xemu/include/qemu/atomic128.h
Markus Armbruster ec150c7e09 include: Make headers more self-contained
Back in 2016, we discussed[1] rules for headers, and these were
generally liked:

1. Have a carefully curated header that's included everywhere first.  We
   got that already thanks to Peter: osdep.h.

2. Headers should normally include everything they need beyond osdep.h.
   If exceptions are needed for some reason, they must be documented in
   the header.  If all that's needed from a header is typedefs, put
   those into qemu/typedefs.h instead of including the header.

3. Cyclic inclusion is forbidden.

This patch gets include/ closer to obeying 2.

It's actually extracted from my "[RFC] Baby steps towards saner
headers" series[2], which demonstrates a possible path towards
checking 2 automatically.  It passes the RFC test there.

[1] Message-ID: <87h9g8j57d.fsf@blackfin.pond.sub.org>
    https://lists.nongnu.org/archive/html/qemu-devel/2016-03/msg03345.html
[2] Message-Id: <20190711122827.18970-1-armbru@redhat.com>
    https://lists.nongnu.org/archive/html/qemu-devel/2019-07/msg02715.html

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-2-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2019-08-16 13:31:51 +02:00

156 lines
4.9 KiB
C++

/*
* Simple interface for 128-bit atomic operations.
*
* Copyright (C) 2018 Linaro, Ltd.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* See docs/devel/atomics.txt for discussion about the guarantees each
* atomic primitive is meant to provide.
*/
#ifndef QEMU_ATOMIC128_H
#define QEMU_ATOMIC128_H
#include "qemu/int128.h"
/*
* GCC is a house divided about supporting large atomic operations.
*
* For hosts that only have large compare-and-swap, a legalistic reading
* of the C++ standard means that one cannot implement __atomic_read on
* read-only memory, and thus all atomic operations must synchronize
* through libatomic.
*
* See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80878
*
* This interpretation is not especially helpful for QEMU.
* For softmmu, all RAM is always read/write from the hypervisor.
* For user-only, if the guest doesn't implement such an __atomic_read
* then the host need not worry about it either.
*
* Moreover, using libatomic is not an option, because its interface is
* built for std::atomic<T>, and requires that *all* accesses to such an
* object go through the library. In our case we do not have an object
* in the C/C++ sense, but a view of memory as seen by the guest.
* The guest may issue a large atomic operation and then access those
* pieces using word-sized accesses. From the hypervisor, we have no
* way to connect those two actions.
*
* Therefore, special case each platform.
*/
#if defined(CONFIG_ATOMIC128)
static inline Int128 atomic16_cmpxchg(Int128 *ptr, Int128 cmp, Int128 new)
{
return atomic_cmpxchg__nocheck(ptr, cmp, new);
}
# define HAVE_CMPXCHG128 1
#elif defined(CONFIG_CMPXCHG128)
static inline Int128 atomic16_cmpxchg(Int128 *ptr, Int128 cmp, Int128 new)
{
return __sync_val_compare_and_swap_16(ptr, cmp, new);
}
# define HAVE_CMPXCHG128 1
#elif defined(__aarch64__)
/* Through gcc 8, aarch64 has no support for 128-bit at all. */
static inline Int128 atomic16_cmpxchg(Int128 *ptr, Int128 cmp, Int128 new)
{
uint64_t cmpl = int128_getlo(cmp), cmph = int128_gethi(cmp);
uint64_t newl = int128_getlo(new), newh = int128_gethi(new);
uint64_t oldl, oldh;
uint32_t tmp;
asm("0: ldaxp %[oldl], %[oldh], %[mem]\n\t"
"cmp %[oldl], %[cmpl]\n\t"
"ccmp %[oldh], %[cmph], #0, eq\n\t"
"b.ne 1f\n\t"
"stlxp %w[tmp], %[newl], %[newh], %[mem]\n\t"
"cbnz %w[tmp], 0b\n"
"1:"
: [mem] "+m"(*ptr), [tmp] "=&r"(tmp),
[oldl] "=&r"(oldl), [oldh] "=&r"(oldh)
: [cmpl] "r"(cmpl), [cmph] "r"(cmph),
[newl] "r"(newl), [newh] "r"(newh)
: "memory", "cc");
return int128_make128(oldl, oldh);
}
# define HAVE_CMPXCHG128 1
#else
/* Fallback definition that must be optimized away, or error. */
Int128 QEMU_ERROR("unsupported atomic")
atomic16_cmpxchg(Int128 *ptr, Int128 cmp, Int128 new);
# define HAVE_CMPXCHG128 0
#endif /* Some definition for HAVE_CMPXCHG128 */
#if defined(CONFIG_ATOMIC128)
static inline Int128 atomic16_read(Int128 *ptr)
{
return atomic_read__nocheck(ptr);
}
static inline void atomic16_set(Int128 *ptr, Int128 val)
{
atomic_set__nocheck(ptr, val);
}
# define HAVE_ATOMIC128 1
#elif !defined(CONFIG_USER_ONLY) && defined(__aarch64__)
/* We can do better than cmpxchg for AArch64. */
static inline Int128 atomic16_read(Int128 *ptr)
{
uint64_t l, h;
uint32_t tmp;
/* The load must be paired with the store to guarantee not tearing. */
asm("0: ldxp %[l], %[h], %[mem]\n\t"
"stxp %w[tmp], %[l], %[h], %[mem]\n\t"
"cbnz %w[tmp], 0b"
: [mem] "+m"(*ptr), [tmp] "=r"(tmp), [l] "=r"(l), [h] "=r"(h));
return int128_make128(l, h);
}
static inline void atomic16_set(Int128 *ptr, Int128 val)
{
uint64_t l = int128_getlo(val), h = int128_gethi(val);
uint64_t t1, t2;
/* Load into temporaries to acquire the exclusive access lock. */
asm("0: ldxp %[t1], %[t2], %[mem]\n\t"
"stxp %w[t1], %[l], %[h], %[mem]\n\t"
"cbnz %w[t1], 0b"
: [mem] "+m"(*ptr), [t1] "=&r"(t1), [t2] "=&r"(t2)
: [l] "r"(l), [h] "r"(h));
}
# define HAVE_ATOMIC128 1
#elif !defined(CONFIG_USER_ONLY) && HAVE_CMPXCHG128
static inline Int128 atomic16_read(Int128 *ptr)
{
/* Maybe replace 0 with 0, returning the old value. */
return atomic16_cmpxchg(ptr, 0, 0);
}
static inline void atomic16_set(Int128 *ptr, Int128 val)
{
Int128 old = *ptr, cmp;
do {
cmp = old;
old = atomic16_cmpxchg(ptr, cmp, val);
} while (old != cmp);
}
# define HAVE_ATOMIC128 1
#else
/* Fallback definitions that must be optimized away, or error. */
Int128 QEMU_ERROR("unsupported atomic") atomic16_read(Int128 *ptr);
void QEMU_ERROR("unsupported atomic") atomic16_set(Int128 *ptr, Int128 val);
# define HAVE_ATOMIC128 0
#endif /* Some definition for HAVE_ATOMIC128 */
#endif /* QEMU_ATOMIC128_H */