xemu/hw/pcie_host.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

178 lines
5.5 KiB
C

/*
* pcie_host.c
* utility functions for pci express host bridge.
*
* Copyright (c) 2009 Isaku Yamahata <yamahata at valinux co jp>
* VA Linux Systems Japan K.K.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "pci.h"
#include "pcie_host.h"
/*
* PCI express mmcfig address
* bit 20 - 28: bus number
* bit 15 - 19: device number
* bit 12 - 14: function number
* bit 0 - 11: offset in configuration space of a given device
*/
#define PCIE_MMCFG_SIZE_MAX (1ULL << 28)
#define PCIE_MMCFG_SIZE_MIN (1ULL << 20)
#define PCIE_MMCFG_BUS_BIT 20
#define PCIE_MMCFG_BUS_MASK 0x1ff
#define PCIE_MMCFG_DEVFN_BIT 12
#define PCIE_MMCFG_DEVFN_MASK 0xff
#define PCIE_MMCFG_CONFOFFSET_MASK 0xfff
#define PCIE_MMCFG_BUS(addr) (((addr) >> PCIE_MMCFG_BUS_BIT) & \
PCIE_MMCFG_BUS_MASK)
#define PCIE_MMCFG_DEVFN(addr) (((addr) >> PCIE_MMCFG_DEVFN_BIT) & \
PCIE_MMCFG_DEVFN_MASK)
#define PCIE_MMCFG_CONFOFFSET(addr) ((addr) & PCIE_MMCFG_CONFOFFSET_MASK)
/* a helper function to get a PCIDevice for a given mmconfig address */
static inline PCIDevice *pcie_dev_find_by_mmcfg_addr(PCIBus *s,
uint32_t mmcfg_addr)
{
return pci_find_device(s, PCIE_MMCFG_BUS(mmcfg_addr),
PCI_SLOT(PCIE_MMCFG_DEVFN(mmcfg_addr)),
PCI_FUNC(PCIE_MMCFG_DEVFN(mmcfg_addr)));
}
static void pcie_mmcfg_data_write(PCIBus *s,
uint32_t mmcfg_addr, uint32_t val, int len)
{
PCIDevice *pci_dev = pcie_dev_find_by_mmcfg_addr(s, mmcfg_addr);
if (!pci_dev)
return;
pci_dev->config_write(pci_dev,
PCIE_MMCFG_CONFOFFSET(mmcfg_addr), val, len);
}
static uint32_t pcie_mmcfg_data_read(PCIBus *s, uint32_t addr, int len)
{
PCIDevice *pci_dev = pcie_dev_find_by_mmcfg_addr(s, addr);
assert(len == 1 || len == 2 || len == 4);
if (!pci_dev) {
return ~0x0;
}
return pci_dev->config_read(pci_dev, PCIE_MMCFG_CONFOFFSET(addr), len);
}
static void pcie_mmcfg_data_writeb(void *opaque,
target_phys_addr_t addr, uint32_t value)
{
PCIExpressHost *e = opaque;
pcie_mmcfg_data_write(e->pci.bus, addr - e->base_addr, value, 1);
}
static void pcie_mmcfg_data_writew(void *opaque,
target_phys_addr_t addr, uint32_t value)
{
PCIExpressHost *e = opaque;
pcie_mmcfg_data_write(e->pci.bus, addr - e->base_addr, value, 2);
}
static void pcie_mmcfg_data_writel(void *opaque,
target_phys_addr_t addr, uint32_t value)
{
PCIExpressHost *e = opaque;
pcie_mmcfg_data_write(e->pci.bus, addr - e->base_addr, value, 4);
}
static uint32_t pcie_mmcfg_data_readb(void *opaque, target_phys_addr_t addr)
{
PCIExpressHost *e = opaque;
return pcie_mmcfg_data_read(e->pci.bus, addr - e->base_addr, 1);
}
static uint32_t pcie_mmcfg_data_readw(void *opaque, target_phys_addr_t addr)
{
PCIExpressHost *e = opaque;
return pcie_mmcfg_data_read(e->pci.bus, addr - e->base_addr, 2);
}
static uint32_t pcie_mmcfg_data_readl(void *opaque, target_phys_addr_t addr)
{
PCIExpressHost *e = opaque;
return pcie_mmcfg_data_read(e->pci.bus, addr - e->base_addr, 4);
}
static CPUWriteMemoryFunc * const pcie_mmcfg_write[] =
{
pcie_mmcfg_data_writeb,
pcie_mmcfg_data_writew,
pcie_mmcfg_data_writel,
};
static CPUReadMemoryFunc * const pcie_mmcfg_read[] =
{
pcie_mmcfg_data_readb,
pcie_mmcfg_data_readw,
pcie_mmcfg_data_readl,
};
/* pcie_host::base_addr == PCIE_BASE_ADDR_UNMAPPED when it isn't mapped. */
#define PCIE_BASE_ADDR_UNMAPPED ((target_phys_addr_t)-1ULL)
int pcie_host_init(PCIExpressHost *e)
{
e->base_addr = PCIE_BASE_ADDR_UNMAPPED;
e->mmio_index =
cpu_register_io_memory(pcie_mmcfg_read, pcie_mmcfg_write, e,
DEVICE_NATIVE_ENDIAN);
if (e->mmio_index < 0) {
return -1;
}
return 0;
}
void pcie_host_mmcfg_unmap(PCIExpressHost *e)
{
if (e->base_addr != PCIE_BASE_ADDR_UNMAPPED) {
cpu_register_physical_memory(e->base_addr, e->size, IO_MEM_UNASSIGNED);
e->base_addr = PCIE_BASE_ADDR_UNMAPPED;
}
}
void pcie_host_mmcfg_map(PCIExpressHost *e,
target_phys_addr_t addr, uint32_t size)
{
assert(!(size & (size - 1))); /* power of 2 */
assert(size >= PCIE_MMCFG_SIZE_MIN);
assert(size <= PCIE_MMCFG_SIZE_MAX);
e->base_addr = addr;
e->size = size;
cpu_register_physical_memory(e->base_addr, e->size, e->mmio_index);
}
void pcie_host_mmcfg_update(PCIExpressHost *e,
int enable,
target_phys_addr_t addr, uint32_t size)
{
pcie_host_mmcfg_unmap(e);
if (enable) {
pcie_host_mmcfg_map(e, addr, size);
}
}