false);
|
|
if (r < 0) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static MemoryListener kvm_memory_listener = {
|
|
.region_add = kvm_region_add,
|
|
.region_del = kvm_region_del,
|
|
.log_start = kvm_log_start,
|
|
.log_stop = kvm_log_stop,
|
|
.log_sync = kvm_log_sync,
|
|
.log_global_start = kvm_log_global_start,
|
|
.log_global_stop = kvm_log_global_stop,
|
|
.eventfd_add = kvm_mem_ioeventfd_add,
|
|
.eventfd_del = kvm_mem_ioeventfd_del,
|
|
.coalesced_mmio_add = kvm_coalesce_mmio_region,
|
|
.coalesced_mmio_del = kvm_uncoalesce_mmio_region,
|
|
.priority = 10,
|
|
};
|
|
|
|
static MemoryListener kvm_io_listener = {
|
|
.eventfd_add = kvm_io_ioeventfd_add,
|
|
.eventfd_del = kvm_io_ioeventfd_del,
|
|
.priority = 10,
|
|
};
|
|
|
|
static void kvm_handle_interrupt(CPUState *cpu, int mask)
|
|
{
|
|
cpu->interrupt_request |= mask;
|
|
|
|
if (!qemu_cpu_is_self(cpu)) {
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
}
|
|
|
|
int kvm_set_irq(KVMState *s, int irq, int level)
|
|
{
|
|
struct kvm_irq_level event;
|
|
int ret;
|
|
|
|
assert(kvm_async_interrupts_enabled());
|
|
|
|
event.level = level;
|
|
event.irq = irq;
|
|
ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
|
|
if (ret < 0) {
|
|
perror("kvm_set_irq");
|
|
abort();
|
|
}
|
|
|
|
return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
|
|
}
|
|
|
|
#ifdef KVM_CAP_IRQ_ROUTING
|
|
typedef struct KVMMSIRoute {
|
|
struct kvm_irq_routing_entry kroute;
|
|
QTAILQ_ENTRY(KVMMSIRoute) entry;
|
|
} KVMMSIRoute;
|
|
|
|
static void set_gsi(KVMState *s, unsigned int gsi)
|
|
{
|
|
s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
|
|
}
|
|
|
|
static void clear_gsi(KVMState *s, unsigned int gsi)
|
|
{
|
|
s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
|
|
}
|
|
|
|
static void kvm_init_irq_routing(KVMState *s)
|
|
{
|
|
int gsi_count, i;
|
|
|
|
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
|
|
if (gsi_count > 0) {
|
|
unsigned int gsi_bits, i;
|
|
|
|
/* Round up so we can search ints using ffs */
|
|
gsi_bits = ALIGN(gsi_count, 32);
|
|
s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
|
|
s->gsi_count = gsi_count;
|
|
|
|
/* Mark any over-allocated bits as already in use */
|
|
for (i = gsi_count; i < gsi_bits; i++) {
|
|
set_gsi(s, i);
|
|
}
|
|
}
|
|
|
|
s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
|
|
s->nr_allocated_irq_routes = 0;
|
|
|
|
if (!s->direct_msi) {
|
|
for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
|
|
QTAILQ_INIT(&s->msi_hashtab[i]);
|
|
}
|
|
}
|
|
|
|
kvm_arch_init_irq_routing(s);
|
|
}
|
|
|
|
static void kvm_irqchip_commit_routes(KVMState *s)
|
|
{
|
|
int ret;
|
|
|
|
s->irq_routes->flags = 0;
|
|
ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
|
|
assert(ret == 0);
|
|
}
|
|
|
|
static void kvm_add_routing_entry(KVMState *s,
|
|
struct kvm_irq_routing_entry *entry)
|
|
{
|
|
struct kvm_irq_routing_entry *new;
|
|
int n, size;
|
|
|
|
if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
|
|
n = s->nr_allocated_irq_routes * 2;
|
|
if (n < 64) {
|
|
n = 64;
|
|
}
|
|
size = sizeof(struct kvm_irq_routing);
|
|
size += n * sizeof(*new);
|
|
s->irq_routes = g_realloc(s->irq_routes, size);
|
|
s->nr_allocated_irq_routes = n;
|
|
}
|
|
n = s->irq_routes->nr++;
|
|
new = &s->irq_routes->entries[n];
|
|
memset(new, 0, sizeof(*new));
|
|
new->gsi = entry->gsi;
|
|
new->type = entry->type;
|
|
new->flags = entry->flags;
|
|
new->u = entry->u;
|
|
|
|
set_gsi(s, entry->gsi);
|
|
|
|
kvm_irqchip_commit_routes(s);
|
|
}
|
|
|
|
static int kvm_update_routing_entry(KVMState *s,
|
|
struct kvm_irq_routing_entry *new_entry)
|
|
{
|
|
struct kvm_irq_routing_entry *entry;
|
|
int n;
|
|
|
|
for (n = 0; n < s->irq_routes->nr; n++) {
|
|
entry = &s->irq_routes->entries[n];
|
|
if (entry->gsi != new_entry->gsi) {
|
|
continue;
|
|
}
|
|
|
|
entry->type = new_entry->type;
|
|
entry->flags = new_entry->flags;
|
|
entry->u = new_entry->u;
|
|
|
|
kvm_irqchip_commit_routes(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -ESRCH;
|
|
}
|
|
|
|
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
|
|
{
|
|
struct kvm_irq_routing_entry e;
|
|
|
|
assert(pin < s->gsi_count);
|
|
|
|
e.gsi = irq;
|
|
e.type = KVM_IRQ_ROUTING_IRQCHIP;
|
|
e.flags = 0;
|
|
e.u.irqchip.irqchip = irqchip;
|
|
e.u.irqchip.pin = pin;
|
|
kvm_add_routing_entry(s, &e);
|
|
}
|
|
|
|
void kvm_irqchip_release_virq(KVMState *s, int virq)
|
|
{
|
|
struct kvm_irq_routing_entry *e;
|
|
int i;
|
|
|
|
for (i = 0; i < s->irq_routes->nr; i++) {
|
|
e = &s->irq_routes->entries[i];
|
|
if (e->gsi == virq) {
|
|
s->irq_routes->nr--;
|
|
*e = s->irq_routes->entries[s->irq_routes->nr];
|
|
}
|
|
}
|
|
clear_gsi(s, virq);
|
|
}
|
|
|
|
static unsigned int kvm_hash_msi(uint32_t data)
|
|
{
|
|
/* This is optimized for IA32 MSI layout. However, no other arch shall
|
|
* repeat the mistake of not providing a direct MSI injection API. */
|
|
return data & 0xff;
|
|
}
|
|
|
|
static void kvm_flush_dynamic_msi_routes(KVMState *s)
|
|
{
|
|
KVMMSIRoute *route, *next;
|
|
unsigned int hash;
|
|
|
|
for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
|
|
QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
|
|
kvm_irqchip_release_virq(s, route->kroute.gsi);
|
|
QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
|
|
g_free(route);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kvm_irqchip_get_virq(KVMState *s)
|
|
{
|
|
uint32_t *word = s->used_gsi_bitmap;
|
|
int max_words = ALIGN(s->gsi_count, 32) / 32;
|
|
int i, bit;
|
|
bool retry = true;
|
|
|
|
again:
|
|
/* Return the lowest unused GSI in the bitmap */
|
|
for (i = 0; i < max_words; i++) {
|
|
bit = ffs(~word[i]);
|
|
if (!bit) {
|
|
continue;
|
|
}
|
|
|
|
return bit - 1 + i * 32;
|
|
}
|
|
if (!s->direct_msi && retry) {
|
|
retry = false;
|
|
kvm_flush_dynamic_msi_routes(s);
|
|
goto again;
|
|
}
|
|
return -ENOSPC;
|
|
|
|
}
|
|
|
|
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
|
|
{
|
|
unsigned int hash = kvm_hash_msi(msg.data);
|
|
KVMMSIRoute *route;
|
|
|
|
QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
|
|
if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
|
|
route->kroute.u.msi.address_hi == (msg.address >> 32) &&
|
|
route->kroute.u.msi.data == msg.data) {
|
|
return route;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
|
|
{
|
|
struct kvm_msi msi;
|
|
KVMMSIRoute *route;
|
|
|
|
if (s->direct_msi) {
|
|
msi.address_lo = (uint32_t)msg.address;
|
|
msi.address_hi = msg.address >> 32;
|
|
msi.data = msg.data;
|
|
msi.flags = 0;
|
|
memset(msi.pad, 0, sizeof(msi.pad));
|
|
|
|
return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
|
|
}
|
|
|
|
route = kvm_lookup_msi_route(s, msg);
|
|
if (!route) {
|
|
int virq;
|
|
|
|
virq = kvm_irqchip_get_virq(s);
|
|
if (virq < 0) {
|
|
return virq;
|
|
}
|
|
|
|
route = g_malloc(sizeof(KVMMSIRoute));
|
|
route->kroute.gsi = virq;
|
|
route->kroute.type = KVM_IRQ_ROUTING_MSI;
|
|
route->kroute.flags = 0;
|
|
route->kroute.u.msi.address_lo = (uint32_t)msg.address;
|
|
route->kroute.u.msi.address_hi = msg.address >> 32;
|
|
route->kroute.u.msi.data = msg.data;
|
|
|
|
kvm_add_routing_entry(s, &route->kroute);
|
|
|
|
QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
|
|
entry);
|
|
}
|
|
|
|
assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
|
|
|
|
return kvm_set_irq(s, route->kroute.gsi, 1);
|
|
}
|
|
|
|
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
|
|
{
|
|
struct kvm_irq_routing_entry kroute;
|
|
int virq;
|
|
|
|
if (!kvm_gsi_routing_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
virq = kvm_irqchip_get_virq(s);
|
|
if (virq < 0) {
|
|
return virq;
|
|
}
|
|
|
|
kroute.gsi = virq;
|
|
kroute.type = KVM_IRQ_ROUTING_MSI;
|
|
kroute.flags = 0;
|
|
kroute.u.msi.address_lo = (uint32_t)msg.address;
|
|
kroute.u.msi.address_hi = msg.address >> 32;
|
|
kroute.u.msi.data = msg.data;
|
|
|
|
kvm_add_routing_entry(s, &kroute);
|
|
|
|
return virq;
|
|
}
|
|
|
|
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
|
|
{
|
|
struct kvm_irq_routing_entry kroute;
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
kroute.gsi = virq;
|
|
kroute.type = KVM_IRQ_ROUTING_MSI;
|
|
kroute.flags = 0;
|
|
kroute.u.msi.address_lo = (uint32_t)msg.address;
|
|
kroute.u.msi.address_hi = msg.address >> 32;
|
|
kroute.u.msi.data = msg.data;
|
|
|
|
return kvm_update_routing_entry(s, &kroute);
|
|
}
|
|
|
|
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
|
|
{
|
|
struct kvm_irqfd irqfd = {
|
|
.fd = fd,
|
|
.gsi = virq,
|
|
.flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
|
|
};
|
|
|
|
if (!kvm_irqfds_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
|
|
}
|
|
|
|
#else /* !KVM_CAP_IRQ_ROUTING */
|
|
|
|
static void kvm_init_irq_routing(KVMState *s)
|
|
{
|
|
}
|
|
|
|
void kvm_irqchip_release_virq(KVMState *s, int virq)
|
|
{
|
|
}
|
|
|
|
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif /* !KVM_CAP_IRQ_ROUTING */
|
|
|
|
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
|
|
{
|
|
return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
|
|
}
|
|
|
|
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
|
|
{
|
|
return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
|
|
}
|
|
|
|
static int kvm_irqchip_create(KVMState *s)
|
|
{
|
|
QemuOptsList *list = qemu_find_opts("machine");
|
|
int ret;
|
|
|
|
if (QTAILQ_EMPTY(&list->head) ||
|
|
!qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
|
|
"kernel_irqchip", true) ||
|
|
!kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
|
|
return 0;
|
|
}
|
|
|
|
ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "Create kernel irqchip failed\n");
|
|
return ret;
|
|
}
|
|
|
|
kvm_kernel_irqchip = true;
|
|
/* If we have an in-kernel IRQ chip then we must have asynchronous
|
|
* interrupt delivery (though the reverse is not necessarily true)
|
|
*/
|
|
kvm_async_interrupts_allowed = true;
|
|
|
|
kvm_init_irq_routing(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_max_vcpus(KVMState *s)
|
|
{
|
|
int ret;
|
|
|
|
/* Find number of supported CPUs using the recommended
|
|
* procedure from the kernel API documentation to cope with
|
|
* older kernels that may be missing capabilities.
|
|
*/
|
|
ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
return 4;
|
|
}
|
|
|
|
int kvm_init(void)
|
|
{
|
|
static const char upgrade_note[] =
|
|
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
|
|
"(see http://sourceforge.net/projects/kvm).\n";
|
|
KVMState *s;
|
|
const KVMCapabilityInfo *missing_cap;
|
|
int ret;
|
|
int i;
|
|
int max_vcpus;
|
|
|
|
s = g_malloc0(sizeof(KVMState));
|
|
|
|
/*
|
|
* On systems where the kernel can support different base page
|
|
* sizes, host page size may be different from TARGET_PAGE_SIZE,
|
|
* even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
|
|
* page size for the system though.
|
|
*/
|
|
assert(TARGET_PAGE_SIZE <= getpagesize());
|
|
|
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
|
QTAILQ_INIT(&s->kvm_sw_breakpoints);
|
|
#endif
|
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
s->slots[i].slot = i;
|
|
}
|
|
s->vmfd = -1;
|
|
s->fd = qemu_open("/dev/kvm", O_RDWR);
|
|
if (s->fd == -1) {
|
|
fprintf(stderr, "Could not access KVM kernel module: %m\n");
|
|
ret = -errno;
|
|
goto err;
|
|
}
|
|
|
|
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
|
|
if (ret < KVM_API_VERSION) {
|
|
if (ret > 0) {
|
|
ret = -EINVAL;
|
|
}
|
|
fprintf(stderr, "kvm version too old\n");
|
|
goto err;
|
|
}
|
|
|
|
if (ret > KVM_API_VERSION) {
|
|
ret = -EINVAL;
|
|
fprintf(stderr, "kvm version not supported\n");
|
|
goto err;
|
|
}
|
|
|
|
max_vcpus = kvm_max_vcpus(s);
|
|
if (smp_cpus > max_vcpus) {
|
|
ret = -EINVAL;
|
|
fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
|
|
"supported by KVM (%d)\n", smp_cpus, max_vcpus);
|
|
goto err;
|
|
}
|
|
|
|
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
|
|
if (s->vmfd < 0) {
|
|
#ifdef TARGET_S390X
|
|
fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
|
|
"your host kernel command line\n");
|
|
#endif
|
|
ret = s->vmfd;
|
|
goto err;
|
|
}
|
|
|
|
missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
|
|
if (!missing_cap) {
|
|
missing_cap =
|
|
kvm_check_extension_list(s, kvm_arch_required_capabilities);
|
|
}
|
|
if (missing_cap) {
|
|
ret = -EINVAL;
|
|
fprintf(stderr, "kvm does not support %s\n%s",
|
|
missing_cap->name, upgrade_note);
|
|
goto err;
|
|
}
|
|
|
|
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
|
|
|
|
s->broken_set_mem_region = 1;
|
|
ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
|
|
if (ret > 0) {
|
|
s->broken_set_mem_region = 0;
|
|
}
|
|
|
|
#ifdef KVM_CAP_VCPU_EVENTS
|
|
s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
|
|
#endif
|
|
|
|
s->robust_singlestep =
|
|
kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
|
|
|
|
#ifdef KVM_CAP_DEBUGREGS
|
|
s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
|
|
#endif
|
|
|
|
#ifdef KVM_CAP_XSAVE
|
|
s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
|
|
#endif
|
|
|
|
#ifdef KVM_CAP_XCRS
|
|
s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
|
|
#endif
|
|
|
|
#ifdef KVM_CAP_PIT_STATE2
|
|
s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
|
|
#endif
|
|
|
|
#ifdef KVM_CAP_IRQ_ROUTING
|
|
s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
|
|
#endif
|
|
|
|
s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
|
|
|
|
s->irq_set_ioctl = KVM_IRQ_LINE;
|
|
if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
|
|
s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
|
|
}
|
|
|
|
ret = kvm_arch_init(s);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
ret = kvm_irqchip_create(s);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
kvm_state = s;
|
|
memory_listener_register(&kvm_memory_listener, &address_space_memory);
|
|
memory_listener_register(&kvm_io_listener, &address_space_io);
|
|
|
|
s->many_ioeventfds = kvm_check_many_ioeventfds();
|
|
|
|
cpu_interrupt_handler = kvm_handle_interrupt;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
if (s->vmfd >= 0) {
|
|
close(s->vmfd);
|
|
}
|
|
if (s->fd != -1) {
|
|
close(s->fd);
|
|
}
|
|
g_free(s);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
|
|
uint32_t count)
|
|
{
|
|
int i;
|
|
uint8_t *ptr = data;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (direction == KVM_EXIT_IO_IN) {
|
|
switch (size) {
|
|
case 1:
|
|
stb_p(ptr, cpu_inb(port));
|
|
break;
|
|
case 2:
|
|
stw_p(ptr, cpu_inw(port));
|
|
break;
|
|
case 4:
|
|
stl_p(ptr, cpu_inl(port));
|
|
break;
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 1:
|
|
cpu_outb(port, ldub_p(ptr));
|
|
break;
|
|
case 2:
|
|
cpu_outw(port, lduw_p(ptr));
|
|
break;
|
|
case 4:
|
|
cpu_outl(port, ldl_p(ptr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
ptr += size;
|
|
}
|
|
}
|
|
|
|
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
|
|
fprintf(stderr, "KVM internal error.");
|
|
if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
|
|
int i;
|
|
|
|
fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
|
|
for (i = 0; i < run->internal.ndata; ++i) {
|
|
fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
|
|
i, (uint64_t)run->internal.data[i]);
|
|
}
|
|
} else {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
|
|
fprintf(stderr, "emulation failure\n");
|
|
if (!kvm_arch_stop_on_emulation_error(cpu)) {
|
|
cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
|
|
return EXCP_INTERRUPT;
|
|
}
|
|
}
|
|
/* FIXME: Should trigger a qmp message to let management know
|
|
* something went wrong.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
void kvm_flush_coalesced_mmio_buffer(void)
|
|
{
|
|
KVMState *s = kvm_state;
|
|
|
|
if (s->coalesced_flush_in_progress) {
|
|
return;
|
|
}
|
|
|
|
s->coalesced_flush_in_progress = true;
|
|
|
|
if (s->coalesced_mmio_ring) {
|
|
struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
|
|
while (ring->first != ring->last) {
|
|
struct kvm_coalesced_mmio *ent;
|
|
|
|
ent = &ring->coalesced_mmio[ring->first];
|
|
|
|
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
|
|
smp_wmb();
|
|
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
|
|
}
|
|
}
|
|
|
|
s->coalesced_flush_in_progress = false;
|
|
}
|
|
|
|
static void do_kvm_cpu_synchronize_state(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
|
|
if (!cpu->kvm_vcpu_dirty) {
|
|
kvm_arch_get_registers(cpu);
|
|
cpu->kvm_vcpu_dirty = true;
|
|
}
|
|
}
|
|
|
|
void kvm_cpu_synchronize_state(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
|
|
if (!cpu->kvm_vcpu_dirty) {
|
|
run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
|
|
}
|
|
}
|
|
|
|
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
|
|
kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
|
|
cpu->kvm_vcpu_dirty = false;
|
|
}
|
|
|
|
void kvm_cpu_synchronize_post_init(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
|
|
kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
|
|
cpu->kvm_vcpu_dirty = false;
|
|
}
|
|
|
|
int kvm_cpu_exec(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
struct kvm_run *run = cpu->kvm_run;
|
|
int ret, run_ret;
|
|
|
|
DPRINTF("kvm_cpu_exec()\n");
|
|
|
|
if (kvm_arch_process_async_events(cpu)) {
|
|
cpu->exit_request = 0;
|
|
return EXCP_HLT;
|
|
}
|
|
|
|
do {
|
|
if (cpu->kvm_vcpu_dirty) {
|
|
kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
|
|
cpu->kvm_vcpu_dirty = false;
|
|
}
|
|
|
|
kvm_arch_pre_run(cpu, run);
|
|
if (cpu->exit_request) {
|
|
DPRINTF("interrupt exit requested\n");
|
|
/*
|
|
* KVM requires us to reenter the kernel after IO exits to complete
|
|
* instruction emulation. This self-signal will ensure that we
|
|
* leave ASAP again.
|
|
*/
|
|
qemu_cpu_kick_self();
|
|
}
|
|
qemu_mutex_unlock_iothread();
|
|
|
|
run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
|
|
|
|
qemu_mutex_lock_iothread();
|
|
kvm_arch_post_run(cpu, run);
|
|
|
|
if (run_ret < 0) {
|
|
if (run_ret == -EINTR || run_ret == -EAGAIN) {
|
|
DPRINTF("io window exit\n");
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
}
|
|
fprintf(stderr, "error: kvm run failed %s\n",
|
|
strerror(-run_ret));
|
|
abort();
|
|
}
|
|
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_IO:
|
|
DPRINTF("handle_io\n");
|
|
kvm_handle_io(run->io.port,
|
|
(uint8_t *)run + run->io.data_offset,
|
|
run->io.direction,
|
|
run->io.size,
|
|
run->io.count);
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_MMIO:
|
|
DPRINTF("handle_mmio\n");
|
|
cpu_physical_memory_rw(run->mmio.phys_addr,
|
|
run->mmio.data,
|
|
run->mmio.len,
|
|
run->mmio.is_write);
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_IRQ_WINDOW_OPEN:
|
|
DPRINTF("irq_window_open\n");
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
case KVM_EXIT_SHUTDOWN:
|
|
DPRINTF("shutdown\n");
|
|
qemu_system_reset_request();
|
|
ret = EXCP_INTERRUPT;
|
|
break;
|
|
case KVM_EXIT_UNKNOWN:
|
|
fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
|
|
(uint64_t)run->hw.hardware_exit_reason);
|
|
ret = -1;
|
|
break;
|
|
case KVM_EXIT_INTERNAL_ERROR:
|
|
ret = kvm_handle_internal_error(env, run);
|
|
break;
|
|
default:
|
|
DPRINTF("kvm_arch_handle_exit\n");
|
|
ret = kvm_arch_handle_exit(cpu, run);
|
|
break;
|
|
}
|
|
} while (ret == 0);
|
|
|
|
if (ret < 0) {
|
|
cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
|
|
vm_stop(RUN_STATE_INTERNAL_ERROR);
|
|
}
|
|
|
|
cpu->exit_request = 0;
|
|
return ret;
|
|
}
|
|
|
|
int kvm_ioctl(KVMState *s, int type, ...)
|
|
{
|
|
int ret;
|
|
void *arg;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
arg = va_arg(ap, void *);
|
|
va_end(ap);
|
|
|
|
ret = ioctl(s->fd, type, arg);
|
|
if (ret == -1) {
|
|
ret = -errno;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vm_ioctl(KVMState *s, int type, ...)
|
|
{
|
|
int ret;
|
|
void *arg;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
arg = va_arg(ap, void *);
|
|
va_end(ap);
|
|
|
|
ret = ioctl(s->vmfd, type, arg);
|
|
if (ret == -1) {
|
|
ret = -errno;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
|
|
{
|
|
int ret;
|
|
void *arg;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
arg = va_arg(ap, void *);
|
|
va_end(ap);
|
|
|
|
ret = ioctl(cpu->kvm_fd, type, arg);
|
|
if (ret == -1) {
|
|
ret = -errno;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int kvm_has_sync_mmu(void)
|
|
{
|
|
return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
|
|
}
|
|
|
|
int kvm_has_vcpu_events(void)
|
|
{
|
|
return kvm_state->vcpu_events;
|
|
}
|
|
|
|
int kvm_has_robust_singlestep(void)
|
|
{
|
|
return kvm_state->robust_singlestep;
|
|
}
|
|
|
|
int kvm_has_debugregs(void)
|
|
{
|
|
return kvm_state->debugregs;
|
|
}
|
|
|
|
int kvm_has_xsave(void)
|
|
{
|
|
return kvm_state->xsave;
|
|
}
|
|
|
|
int kvm_has_xcrs(void)
|
|
{
|
|
return kvm_state->xcrs;
|
|
}
|
|
|
|
int kvm_has_pit_state2(void)
|
|
{
|
|
return kvm_state->pit_state2;
|
|
}
|
|
|
|
int kvm_has_many_ioeventfds(void)
|
|
{
|
|
if (!kvm_enabled()) {
|
|
return 0;
|
|
}
|
|
return kvm_state->many_ioeventfds;
|
|
}
|
|
|
|
int kvm_has_gsi_routing(void)
|
|
{
|
|
#ifdef KVM_CAP_IRQ_ROUTING
|
|
return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
int kvm_has_intx_set_mask(void)
|
|
{
|
|
return kvm_state->intx_set_mask;
|
|
}
|
|
|
|
void *kvm_vmalloc(ram_addr_t size)
|
|
{
|
|
#ifdef TARGET_S390X
|
|
void *mem;
|
|
|
|
mem = kvm_arch_vmalloc(size);
|
|
if (mem) {
|
|
return mem;
|
|
}
|
|
#endif
|
|
return qemu_vmalloc(size);
|
|
}
|
|
|
|
void kvm_setup_guest_memory(void *start, size_t size)
|
|
{
|
|
#ifdef CONFIG_VALGRIND_H
|
|
VALGRIND_MAKE_MEM_DEFINED(start, size);
|
|
#endif
|
|
if (!kvm_has_sync_mmu()) {
|
|
int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
|
|
|
|
if (ret) {
|
|
perror("qemu_madvise");
|
|
fprintf(stderr,
|
|
"Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
|
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
|
|
target_ulong pc)
|
|
{
|
|
struct kvm_sw_breakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
|
|
if (bp->pc == pc) {
|
|
return bp;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int kvm_sw_breakpoints_active(CPUState *cpu)
|
|
{
|
|
return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
|
|
}
|
|
|
|
struct kvm_set_guest_debug_data {
|
|
struct kvm_guest_debug dbg;
|
|
CPUState *cpu;
|
|
int err;
|
|
};
|
|
|
|
static void kvm_invoke_set_guest_debug(void *data)
|
|
{
|
|
struct kvm_set_guest_debug_data *dbg_data = data;
|
|
|
|
dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
|
|
&dbg_data->dbg);
|
|
}
|
|
|
|
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
struct kvm_set_guest_debug_data data;
|
|
|
|
data.dbg.control = reinject_trap;
|
|
|
|
if (env->singlestep_enabled) {
|
|
data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
|
|
}
|
|
kvm_arch_update_guest_debug(cpu, &data.dbg);
|
|
data.cpu = cpu;
|
|
|
|
run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
|
|
return data.err;
|
|
}
|
|
|
|
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
CPUState *current_cpu = ENV_GET_CPU(current_env);
|
|
struct kvm_sw_breakpoint *bp;
|
|
CPUArchState *env;
|
|
int err;
|
|
|
|
if (type == GDB_BREAKPOINT_SW) {
|
|
bp = kvm_find_sw_breakpoint(current_cpu, addr);
|
|
if (bp) {
|
|
bp->use_count++;
|
|
return 0;
|
|
}
|
|
|
|
bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
|
|
if (!bp) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bp->pc = addr;
|
|
bp->use_count = 1;
|
|
err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
|
|
if (err) {
|
|
g_free(bp);
|
|
return err;
|
|
}
|
|
|
|
QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints,
|
|
bp, entry);
|
|
} else {
|
|
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = kvm_update_guest_debug(env, 0);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
CPUState *current_cpu = ENV_GET_CPU(current_env);
|
|
struct kvm_sw_breakpoint *bp;
|
|
CPUArchState *env;
|
|
int err;
|
|
|
|
if (type == GDB_BREAKPOINT_SW) {
|
|
bp = kvm_find_sw_breakpoint(current_cpu, addr);
|
|
if (!bp) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (bp->use_count > 1) {
|
|
bp->use_count--;
|
|
return 0;
|
|
}
|
|
|
|
err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
|
|
g_free(bp);
|
|
} else {
|
|
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
err = kvm_update_guest_debug(env, 0);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvm_remove_all_breakpoints(CPUArchState *current_env)
|
|
{
|
|
CPUState *current_cpu = ENV_GET_CPU(current_env);
|
|
struct kvm_sw_breakpoint *bp, *next;
|
|
KVMState *s = current_cpu->kvm_state;
|
|
CPUArchState *env;
|
|
CPUState *cpu;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
|
|
if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
|
|
/* Try harder to find a CPU that currently sees the breakpoint. */
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
cpu = ENV_GET_CPU(env);
|
|
if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
|
|
g_free(bp);
|
|
}
|
|
kvm_arch_remove_all_hw_breakpoints();
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
kvm_update_guest_debug(env, 0);
|
|
}
|
|
}
|
|
|
|
#else /* !KVM_CAP_SET_GUEST_DEBUG */
|
|
|
|
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
void kvm_remove_all_breakpoints(CPUArchState *current_env)
|
|
{
|
|
}
|
|
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
|
|
|
|
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
struct kvm_signal_mask *sigmask;
|
|
int r;
|
|
|
|
if (!sigset) {
|
|
return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
|
|
}
|
|
|
|
sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
|
|
|
|
sigmask->len = 8;
|
|
memcpy(sigmask->sigset, sigset, sizeof(*sigset));
|
|
r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
|
|
g_free(sigmask);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
|
|
uint32_t size)
|
|
{
|
|
int ret;
|
|
struct kvm_ioeventfd iofd;
|
|
|
|
iofd.datamatch = val;
|
|
iofd.addr = addr;
|
|
iofd.len = size;
|
|
iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
|
|
iofd.fd = fd;
|
|
|
|
if (!kvm_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (!assign) {
|
|
iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
|
|
}
|
|
|
|
ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
|
|
|
|
if (ret < 0) {
|
|
return -errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
|
|
{
|
|
struct kvm_ioeventfd kick = {
|
|
.datamatch = val,
|
|
.addr = addr,
|
|
.len = 2,
|
|
.flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
|
|
.fd = fd,
|
|
};
|
|
int r;
|
|
if (!kvm_enabled()) {
|
|
return -ENOSYS;
|
|
}
|
|
if (!assign) {
|
|
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
|
|
}
|
|
r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
|
|
{
|
|
return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
|
|
}
|
|
|
|
int kvm_on_sigbus(int code, void *addr)
|
|
{
|
|
return kvm_arch_on_sigbus(code, addr);
|
|
}
|