xemu/target-mips/op_helper.c
Richard Henderson ce1dd5d1bb target-mips: Use mul[us]2 in [D]MULT[U] insns
Cc: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2013-02-23 17:25:29 +00:00

3196 lines
103 KiB
C

/*
* MIPS emulation helpers for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include "cpu.h"
#include "qemu/host-utils.h"
#include "helper.h"
#if !defined(CONFIG_USER_ONLY)
#include "exec/softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
#ifndef CONFIG_USER_ONLY
static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
#endif
/*****************************************************************************/
/* Exceptions processing helpers */
static inline void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
uint32_t exception,
int error_code,
uintptr_t pc)
{
if (exception < EXCP_SC) {
qemu_log("%s: %d %d\n", __func__, exception, error_code);
}
env->exception_index = exception;
env->error_code = error_code;
if (pc) {
/* now we have a real cpu fault */
cpu_restore_state(env, pc);
}
cpu_loop_exit(env);
}
static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
uint32_t exception,
uintptr_t pc)
{
do_raise_exception_err(env, exception, 0, pc);
}
void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
int error_code)
{
do_raise_exception_err(env, exception, error_code, 0);
}
void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
{
do_raise_exception(env, exception, 0);
}
#if defined(CONFIG_USER_ONLY)
#define HELPER_LD(name, insn, type) \
static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
int mem_idx) \
{ \
return (type) insn##_raw(addr); \
}
#else
#define HELPER_LD(name, insn, type) \
static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
int mem_idx) \
{ \
switch (mem_idx) \
{ \
case 0: return (type) cpu_##insn##_kernel(env, addr); break; \
case 1: return (type) cpu_##insn##_super(env, addr); break; \
default: \
case 2: return (type) cpu_##insn##_user(env, addr); break; \
} \
}
#endif
HELPER_LD(lbu, ldub, uint8_t)
HELPER_LD(lw, ldl, int32_t)
#ifdef TARGET_MIPS64
HELPER_LD(ld, ldq, int64_t)
#endif
#undef HELPER_LD
#if defined(CONFIG_USER_ONLY)
#define HELPER_ST(name, insn, type) \
static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
type val, int mem_idx) \
{ \
insn##_raw(addr, val); \
}
#else
#define HELPER_ST(name, insn, type) \
static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
type val, int mem_idx) \
{ \
switch (mem_idx) \
{ \
case 0: cpu_##insn##_kernel(env, addr, val); break; \
case 1: cpu_##insn##_super(env, addr, val); break; \
default: \
case 2: cpu_##insn##_user(env, addr, val); break; \
} \
}
#endif
HELPER_ST(sb, stb, uint8_t)
HELPER_ST(sw, stl, uint32_t)
#ifdef TARGET_MIPS64
HELPER_ST(sd, stq, uint64_t)
#endif
#undef HELPER_ST
target_ulong helper_clo (target_ulong arg1)
{
return clo32(arg1);
}
target_ulong helper_clz (target_ulong arg1)
{
return clz32(arg1);
}
#if defined(TARGET_MIPS64)
target_ulong helper_dclo (target_ulong arg1)
{
return clo64(arg1);
}
target_ulong helper_dclz (target_ulong arg1)
{
return clz64(arg1);
}
#endif /* TARGET_MIPS64 */
/* 64 bits arithmetic for 32 bits hosts */
static inline uint64_t get_HILO(CPUMIPSState *env)
{
return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
}
static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
{
target_ulong tmp;
env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
tmp = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
return tmp;
}
static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
{
target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
return tmp;
}
/* Multiplication variants of the vr54xx. */
target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2));
}
target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
}
target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
#ifndef CONFIG_USER_ONLY
static inline hwaddr do_translate_address(CPUMIPSState *env,
target_ulong address,
int rw)
{
hwaddr lladdr;
lladdr = cpu_mips_translate_address(env, address, rw);
if (lladdr == -1LL) {
cpu_loop_exit(env);
} else {
return lladdr;
}
}
#define HELPER_LD_ATOMIC(name, insn) \
target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
{ \
env->lladdr = do_translate_address(env, arg, 0); \
env->llval = do_##insn(env, arg, mem_idx); \
return env->llval; \
}
HELPER_LD_ATOMIC(ll, lw)
#ifdef TARGET_MIPS64
HELPER_LD_ATOMIC(lld, ld)
#endif
#undef HELPER_LD_ATOMIC
#define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
target_ulong arg2, int mem_idx) \
{ \
target_long tmp; \
\
if (arg2 & almask) { \
env->CP0_BadVAddr = arg2; \
helper_raise_exception(env, EXCP_AdES); \
} \
if (do_translate_address(env, arg2, 1) == env->lladdr) { \
tmp = do_##ld_insn(env, arg2, mem_idx); \
if (tmp == env->llval) { \
do_##st_insn(env, arg2, arg1, mem_idx); \
return 1; \
} \
} \
return 0; \
}
HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
#ifdef TARGET_MIPS64
HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
#endif
#undef HELPER_ST_ATOMIC
#endif
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK(v) ((v) & 3)
#define GET_OFFSET(addr, offset) (addr + (offset))
#else
#define GET_LMASK(v) (((v) & 3) ^ 3)
#define GET_OFFSET(addr, offset) (addr - (offset))
#endif
void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK(arg2) <= 2)
do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK(arg2) <= 1)
do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK(arg2) == 0)
do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
}
void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)arg1, mem_idx);
if (GET_LMASK(arg2) >= 1)
do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK(arg2) >= 2)
do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK(arg2) == 3)
do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
}
#if defined(TARGET_MIPS64)
/* "half" load and stores. We must do the memory access inline,
or fault handling won't work. */
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK64(v) ((v) & 7)
#else
#define GET_LMASK64(v) (((v) & 7) ^ 7)
#endif
void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx);
if (GET_LMASK64(arg2) <= 6)
do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
if (GET_LMASK64(arg2) <= 5)
do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
if (GET_LMASK64(arg2) <= 4)
do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
if (GET_LMASK64(arg2) <= 3)
do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK64(arg2) <= 2)
do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK64(arg2) <= 1)
do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK64(arg2) <= 0)
do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
}
void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)arg1, mem_idx);
if (GET_LMASK64(arg2) >= 1)
do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK64(arg2) >= 2)
do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK64(arg2) >= 3)
do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK64(arg2) >= 4)
do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
if (GET_LMASK64(arg2) >= 5)
do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
if (GET_LMASK64(arg2) >= 6)
do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
if (GET_LMASK64(arg2) == 7)
do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
}
#endif /* TARGET_MIPS64 */
static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] =
(target_long)do_lw(env, addr, mem_idx);
addr += 4;
}
}
if (do_r31) {
env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx);
}
}
void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
addr += 4;
}
}
if (do_r31) {
do_sw(env, addr, env->active_tc.gpr[31], mem_idx);
}
}
#if defined(TARGET_MIPS64)
void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx);
addr += 8;
}
}
if (do_r31) {
env->active_tc.gpr[31] = do_ld(env, addr, mem_idx);
}
}
void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
addr += 8;
}
}
if (do_r31) {
do_sd(env, addr, env->active_tc.gpr[31], mem_idx);
}
}
#endif
#ifndef CONFIG_USER_ONLY
/* SMP helpers. */
static bool mips_vpe_is_wfi(MIPSCPU *c)
{
CPUMIPSState *env = &c->env;
/* If the VPE is halted but otherwise active, it means it's waiting for
an interrupt. */
return env->halted && mips_vpe_active(env);
}
static inline void mips_vpe_wake(CPUMIPSState *c)
{
/* Dont set ->halted = 0 directly, let it be done via cpu_has_work
because there might be other conditions that state that c should
be sleeping. */
cpu_interrupt(c, CPU_INTERRUPT_WAKE);
}
static inline void mips_vpe_sleep(MIPSCPU *cpu)
{
CPUMIPSState *c = &cpu->env;
/* The VPE was shut off, really go to bed.
Reset any old _WAKE requests. */
c->halted = 1;
cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
}
static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
{
CPUMIPSState *c = &cpu->env;
/* FIXME: TC reschedule. */
if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
mips_vpe_wake(c);
}
}
static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
{
CPUMIPSState *c = &cpu->env;
/* FIXME: TC reschedule. */
if (!mips_vpe_active(c)) {
mips_vpe_sleep(cpu);
}
}
/**
* mips_cpu_map_tc:
* @env: CPU from which mapping is performed.
* @tc: Should point to an int with the value of the global TC index.
*
* This function will transform @tc into a local index within the
* returned #CPUMIPSState.
*/
/* FIXME: This code assumes that all VPEs have the same number of TCs,
which depends on runtime setup. Can probably be fixed by
walking the list of CPUMIPSStates. */
static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
{
MIPSCPU *cpu;
CPUState *cs;
CPUState *other_cs;
int vpe_idx;
int tc_idx = *tc;
if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
/* Not allowed to address other CPUs. */
*tc = env->current_tc;
return env;
}
cs = CPU(mips_env_get_cpu(env));
vpe_idx = tc_idx / cs->nr_threads;
*tc = tc_idx % cs->nr_threads;
other_cs = qemu_get_cpu(vpe_idx);
if (other_cs == NULL) {
return env;
}
cpu = MIPS_CPU(other_cs);
return &cpu->env;
}
/* The per VPE CP0_Status register shares some fields with the per TC
CP0_TCStatus registers. These fields are wired to the same registers,
so changes to either of them should be reflected on both registers.
Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
These helper call synchronizes the regs for a given cpu. */
/* Called for updates to CP0_Status. */
static void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
{
int32_t tcstatus, *tcst;
uint32_t v = cpu->CP0_Status;
uint32_t cu, mx, asid, ksu;
uint32_t mask = ((1 << CP0TCSt_TCU3)
| (1 << CP0TCSt_TCU2)
| (1 << CP0TCSt_TCU1)
| (1 << CP0TCSt_TCU0)
| (1 << CP0TCSt_TMX)
| (3 << CP0TCSt_TKSU)
| (0xff << CP0TCSt_TASID));
cu = (v >> CP0St_CU0) & 0xf;
mx = (v >> CP0St_MX) & 0x1;
ksu = (v >> CP0St_KSU) & 0x3;
asid = env->CP0_EntryHi & 0xff;
tcstatus = cu << CP0TCSt_TCU0;
tcstatus |= mx << CP0TCSt_TMX;
tcstatus |= ksu << CP0TCSt_TKSU;
tcstatus |= asid;
if (tc == cpu->current_tc) {
tcst = &cpu->active_tc.CP0_TCStatus;
} else {
tcst = &cpu->tcs[tc].CP0_TCStatus;
}
*tcst &= ~mask;
*tcst |= tcstatus;
compute_hflags(cpu);
}
/* Called for updates to CP0_TCStatus. */
static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
target_ulong v)
{
uint32_t status;
uint32_t tcu, tmx, tasid, tksu;
uint32_t mask = ((1 << CP0St_CU3)
| (1 << CP0St_CU2)
| (1 << CP0St_CU1)
| (1 << CP0St_CU0)
| (1 << CP0St_MX)
| (3 << CP0St_KSU));
tcu = (v >> CP0TCSt_TCU0) & 0xf;
tmx = (v >> CP0TCSt_TMX) & 0x1;
tasid = v & 0xff;
tksu = (v >> CP0TCSt_TKSU) & 0x3;
status = tcu << CP0St_CU0;
status |= tmx << CP0St_MX;
status |= tksu << CP0St_KSU;
cpu->CP0_Status &= ~mask;
cpu->CP0_Status |= status;
/* Sync the TASID with EntryHi. */
cpu->CP0_EntryHi &= ~0xff;
cpu->CP0_EntryHi = tasid;
compute_hflags(cpu);
}
/* Called for updates to CP0_EntryHi. */
static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
{
int32_t *tcst;
uint32_t asid, v = cpu->CP0_EntryHi;
asid = v & 0xff;
if (tc == cpu->current_tc) {
tcst = &cpu->active_tc.CP0_TCStatus;
} else {
tcst = &cpu->tcs[tc].CP0_TCStatus;
}
*tcst &= ~0xff;
*tcst |= asid;
}
/* CP0 helpers */
target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
{
return env->mvp->CP0_MVPControl;
}
target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
{
return env->mvp->CP0_MVPConf0;
}
target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
{
return env->mvp->CP0_MVPConf1;
}
target_ulong helper_mfc0_random(CPUMIPSState *env)
{
return (int32_t)cpu_mips_get_random(env);
}
target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
{
return env->active_tc.CP0_TCStatus;
}
target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCStatus;
else
return other->tcs[other_tc].CP0_TCStatus;
}
target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
{
return env->active_tc.CP0_TCBind;
}
target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCBind;
else
return other->tcs[other_tc].CP0_TCBind;
}
target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
{
return env->active_tc.PC;
}
target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.PC;
else
return other->tcs[other_tc].PC;
}
target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCHalt;
else
return other->tcs[other_tc].CP0_TCHalt;
}
target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCContext;
else
return other->tcs[other_tc].CP0_TCContext;
}
target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCSchedule;
else
return other->tcs[other_tc].CP0_TCSchedule;
}
target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCScheFBack;
else
return other->tcs[other_tc].CP0_TCScheFBack;
}
target_ulong helper_mfc0_count(CPUMIPSState *env)
{
return (int32_t)cpu_mips_get_count(env);
}
target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_EntryHi;
}
target_ulong helper_mftc0_cause(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tccause;
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
tccause = other->CP0_Cause;
} else {
tccause = other->CP0_Cause;
}
return tccause;
}
target_ulong helper_mftc0_status(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_Status;
}
target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
{
return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
}
target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
{
return (int32_t)env->CP0_WatchLo[sel];
}
target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
{
return env->CP0_WatchHi[sel];
}
target_ulong helper_mfc0_debug(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Debug;
if (env->hflags & MIPS_HFLAG_DM)
t0 |= 1 << CP0DB_DM;
return t0;
}
target_ulong helper_mftc0_debug(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus;
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
tcstatus = other->active_tc.CP0_Debug_tcstatus;
else
tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
/* XXX: Might be wrong, check with EJTAG spec. */
return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
#if defined(TARGET_MIPS64)
target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
{
return env->active_tc.PC;
}
target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
{
return env->lladdr >> env->CP0_LLAddr_shift;
}
target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
{
return env->CP0_WatchLo[sel];
}
#endif /* TARGET_MIPS64 */
void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
{
int num = 1;
unsigned int tmp = env->tlb->nb_tlb;
do {
tmp >>= 1;
num <<= 1;
} while (tmp);
env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
}
void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
(1 << CP0MVPCo_EVP);
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0MVPCo_STLB);
newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
// TODO: Enable/disable shared TLB, enable/disable VPEs.
env->mvp->CP0_MVPControl = newval;
}
void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask;
uint32_t newval;
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
/* Yield scheduler intercept not implemented. */
/* Gating storage scheduler intercept not implemented. */
// TODO: Enable/disable TCs.
env->CP0_VPEControl = newval;
}
void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
uint32_t mask;
uint32_t newval;
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
/* TODO: Enable/disable TCs. */
other->CP0_VPEControl = newval;
}
target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
/* FIXME: Mask away return zero on read bits. */
return other->CP0_VPEControl;
}
target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_VPEConf0;
}
void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
mask |= (0xff << CP0VPEC0_XTC);
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
}
newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
// TODO: TC exclusive handling due to ERL/EXL.
env->CP0_VPEConf0 = newval;
}
void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
uint32_t mask = 0;
uint32_t newval;
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
/* TODO: TC exclusive handling due to ERL/EXL. */
other->CP0_VPEConf0 = newval;
}
void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
(0xff << CP0VPEC1_NCP1);
newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
/* UDI not implemented. */
/* CP2 not implemented. */
// TODO: Handle FPU (CP1) binding.
env->CP0_VPEConf1 = newval;
}
void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
{
/* Yield qualifier inputs not implemented. */
env->CP0_YQMask = 0x00000000;
}
void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_VPEOpt = arg1 & 0x0000ffff;
}
void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
{
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
}
void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = env->CP0_TCStatus_rw_bitmask;
uint32_t newval;
newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCStatus = newval;
sync_c0_tcstatus(env, env->current_tc, newval);
}
void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCStatus = arg1;
else
other->tcs[other_tc].CP0_TCStatus = arg1;
sync_c0_tcstatus(other, other_tc, arg1);
}
void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0TCBd_CurVPE);
newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCBind = newval;
}
void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0TCBd_CurVPE);
if (other_tc == other->current_tc) {
newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
other->active_tc.CP0_TCBind = newval;
} else {
newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
other->tcs[other_tc].CP0_TCBind = newval;
}
}
void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.PC = arg1;
env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
env->lladdr = 0ULL;
/* MIPS16 not implemented. */
}
void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.PC = arg1;
other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
other->lladdr = 0ULL;
/* MIPS16 not implemented. */
} else {
other->tcs[other_tc].PC = arg1;
other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
other->lladdr = 0ULL;
/* MIPS16 not implemented. */
}
}
void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
{
MIPSCPU *cpu = mips_env_get_cpu(env);
env->active_tc.CP0_TCHalt = arg1 & 0x1;
// TODO: Halt TC / Restart (if allocated+active) TC.
if (env->active_tc.CP0_TCHalt & 1) {
mips_tc_sleep(cpu, env->current_tc);
} else {
mips_tc_wake(cpu, env->current_tc);
}
}
void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
MIPSCPU *other_cpu = mips_env_get_cpu(other);
// TODO: Halt TC / Restart (if allocated+active) TC.
if (other_tc == other->current_tc)
other->active_tc.CP0_TCHalt = arg1;
else
other->tcs[other_tc].CP0_TCHalt = arg1;
if (arg1 & 1) {
mips_tc_sleep(other_cpu, other_tc);
} else {
mips_tc_wake(other_cpu, other_tc);
}
}
void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.CP0_TCContext = arg1;
}
void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCContext = arg1;
else
other->tcs[other_tc].CP0_TCContext = arg1;
}
void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.CP0_TCSchedule = arg1;
}
void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCSchedule = arg1;
else
other->tcs[other_tc].CP0_TCSchedule = arg1;
}
void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.CP0_TCScheFBack = arg1;
}
void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCScheFBack = arg1;
else
other->tcs[other_tc].CP0_TCScheFBack = arg1;
}
void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
{
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
}
void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
}
void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
{
/* 1k pages not implemented */
env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
}
void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
{
/* SmartMIPS not implemented */
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_PageGrain = 0;
}
void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Wired = arg1 % env->tlb->nb_tlb;
}
void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
}
void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
}
void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
}
void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
}
void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
}
void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_HWREna = arg1 & 0x0000000F;
}
void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
{
cpu_mips_store_count(env, arg1);
}
void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
{
target_ulong old, val;
/* 1k pages not implemented */
val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
#if defined(TARGET_MIPS64)
val &= env->SEGMask;
#endif
old = env->CP0_EntryHi;
env->CP0_EntryHi = val;
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
sync_c0_entryhi(env, env->current_tc);
}
/* If the ASID changes, flush qemu's TLB. */
if ((old & 0xFF) != (val & 0xFF))
cpu_mips_tlb_flush(env, 1);
}
void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
other->CP0_EntryHi = arg1;
sync_c0_entryhi(other, other_tc);
}
void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
{
cpu_mips_store_compare(env, arg1);
}
void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
{
uint32_t val, old;
uint32_t mask = env->CP0_Status_rw_bitmask;
val = arg1 & mask;
old = env->CP0_Status;
env->CP0_Status = (env->CP0_Status & ~mask) | val;
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
sync_c0_status(env, env, env->current_tc);
} else {
compute_hflags(env);
}
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
old, old & env->CP0_Cause & CP0Ca_IP_mask,
val, val & env->CP0_Cause & CP0Ca_IP_mask,
env->CP0_Cause);
switch (env->hflags & MIPS_HFLAG_KSU) {
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
case MIPS_HFLAG_KM: qemu_log("\n"); break;
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
}
}
}
void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
other->CP0_Status = arg1 & ~0xf1000018;
sync_c0_status(env, other, other_tc);
}
void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
{
/* vectored interrupts not implemented, no performance counters. */
env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
}
void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
}
static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
{
uint32_t mask = 0x00C00300;
uint32_t old = cpu->CP0_Cause;
int i;
if (cpu->insn_flags & ISA_MIPS32R2) {
mask |= 1 << CP0Ca_DC;
}
cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
cpu_mips_stop_count(cpu);
} else {
cpu_mips_start_count(cpu);
}
}
/* Set/reset software interrupts */
for (i = 0 ; i < 2 ; i++) {
if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
}
}
}
void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
{
mtc0_cause(env, arg1);
}
void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
mtc0_cause(other, arg1);
}
target_ulong helper_mftc0_epc(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_EPC;
}
target_ulong helper_mftc0_ebase(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_EBase;
}
void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
{
/* vectored interrupts not implemented */
env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
}
void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
}
target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
switch (idx) {
case 0: return other->CP0_Config0;
case 1: return other->CP0_Config1;
case 2: return other->CP0_Config2;
case 3: return other->CP0_Config3;
/* 4 and 5 are reserved. */
case 6: return other->CP0_Config6;
case 7: return other->CP0_Config7;
default:
break;
}
return 0;
}
void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
}
void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
{
/* tertiary/secondary caches not implemented */
env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
}
void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
{
target_long mask = env->CP0_LLAddr_rw_bitmask;
arg1 = arg1 << env->CP0_LLAddr_shift;
env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
}
void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
/* Watch exceptions for instructions, data loads, data stores
not implemented. */
env->CP0_WatchLo[sel] = (arg1 & ~0x7);
}
void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
}
void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
{
target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
}
void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Framemask = arg1; /* XXX */
}
void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
if (arg1 & (1 << CP0DB_DM))
env->hflags |= MIPS_HFLAG_DM;
else
env->hflags &= ~MIPS_HFLAG_DM;
}
void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
/* XXX: Might be wrong, check with EJTAG spec. */
if (other_tc == other->current_tc)
other->active_tc.CP0_Debug_tcstatus = val;
else
other->tcs[other_tc].CP0_Debug_tcstatus = val;
other->CP0_Debug = (other->CP0_Debug &
((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Performance0 = arg1 & 0x000007ff;
}
void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_TagLo = arg1 & 0xFFFFFCF6;
}
void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_DataLo = arg1; /* XXX */
}
void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_TagHi = arg1; /* XXX */
}
void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_DataHi = arg1; /* XXX */
}
/* MIPS MT functions */
target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.gpr[sel];
else
return other->tcs[other_tc].gpr[sel];
}
target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.LO[sel];
else
return other->tcs[other_tc].LO[sel];
}
target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.HI[sel];
else
return other->tcs[other_tc].HI[sel];
}
target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.ACX[sel];
else
return other->tcs[other_tc].ACX[sel];
}
target_ulong helper_mftdsp(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
return other->active_tc.DSPControl;
else
return other->tcs[other_tc].DSPControl;
}
void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.gpr[sel] = arg1;
else
other->tcs[other_tc].gpr[sel] = arg1;
}
void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.LO[sel] = arg1;
else
other->tcs[other_tc].LO[sel] = arg1;
}
void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.HI[sel] = arg1;
else
other->tcs[other_tc].HI[sel] = arg1;
}
void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.ACX[sel] = arg1;
else
other->tcs[other_tc].ACX[sel] = arg1;
}
void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc)
other->active_tc.DSPControl = arg1;
else
other->tcs[other_tc].DSPControl = arg1;
}
/* MIPS MT functions */
target_ulong helper_dmt(void)
{
// TODO
return 0;
}
target_ulong helper_emt(void)
{
// TODO
return 0;
}
target_ulong helper_dvpe(CPUMIPSState *env)
{
CPUMIPSState *other_cpu_env = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
do {
/* Turn off all VPEs except the one executing the dvpe. */
if (other_cpu_env != env) {
MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
other_cpu_env->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
mips_vpe_sleep(other_cpu);
}
other_cpu_env = other_cpu_env->next_cpu;
} while (other_cpu_env);
return prev;
}
target_ulong helper_evpe(CPUMIPSState *env)
{
CPUMIPSState *other_cpu_env = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
do {
MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
if (other_cpu_env != env
/* If the VPE is WFI, don't disturb its sleep. */
&& !mips_vpe_is_wfi(other_cpu)) {
/* Enable the VPE. */
other_cpu_env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
mips_vpe_wake(other_cpu_env); /* And wake it up. */
}
other_cpu_env = other_cpu_env->next_cpu;
} while (other_cpu_env);
return prev;
}
#endif /* !CONFIG_USER_ONLY */
void helper_fork(target_ulong arg1, target_ulong arg2)
{
// arg1 = rt, arg2 = rs
arg1 = 0;
// TODO: store to TC register
}
target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
{
target_long arg1 = arg;
if (arg1 < 0) {
/* No scheduling policy implemented. */
if (arg1 != -2) {
if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
helper_raise_exception(env, EXCP_THREAD);
}
}
} else if (arg1 == 0) {
if (0 /* TODO: TC underflow */) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
helper_raise_exception(env, EXCP_THREAD);
} else {
// TODO: Deallocate TC
}
} else if (arg1 > 0) {
/* Yield qualifier inputs not implemented. */
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
helper_raise_exception(env, EXCP_THREAD);
}
return env->CP0_YQMask;
}
#ifndef CONFIG_USER_ONLY
/* TLB management */
static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
{
/* Flush qemu's TLB and discard all shadowed entries. */
tlb_flush (env, flush_global);
env->tlb->tlb_in_use = env->tlb->nb_tlb;
}
static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
{
/* Discard entries from env->tlb[first] onwards. */
while (env->tlb->tlb_in_use > first) {
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
}
}
static void r4k_fill_tlb(CPUMIPSState *env, int idx)
{
r4k_tlb_t *tlb;
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
tlb = &env->tlb->mmu.r4k.tlb[idx];
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
tlb->VPN &= env->SEGMask;
#endif
tlb->ASID = env->CP0_EntryHi & 0xFF;
tlb->PageMask = env->CP0_PageMask;
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
}
void r4k_helper_tlbwi(CPUMIPSState *env)
{
r4k_tlb_t *tlb;
int idx;
target_ulong VPN;
uint8_t ASID;
bool G, V0, D0, V1, D1;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
VPN &= env->SEGMask;
#endif
ASID = env->CP0_EntryHi & 0xff;
G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
V0 = (env->CP0_EntryLo0 & 2) != 0;
D0 = (env->CP0_EntryLo0 & 4) != 0;
V1 = (env->CP0_EntryLo1 & 2) != 0;
D1 = (env->CP0_EntryLo1 & 4) != 0;
/* Discard cached TLB entries, unless tlbwi is just upgrading access
permissions on the current entry. */
if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
(tlb->V0 && !V0) || (tlb->D0 && !D0) ||
(tlb->V1 && !V1) || (tlb->D1 && !D1)) {
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
}
r4k_invalidate_tlb(env, idx, 0);
r4k_fill_tlb(env, idx);
}
void r4k_helper_tlbwr(CPUMIPSState *env)
{
int r = cpu_mips_get_random(env);
r4k_invalidate_tlb(env, r, 1);
r4k_fill_tlb(env, r);
}
void r4k_helper_tlbp(CPUMIPSState *env)
{
r4k_tlb_t *tlb;
target_ulong mask;
target_ulong tag;
target_ulong VPN;
uint8_t ASID;
int i;
ASID = env->CP0_EntryHi & 0xFF;
for (i = 0; i < env->tlb->nb_tlb; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
/* TLB match */
env->CP0_Index = i;
break;
}
}
if (i == env->tlb->nb_tlb) {
/* No match. Discard any shadow entries, if any of them match. */
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
r4k_mips_tlb_flush_extra (env, i);
break;
}
}
env->CP0_Index |= 0x80000000;
}
}
void r4k_helper_tlbr(CPUMIPSState *env)
{
r4k_tlb_t *tlb;
uint8_t ASID;
int idx;
ASID = env->CP0_EntryHi & 0xFF;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
/* If this will change the current ASID, flush qemu's TLB. */
if (ASID != tlb->ASID)
cpu_mips_tlb_flush (env, 1);
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
env->CP0_EntryHi = tlb->VPN | tlb->ASID;
env->CP0_PageMask = tlb->PageMask;
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
(tlb->C0 << 3) | (tlb->PFN[0] >> 6);
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
(tlb->C1 << 3) | (tlb->PFN[1] >> 6);
}
void helper_tlbwi(CPUMIPSState *env)
{
env->tlb->helper_tlbwi(env);
}
void helper_tlbwr(CPUMIPSState *env)
{
env->tlb->helper_tlbwr(env);
}
void helper_tlbp(CPUMIPSState *env)
{
env->tlb->helper_tlbp(env);
}
void helper_tlbr(CPUMIPSState *env)
{
env->tlb->helper_tlbr(env);
}
/* Specials */
target_ulong helper_di(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 & ~(1 << CP0St_IE);
return t0;
}
target_ulong helper_ei(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 | (1 << CP0St_IE);
return t0;
}
static void debug_pre_eret(CPUMIPSState *env)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL))
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
if (env->hflags & MIPS_HFLAG_DM)
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
qemu_log("\n");
}
}
static void debug_post_eret(CPUMIPSState *env)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL))
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
if (env->hflags & MIPS_HFLAG_DM)
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
switch (env->hflags & MIPS_HFLAG_KSU) {
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
case MIPS_HFLAG_KM: qemu_log("\n"); break;
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
}
}
}
static void set_pc(CPUMIPSState *env, target_ulong error_pc)
{
env->active_tc.PC = error_pc & ~(target_ulong)1;
if (error_pc & 1) {
env->hflags |= MIPS_HFLAG_M16;
} else {
env->hflags &= ~(MIPS_HFLAG_M16);
}
}
void helper_eret(CPUMIPSState *env)
{
debug_pre_eret(env);
if (env->CP0_Status & (1 << CP0St_ERL)) {
set_pc(env, env->CP0_ErrorEPC);
env->CP0_Status &= ~(1 << CP0St_ERL);
} else {
set_pc(env, env->CP0_EPC);
env->CP0_Status &= ~(1 << CP0St_EXL);
}
compute_hflags(env);
debug_post_eret(env);
env->lladdr = 1;
}
void helper_deret(CPUMIPSState *env)
{
debug_pre_eret(env);
set_pc(env, env->CP0_DEPC);
env->hflags &= MIPS_HFLAG_DM;
compute_hflags(env);
debug_post_eret(env);
env->lladdr = 1;
}
#endif /* !CONFIG_USER_ONLY */
target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 0)))
return env->CP0_EBase & 0x3ff;
else
helper_raise_exception(env, EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 1)))
return env->SYNCI_Step;
else
helper_raise_exception(env, EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_cc(CPUMIPSState *env)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 2)))
return env->CP0_Count;
else
helper_raise_exception(env, EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 3)))
return env->CCRes;
else
helper_raise_exception(env, EXCP_RI);
return 0;
}
void helper_pmon(CPUMIPSState *env, int function)
{
function /= 2;
switch (function) {
case 2: /* TODO: char inbyte(int waitflag); */
if (env->active_tc.gpr[4] == 0)
env->active_tc.gpr[2] = -1;
/* Fall through */
case 11: /* TODO: char inbyte (void); */
env->active_tc.gpr[2] = -1;
break;
case 3:
case 12:
printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
break;
case 17:
break;
case 158:
{
unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
printf("%s", fmt);
}
break;
}
}
void helper_wait(CPUMIPSState *env)
{
env->halted = 1;
cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
helper_raise_exception(env, EXCP_HLT);
}
#if !defined(CONFIG_USER_ONLY)
static void QEMU_NORETURN do_unaligned_access(CPUMIPSState *env,
target_ulong addr, int is_write,
int is_user, uintptr_t retaddr);
#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#define SHIFT 0
#include "exec/softmmu_template.h"
#define SHIFT 1
#include "exec/softmmu_template.h"
#define SHIFT 2
#include "exec/softmmu_template.h"
#define SHIFT 3
#include "exec/softmmu_template.h"
static void do_unaligned_access(CPUMIPSState *env, target_ulong addr,
int is_write, int is_user, uintptr_t retaddr)
{
env->CP0_BadVAddr = addr;
do_raise_exception(env, (is_write == 1) ? EXCP_AdES : EXCP_AdEL, retaddr);
}
void tlb_fill(CPUMIPSState *env, target_ulong addr, int is_write, int mmu_idx,
uintptr_t retaddr)
{
int ret;
ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
if (ret) {
do_raise_exception_err(env, env->exception_index,
env->error_code, retaddr);
}
}
void cpu_unassigned_access(CPUMIPSState *env, hwaddr addr,
int is_write, int is_exec, int unused, int size)
{
if (is_exec)
helper_raise_exception(env, EXCP_IBE);
else
helper_raise_exception(env, EXCP_DBE);
}
#endif /* !CONFIG_USER_ONLY */
/* Complex FPU operations which may need stack space. */
#define FLOAT_TWO32 make_float32(1 << 30)
#define FLOAT_TWO64 make_float64(1ULL << 62)
#define FP_TO_INT32_OVERFLOW 0x7fffffff
#define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
static inline void restore_rounding_mode(CPUMIPSState *env)
{
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
&env->active_fpu.fp_status);
}
static inline void restore_flush_mode(CPUMIPSState *env)
{
set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0,
&env->active_fpu.fp_status);
}
target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
{
target_ulong arg1;
switch (reg) {
case 0:
arg1 = (int32_t)env->active_fpu.fcr0;
break;
case 25:
arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
break;
case 26:
arg1 = env->active_fpu.fcr31 & 0x0003f07c;
break;
case 28:
arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
break;
default:
arg1 = (int32_t)env->active_fpu.fcr31;
break;
}
return arg1;
}
void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t reg)
{
switch(reg) {
case 25:
if (arg1 & 0xffffff00)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
((arg1 & 0x1) << 23);
break;
case 26:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
break;
case 28:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
((arg1 & 0x4) << 22);
break;
case 31:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = arg1;
break;
default:
return;
}
/* set rounding mode */
restore_rounding_mode(env);
/* set flush-to-zero mode */
restore_flush_mode(env);
set_float_exception_flags(0, &env->active_fpu.fp_status);
if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
do_raise_exception(env, EXCP_FPE, GETPC());
}
static inline int ieee_ex_to_mips(int xcpt)
{
int ret = 0;
if (xcpt) {
if (xcpt & float_flag_invalid) {
ret |= FP_INVALID;
}
if (xcpt & float_flag_overflow) {
ret |= FP_OVERFLOW;
}
if (xcpt & float_flag_underflow) {
ret |= FP_UNDERFLOW;
}
if (xcpt & float_flag_divbyzero) {
ret |= FP_DIV0;
}
if (xcpt & float_flag_inexact) {
ret |= FP_INEXACT;
}
}
return ret;
}
static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
{
int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
if (tmp) {
set_float_exception_flags(0, &env->active_fpu.fp_status);
if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
do_raise_exception(env, EXCP_FPE, pc);
} else {
UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
}
}
}
/* Float support.
Single precition routines have a "s" suffix, double precision a
"d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
paired single lower "pl", paired single upper "pu". */
/* unary operations, modifying fp status */
uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
{
fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt0;
}
uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
{
fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst0;
}
uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t fdt2;
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
{
uint64_t fdt2;
fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
{
uint64_t fdt2;
fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvtl_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
{
uint32_t fst2;
uint32_t fsth2;
fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
uint32_t wth2;
int excp, excph;
wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
excp = get_float_exception_flags(&env->active_fpu.fp_status);
if (excp & (float_flag_overflow | float_flag_invalid)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
set_float_exception_flags(0, &env->active_fpu.fp_status);
wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
excph = get_float_exception_flags(&env->active_fpu.fp_status);
if (excph & (float_flag_overflow | float_flag_invalid)) {
wth2 = FP_TO_INT32_OVERFLOW;
}
set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)wth2 << 32) | wt2;
}
uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fst2;
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
{
uint32_t fst2;
fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
{
uint32_t fst2;
fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
{
uint32_t wt2;
wt2 = wt0;
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
{
uint32_t wt2;
wt2 = wth0;
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvtw_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
return wt2;
}
uint32_t helper_float_cvtw_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_roundl_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_roundl_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_roundw_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_roundw_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_truncl_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_truncl_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_truncw_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_truncw_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_ceill_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_ceill_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_ceilw_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_ceilw_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_floorl_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_floorl_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_floorw_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_floorw_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
{ \
return float64_ ## name(fdt0); \
} \
uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
{ \
return float32_ ## name(fst0); \
} \
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
{ \
uint32_t wt0; \
uint32_t wth0; \
\
wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
wth0 = float32_ ## name(fdt0 >> 32); \
return ((uint64_t)wth0 << 32) | wt0; \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
/* MIPS specific unary operations */
uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
#define FLOAT_OP(name, p) void helper_float_##name##_##p(CPUMIPSState *env)
/* binary operations */
#define FLOAT_BINOP(name) \
uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
uint64_t fdt0, uint64_t fdt1) \
{ \
uint64_t dt2; \
\
dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return dt2; \
} \
\
uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
uint32_t fst0, uint32_t fst1) \
{ \
uint32_t wt2; \
\
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return wt2; \
} \
\
uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
uint64_t fdt0, \
uint64_t fdt1) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t wt2; \
uint32_t wth2; \
\
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return ((uint64_t)wth2 << 32) | wt2; \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP
#define UNFUSED_FMA(prefix, a, b, c, flags) \
{ \
a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
if ((flags) & float_muladd_negate_c) { \
a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
} else { \
a = prefix##_add(a, c, &env->active_fpu.fp_status); \
} \
if ((flags) & float_muladd_negate_result) { \
a = prefix##_chs(a); \
} \
}
/* FMA based operations */
#define FLOAT_FMA(name, type) \
uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
update_fcr31(env, GETPC()); \
return fdt0; \
} \
\
uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
uint32_t fst0, uint32_t fst1, \
uint32_t fst2) \
{ \
UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
update_fcr31(env, GETPC()); \
return fst0; \
} \
\
uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
uint32_t fsth2 = fdt2 >> 32; \
\
UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
update_fcr31(env, GETPC()); \
return ((uint64_t)fsth0 << 32) | fst0; \
}
FLOAT_FMA(madd, 0)
FLOAT_FMA(msub, float_muladd_negate_c)
FLOAT_FMA(nmadd, float_muladd_negate_result)
FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
#undef FLOAT_FMA
/* MIPS specific binary operations */
uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
{
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
{
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
/* compare operations */
#define FOP_COND_D(op, cond) \
void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
int c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
int c; \
fdt0 = float64_abs(fdt0); \
fdt1 = float64_abs(fdt1); \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered_quiet() is still called. */
FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered() is still called. */
FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
#define FOP_COND_S(op, cond) \
void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1, int cc) \
{ \
int c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1, int cc) \
{ \
int c; \
fst0 = float32_abs(fst0); \
fst1 = float32_abs(fst1); \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called. */
FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called. */
FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
#define FOP_COND_PS(op, condl, condh) \
void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
fst0 = fdt0 & 0XFFFFFFFF; \
fsth0 = fdt0 >> 32; \
fst1 = fdt1 & 0XFFFFFFFF; \
fsth1 = fdt1 >> 32; \
cl = condl; \
ch = condh; \
update_fcr31(env, GETPC()); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
} \
void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
fsth0 = float32_abs(fdt0 >> 32); \
fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
fsth1 = float32_abs(fdt1 >> 32); \
cl = condl; \
ch = condh; \
update_fcr31(env, GETPC()); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called. */
FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
(float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called. */
FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
(float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))