mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 03:59:52 +00:00
cf21871479
Split from Jan's original qemu-thread-posix.c patch. No semantic change, just introduce the new API that POSIX and Win32 implementations will conform to. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
1231 lines
30 KiB
C
1231 lines
30 KiB
C
/*
|
|
* QEMU System Emulator
|
|
*
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
/* Needed early for CONFIG_BSD etc. */
|
|
#include "config-host.h"
|
|
|
|
#include "monitor.h"
|
|
#include "sysemu.h"
|
|
#include "gdbstub.h"
|
|
#include "dma.h"
|
|
#include "kvm.h"
|
|
#include "qmp-commands.h"
|
|
|
|
#include "qemu-thread.h"
|
|
#include "cpus.h"
|
|
#include "main-loop.h"
|
|
|
|
#ifndef _WIN32
|
|
#include "compatfd.h"
|
|
#endif
|
|
|
|
#ifdef CONFIG_LINUX
|
|
|
|
#include <sys/prctl.h>
|
|
|
|
#ifndef PR_MCE_KILL
|
|
#define PR_MCE_KILL 33
|
|
#endif
|
|
|
|
#ifndef PR_MCE_KILL_SET
|
|
#define PR_MCE_KILL_SET 1
|
|
#endif
|
|
|
|
#ifndef PR_MCE_KILL_EARLY
|
|
#define PR_MCE_KILL_EARLY 1
|
|
#endif
|
|
|
|
#endif /* CONFIG_LINUX */
|
|
|
|
static CPUState *next_cpu;
|
|
|
|
/***********************************************************/
|
|
/* guest cycle counter */
|
|
|
|
/* Conversion factor from emulated instructions to virtual clock ticks. */
|
|
static int icount_time_shift;
|
|
/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
|
|
#define MAX_ICOUNT_SHIFT 10
|
|
/* Compensate for varying guest execution speed. */
|
|
static int64_t qemu_icount_bias;
|
|
static QEMUTimer *icount_rt_timer;
|
|
static QEMUTimer *icount_vm_timer;
|
|
static QEMUTimer *icount_warp_timer;
|
|
static int64_t vm_clock_warp_start;
|
|
static int64_t qemu_icount;
|
|
|
|
typedef struct TimersState {
|
|
int64_t cpu_ticks_prev;
|
|
int64_t cpu_ticks_offset;
|
|
int64_t cpu_clock_offset;
|
|
int32_t cpu_ticks_enabled;
|
|
int64_t dummy;
|
|
} TimersState;
|
|
|
|
TimersState timers_state;
|
|
|
|
/* Return the virtual CPU time, based on the instruction counter. */
|
|
int64_t cpu_get_icount(void)
|
|
{
|
|
int64_t icount;
|
|
CPUState *env = cpu_single_env;;
|
|
|
|
icount = qemu_icount;
|
|
if (env) {
|
|
if (!can_do_io(env)) {
|
|
fprintf(stderr, "Bad clock read\n");
|
|
}
|
|
icount -= (env->icount_decr.u16.low + env->icount_extra);
|
|
}
|
|
return qemu_icount_bias + (icount << icount_time_shift);
|
|
}
|
|
|
|
/* return the host CPU cycle counter and handle stop/restart */
|
|
int64_t cpu_get_ticks(void)
|
|
{
|
|
if (use_icount) {
|
|
return cpu_get_icount();
|
|
}
|
|
if (!timers_state.cpu_ticks_enabled) {
|
|
return timers_state.cpu_ticks_offset;
|
|
} else {
|
|
int64_t ticks;
|
|
ticks = cpu_get_real_ticks();
|
|
if (timers_state.cpu_ticks_prev > ticks) {
|
|
/* Note: non increasing ticks may happen if the host uses
|
|
software suspend */
|
|
timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
|
|
}
|
|
timers_state.cpu_ticks_prev = ticks;
|
|
return ticks + timers_state.cpu_ticks_offset;
|
|
}
|
|
}
|
|
|
|
/* return the host CPU monotonic timer and handle stop/restart */
|
|
int64_t cpu_get_clock(void)
|
|
{
|
|
int64_t ti;
|
|
if (!timers_state.cpu_ticks_enabled) {
|
|
return timers_state.cpu_clock_offset;
|
|
} else {
|
|
ti = get_clock();
|
|
return ti + timers_state.cpu_clock_offset;
|
|
}
|
|
}
|
|
|
|
/* enable cpu_get_ticks() */
|
|
void cpu_enable_ticks(void)
|
|
{
|
|
if (!timers_state.cpu_ticks_enabled) {
|
|
timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
|
|
timers_state.cpu_clock_offset -= get_clock();
|
|
timers_state.cpu_ticks_enabled = 1;
|
|
}
|
|
}
|
|
|
|
/* disable cpu_get_ticks() : the clock is stopped. You must not call
|
|
cpu_get_ticks() after that. */
|
|
void cpu_disable_ticks(void)
|
|
{
|
|
if (timers_state.cpu_ticks_enabled) {
|
|
timers_state.cpu_ticks_offset = cpu_get_ticks();
|
|
timers_state.cpu_clock_offset = cpu_get_clock();
|
|
timers_state.cpu_ticks_enabled = 0;
|
|
}
|
|
}
|
|
|
|
/* Correlation between real and virtual time is always going to be
|
|
fairly approximate, so ignore small variation.
|
|
When the guest is idle real and virtual time will be aligned in
|
|
the IO wait loop. */
|
|
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
|
|
|
|
static void icount_adjust(void)
|
|
{
|
|
int64_t cur_time;
|
|
int64_t cur_icount;
|
|
int64_t delta;
|
|
static int64_t last_delta;
|
|
/* If the VM is not running, then do nothing. */
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
cur_time = cpu_get_clock();
|
|
cur_icount = qemu_get_clock_ns(vm_clock);
|
|
delta = cur_icount - cur_time;
|
|
/* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
|
|
if (delta > 0
|
|
&& last_delta + ICOUNT_WOBBLE < delta * 2
|
|
&& icount_time_shift > 0) {
|
|
/* The guest is getting too far ahead. Slow time down. */
|
|
icount_time_shift--;
|
|
}
|
|
if (delta < 0
|
|
&& last_delta - ICOUNT_WOBBLE > delta * 2
|
|
&& icount_time_shift < MAX_ICOUNT_SHIFT) {
|
|
/* The guest is getting too far behind. Speed time up. */
|
|
icount_time_shift++;
|
|
}
|
|
last_delta = delta;
|
|
qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
|
|
}
|
|
|
|
static void icount_adjust_rt(void *opaque)
|
|
{
|
|
qemu_mod_timer(icount_rt_timer,
|
|
qemu_get_clock_ms(rt_clock) + 1000);
|
|
icount_adjust();
|
|
}
|
|
|
|
static void icount_adjust_vm(void *opaque)
|
|
{
|
|
qemu_mod_timer(icount_vm_timer,
|
|
qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
|
|
icount_adjust();
|
|
}
|
|
|
|
static int64_t qemu_icount_round(int64_t count)
|
|
{
|
|
return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
|
|
}
|
|
|
|
static void icount_warp_rt(void *opaque)
|
|
{
|
|
if (vm_clock_warp_start == -1) {
|
|
return;
|
|
}
|
|
|
|
if (runstate_is_running()) {
|
|
int64_t clock = qemu_get_clock_ns(rt_clock);
|
|
int64_t warp_delta = clock - vm_clock_warp_start;
|
|
if (use_icount == 1) {
|
|
qemu_icount_bias += warp_delta;
|
|
} else {
|
|
/*
|
|
* In adaptive mode, do not let the vm_clock run too
|
|
* far ahead of real time.
|
|
*/
|
|
int64_t cur_time = cpu_get_clock();
|
|
int64_t cur_icount = qemu_get_clock_ns(vm_clock);
|
|
int64_t delta = cur_time - cur_icount;
|
|
qemu_icount_bias += MIN(warp_delta, delta);
|
|
}
|
|
if (qemu_clock_expired(vm_clock)) {
|
|
qemu_notify_event();
|
|
}
|
|
}
|
|
vm_clock_warp_start = -1;
|
|
}
|
|
|
|
void qemu_clock_warp(QEMUClock *clock)
|
|
{
|
|
int64_t deadline;
|
|
|
|
/*
|
|
* There are too many global variables to make the "warp" behavior
|
|
* applicable to other clocks. But a clock argument removes the
|
|
* need for if statements all over the place.
|
|
*/
|
|
if (clock != vm_clock || !use_icount) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the CPUs have been sleeping, advance the vm_clock timer now. This
|
|
* ensures that the deadline for the timer is computed correctly below.
|
|
* This also makes sure that the insn counter is synchronized before the
|
|
* CPU starts running, in case the CPU is woken by an event other than
|
|
* the earliest vm_clock timer.
|
|
*/
|
|
icount_warp_rt(NULL);
|
|
if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
|
|
qemu_del_timer(icount_warp_timer);
|
|
return;
|
|
}
|
|
|
|
vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
|
|
deadline = qemu_clock_deadline(vm_clock);
|
|
if (deadline > 0) {
|
|
/*
|
|
* Ensure the vm_clock proceeds even when the virtual CPU goes to
|
|
* sleep. Otherwise, the CPU might be waiting for a future timer
|
|
* interrupt to wake it up, but the interrupt never comes because
|
|
* the vCPU isn't running any insns and thus doesn't advance the
|
|
* vm_clock.
|
|
*
|
|
* An extreme solution for this problem would be to never let VCPUs
|
|
* sleep in icount mode if there is a pending vm_clock timer; rather
|
|
* time could just advance to the next vm_clock event. Instead, we
|
|
* do stop VCPUs and only advance vm_clock after some "real" time,
|
|
* (related to the time left until the next event) has passed. This
|
|
* rt_clock timer will do this. This avoids that the warps are too
|
|
* visible externally---for example, you will not be sending network
|
|
* packets continuously instead of every 100ms.
|
|
*/
|
|
qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
|
|
} else {
|
|
qemu_notify_event();
|
|
}
|
|
}
|
|
|
|
static const VMStateDescription vmstate_timers = {
|
|
.name = "timer",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT64(cpu_ticks_offset, TimersState),
|
|
VMSTATE_INT64(dummy, TimersState),
|
|
VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
void configure_icount(const char *option)
|
|
{
|
|
vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
|
|
if (!option) {
|
|
return;
|
|
}
|
|
|
|
icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
|
|
if (strcmp(option, "auto") != 0) {
|
|
icount_time_shift = strtol(option, NULL, 0);
|
|
use_icount = 1;
|
|
return;
|
|
}
|
|
|
|
use_icount = 2;
|
|
|
|
/* 125MIPS seems a reasonable initial guess at the guest speed.
|
|
It will be corrected fairly quickly anyway. */
|
|
icount_time_shift = 3;
|
|
|
|
/* Have both realtime and virtual time triggers for speed adjustment.
|
|
The realtime trigger catches emulated time passing too slowly,
|
|
the virtual time trigger catches emulated time passing too fast.
|
|
Realtime triggers occur even when idle, so use them less frequently
|
|
than VM triggers. */
|
|
icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
|
|
qemu_mod_timer(icount_rt_timer,
|
|
qemu_get_clock_ms(rt_clock) + 1000);
|
|
icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
|
|
qemu_mod_timer(icount_vm_timer,
|
|
qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
|
|
}
|
|
|
|
/***********************************************************/
|
|
void hw_error(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
CPUState *env;
|
|
|
|
va_start(ap, fmt);
|
|
fprintf(stderr, "qemu: hardware error: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
fprintf(stderr, "CPU #%d:\n", env->cpu_index);
|
|
#ifdef TARGET_I386
|
|
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
|
|
#else
|
|
cpu_dump_state(env, stderr, fprintf, 0);
|
|
#endif
|
|
}
|
|
va_end(ap);
|
|
abort();
|
|
}
|
|
|
|
void cpu_synchronize_all_states(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
|
|
cpu_synchronize_state(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_synchronize_all_post_reset(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
|
|
cpu_synchronize_post_reset(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_synchronize_all_post_init(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
|
|
cpu_synchronize_post_init(cpu);
|
|
}
|
|
}
|
|
|
|
int cpu_is_stopped(CPUState *env)
|
|
{
|
|
return !runstate_is_running() || env->stopped;
|
|
}
|
|
|
|
static void do_vm_stop(RunState state)
|
|
{
|
|
if (runstate_is_running()) {
|
|
cpu_disable_ticks();
|
|
pause_all_vcpus();
|
|
runstate_set(state);
|
|
vm_state_notify(0, state);
|
|
bdrv_drain_all();
|
|
bdrv_flush_all();
|
|
monitor_protocol_event(QEVENT_STOP, NULL);
|
|
}
|
|
}
|
|
|
|
static int cpu_can_run(CPUState *env)
|
|
{
|
|
if (env->stop) {
|
|
return 0;
|
|
}
|
|
if (env->stopped || !runstate_is_running()) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static bool cpu_thread_is_idle(CPUState *env)
|
|
{
|
|
if (env->stop || env->queued_work_first) {
|
|
return false;
|
|
}
|
|
if (env->stopped || !runstate_is_running()) {
|
|
return true;
|
|
}
|
|
if (!env->halted || qemu_cpu_has_work(env) ||
|
|
(kvm_enabled() && kvm_irqchip_in_kernel())) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool all_cpu_threads_idle(void)
|
|
{
|
|
CPUState *env;
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
if (!cpu_thread_is_idle(env)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void cpu_handle_guest_debug(CPUState *env)
|
|
{
|
|
gdb_set_stop_cpu(env);
|
|
qemu_system_debug_request();
|
|
env->stopped = 1;
|
|
}
|
|
|
|
static void cpu_signal(int sig)
|
|
{
|
|
if (cpu_single_env) {
|
|
cpu_exit(cpu_single_env);
|
|
}
|
|
exit_request = 1;
|
|
}
|
|
|
|
#ifdef CONFIG_LINUX
|
|
static void sigbus_reraise(void)
|
|
{
|
|
sigset_t set;
|
|
struct sigaction action;
|
|
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_handler = SIG_DFL;
|
|
if (!sigaction(SIGBUS, &action, NULL)) {
|
|
raise(SIGBUS);
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIGBUS);
|
|
sigprocmask(SIG_UNBLOCK, &set, NULL);
|
|
}
|
|
perror("Failed to re-raise SIGBUS!\n");
|
|
abort();
|
|
}
|
|
|
|
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
|
|
void *ctx)
|
|
{
|
|
if (kvm_on_sigbus(siginfo->ssi_code,
|
|
(void *)(intptr_t)siginfo->ssi_addr)) {
|
|
sigbus_reraise();
|
|
}
|
|
}
|
|
|
|
static void qemu_init_sigbus(void)
|
|
{
|
|
struct sigaction action;
|
|
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_flags = SA_SIGINFO;
|
|
action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
|
|
sigaction(SIGBUS, &action, NULL);
|
|
|
|
prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
|
|
}
|
|
|
|
static void qemu_kvm_eat_signals(CPUState *env)
|
|
{
|
|
struct timespec ts = { 0, 0 };
|
|
siginfo_t siginfo;
|
|
sigset_t waitset;
|
|
sigset_t chkset;
|
|
int r;
|
|
|
|
sigemptyset(&waitset);
|
|
sigaddset(&waitset, SIG_IPI);
|
|
sigaddset(&waitset, SIGBUS);
|
|
|
|
do {
|
|
r = sigtimedwait(&waitset, &siginfo, &ts);
|
|
if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
|
|
perror("sigtimedwait");
|
|
exit(1);
|
|
}
|
|
|
|
switch (r) {
|
|
case SIGBUS:
|
|
if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
|
|
sigbus_reraise();
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
r = sigpending(&chkset);
|
|
if (r == -1) {
|
|
perror("sigpending");
|
|
exit(1);
|
|
}
|
|
} while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
|
|
}
|
|
|
|
#else /* !CONFIG_LINUX */
|
|
|
|
static void qemu_init_sigbus(void)
|
|
{
|
|
}
|
|
|
|
static void qemu_kvm_eat_signals(CPUState *env)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_LINUX */
|
|
|
|
#ifndef _WIN32
|
|
static void dummy_signal(int sig)
|
|
{
|
|
}
|
|
|
|
static void qemu_kvm_init_cpu_signals(CPUState *env)
|
|
{
|
|
int r;
|
|
sigset_t set;
|
|
struct sigaction sigact;
|
|
|
|
memset(&sigact, 0, sizeof(sigact));
|
|
sigact.sa_handler = dummy_signal;
|
|
sigaction(SIG_IPI, &sigact, NULL);
|
|
|
|
pthread_sigmask(SIG_BLOCK, NULL, &set);
|
|
sigdelset(&set, SIG_IPI);
|
|
sigdelset(&set, SIGBUS);
|
|
r = kvm_set_signal_mask(env, &set);
|
|
if (r) {
|
|
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
|
|
exit(1);
|
|
}
|
|
|
|
sigdelset(&set, SIG_IPI);
|
|
sigdelset(&set, SIGBUS);
|
|
r = kvm_set_signal_mask(env, &set);
|
|
if (r) {
|
|
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static void qemu_tcg_init_cpu_signals(void)
|
|
{
|
|
sigset_t set;
|
|
struct sigaction sigact;
|
|
|
|
memset(&sigact, 0, sizeof(sigact));
|
|
sigact.sa_handler = cpu_signal;
|
|
sigaction(SIG_IPI, &sigact, NULL);
|
|
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIG_IPI);
|
|
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
|
|
}
|
|
|
|
#else /* _WIN32 */
|
|
static void qemu_kvm_init_cpu_signals(CPUState *env)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
static void qemu_tcg_init_cpu_signals(void)
|
|
{
|
|
}
|
|
#endif /* _WIN32 */
|
|
|
|
QemuMutex qemu_global_mutex;
|
|
static QemuCond qemu_io_proceeded_cond;
|
|
static bool iothread_requesting_mutex;
|
|
|
|
static QemuThread io_thread;
|
|
|
|
static QemuThread *tcg_cpu_thread;
|
|
static QemuCond *tcg_halt_cond;
|
|
|
|
/* cpu creation */
|
|
static QemuCond qemu_cpu_cond;
|
|
/* system init */
|
|
static QemuCond qemu_pause_cond;
|
|
static QemuCond qemu_work_cond;
|
|
|
|
void qemu_init_cpu_loop(void)
|
|
{
|
|
qemu_init_sigbus();
|
|
qemu_cond_init(&qemu_cpu_cond);
|
|
qemu_cond_init(&qemu_pause_cond);
|
|
qemu_cond_init(&qemu_work_cond);
|
|
qemu_cond_init(&qemu_io_proceeded_cond);
|
|
qemu_mutex_init(&qemu_global_mutex);
|
|
|
|
qemu_thread_get_self(&io_thread);
|
|
}
|
|
|
|
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
|
|
{
|
|
struct qemu_work_item wi;
|
|
|
|
if (qemu_cpu_is_self(env)) {
|
|
func(data);
|
|
return;
|
|
}
|
|
|
|
wi.func = func;
|
|
wi.data = data;
|
|
if (!env->queued_work_first) {
|
|
env->queued_work_first = &wi;
|
|
} else {
|
|
env->queued_work_last->next = &wi;
|
|
}
|
|
env->queued_work_last = &wi;
|
|
wi.next = NULL;
|
|
wi.done = false;
|
|
|
|
qemu_cpu_kick(env);
|
|
while (!wi.done) {
|
|
CPUState *self_env = cpu_single_env;
|
|
|
|
qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
|
|
cpu_single_env = self_env;
|
|
}
|
|
}
|
|
|
|
static void flush_queued_work(CPUState *env)
|
|
{
|
|
struct qemu_work_item *wi;
|
|
|
|
if (!env->queued_work_first) {
|
|
return;
|
|
}
|
|
|
|
while ((wi = env->queued_work_first)) {
|
|
env->queued_work_first = wi->next;
|
|
wi->func(wi->data);
|
|
wi->done = true;
|
|
}
|
|
env->queued_work_last = NULL;
|
|
qemu_cond_broadcast(&qemu_work_cond);
|
|
}
|
|
|
|
static void qemu_wait_io_event_common(CPUState *env)
|
|
{
|
|
if (env->stop) {
|
|
env->stop = 0;
|
|
env->stopped = 1;
|
|
qemu_cond_signal(&qemu_pause_cond);
|
|
}
|
|
flush_queued_work(env);
|
|
env->thread_kicked = false;
|
|
}
|
|
|
|
static void qemu_tcg_wait_io_event(void)
|
|
{
|
|
CPUState *env;
|
|
|
|
while (all_cpu_threads_idle()) {
|
|
/* Start accounting real time to the virtual clock if the CPUs
|
|
are idle. */
|
|
qemu_clock_warp(vm_clock);
|
|
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
|
|
}
|
|
|
|
while (iothread_requesting_mutex) {
|
|
qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
|
|
}
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
qemu_wait_io_event_common(env);
|
|
}
|
|
}
|
|
|
|
static void qemu_kvm_wait_io_event(CPUState *env)
|
|
{
|
|
while (cpu_thread_is_idle(env)) {
|
|
qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
|
|
}
|
|
|
|
qemu_kvm_eat_signals(env);
|
|
qemu_wait_io_event_common(env);
|
|
}
|
|
|
|
static void *qemu_kvm_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *env = arg;
|
|
int r;
|
|
|
|
qemu_mutex_lock(&qemu_global_mutex);
|
|
qemu_thread_get_self(env->thread);
|
|
env->thread_id = qemu_get_thread_id();
|
|
|
|
r = kvm_init_vcpu(env);
|
|
if (r < 0) {
|
|
fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
|
|
exit(1);
|
|
}
|
|
|
|
qemu_kvm_init_cpu_signals(env);
|
|
|
|
/* signal CPU creation */
|
|
env->created = 1;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
|
|
while (1) {
|
|
if (cpu_can_run(env)) {
|
|
r = kvm_cpu_exec(env);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(env);
|
|
}
|
|
}
|
|
qemu_kvm_wait_io_event(env);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void tcg_exec_all(void);
|
|
|
|
static void *qemu_tcg_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *env = arg;
|
|
|
|
qemu_tcg_init_cpu_signals();
|
|
qemu_thread_get_self(env->thread);
|
|
|
|
/* signal CPU creation */
|
|
qemu_mutex_lock(&qemu_global_mutex);
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
env->thread_id = qemu_get_thread_id();
|
|
env->created = 1;
|
|
}
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
|
|
/* wait for initial kick-off after machine start */
|
|
while (first_cpu->stopped) {
|
|
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
|
|
}
|
|
|
|
while (1) {
|
|
tcg_exec_all();
|
|
if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
|
|
qemu_notify_event();
|
|
}
|
|
qemu_tcg_wait_io_event();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void qemu_cpu_kick_thread(CPUState *env)
|
|
{
|
|
#ifndef _WIN32
|
|
int err;
|
|
|
|
err = pthread_kill(env->thread->thread, SIG_IPI);
|
|
if (err) {
|
|
fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
|
|
exit(1);
|
|
}
|
|
#else /* _WIN32 */
|
|
if (!qemu_cpu_is_self(env)) {
|
|
SuspendThread(env->thread->thread);
|
|
cpu_signal(0);
|
|
ResumeThread(env->thread->thread);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void qemu_cpu_kick(void *_env)
|
|
{
|
|
CPUState *env = _env;
|
|
|
|
qemu_cond_broadcast(env->halt_cond);
|
|
if (kvm_enabled() && !env->thread_kicked) {
|
|
qemu_cpu_kick_thread(env);
|
|
env->thread_kicked = true;
|
|
}
|
|
}
|
|
|
|
void qemu_cpu_kick_self(void)
|
|
{
|
|
#ifndef _WIN32
|
|
assert(cpu_single_env);
|
|
|
|
if (!cpu_single_env->thread_kicked) {
|
|
qemu_cpu_kick_thread(cpu_single_env);
|
|
cpu_single_env->thread_kicked = true;
|
|
}
|
|
#else
|
|
abort();
|
|
#endif
|
|
}
|
|
|
|
int qemu_cpu_is_self(void *_env)
|
|
{
|
|
CPUState *env = _env;
|
|
|
|
return qemu_thread_is_self(env->thread);
|
|
}
|
|
|
|
void qemu_mutex_lock_iothread(void)
|
|
{
|
|
if (kvm_enabled()) {
|
|
qemu_mutex_lock(&qemu_global_mutex);
|
|
} else {
|
|
iothread_requesting_mutex = true;
|
|
if (qemu_mutex_trylock(&qemu_global_mutex)) {
|
|
qemu_cpu_kick_thread(first_cpu);
|
|
qemu_mutex_lock(&qemu_global_mutex);
|
|
}
|
|
iothread_requesting_mutex = false;
|
|
qemu_cond_broadcast(&qemu_io_proceeded_cond);
|
|
}
|
|
}
|
|
|
|
void qemu_mutex_unlock_iothread(void)
|
|
{
|
|
qemu_mutex_unlock(&qemu_global_mutex);
|
|
}
|
|
|
|
static int all_vcpus_paused(void)
|
|
{
|
|
CPUState *penv = first_cpu;
|
|
|
|
while (penv) {
|
|
if (!penv->stopped) {
|
|
return 0;
|
|
}
|
|
penv = (CPUState *)penv->next_cpu;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void pause_all_vcpus(void)
|
|
{
|
|
CPUState *penv = first_cpu;
|
|
|
|
qemu_clock_enable(vm_clock, false);
|
|
while (penv) {
|
|
penv->stop = 1;
|
|
qemu_cpu_kick(penv);
|
|
penv = (CPUState *)penv->next_cpu;
|
|
}
|
|
|
|
while (!all_vcpus_paused()) {
|
|
qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
|
|
penv = first_cpu;
|
|
while (penv) {
|
|
qemu_cpu_kick(penv);
|
|
penv = (CPUState *)penv->next_cpu;
|
|
}
|
|
}
|
|
}
|
|
|
|
void resume_all_vcpus(void)
|
|
{
|
|
CPUState *penv = first_cpu;
|
|
|
|
qemu_clock_enable(vm_clock, true);
|
|
while (penv) {
|
|
penv->stop = 0;
|
|
penv->stopped = 0;
|
|
qemu_cpu_kick(penv);
|
|
penv = (CPUState *)penv->next_cpu;
|
|
}
|
|
}
|
|
|
|
static void qemu_tcg_init_vcpu(void *_env)
|
|
{
|
|
CPUState *env = _env;
|
|
|
|
/* share a single thread for all cpus with TCG */
|
|
if (!tcg_cpu_thread) {
|
|
env->thread = g_malloc0(sizeof(QemuThread));
|
|
env->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(env->halt_cond);
|
|
tcg_halt_cond = env->halt_cond;
|
|
qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
|
|
QEMU_THREAD_DETACHED);
|
|
while (env->created == 0) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
tcg_cpu_thread = env->thread;
|
|
} else {
|
|
env->thread = tcg_cpu_thread;
|
|
env->halt_cond = tcg_halt_cond;
|
|
}
|
|
}
|
|
|
|
static void qemu_kvm_start_vcpu(CPUState *env)
|
|
{
|
|
env->thread = g_malloc0(sizeof(QemuThread));
|
|
env->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(env->halt_cond);
|
|
qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
|
|
QEMU_THREAD_DETACHED);
|
|
while (env->created == 0) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
}
|
|
|
|
void qemu_init_vcpu(void *_env)
|
|
{
|
|
CPUState *env = _env;
|
|
|
|
env->nr_cores = smp_cores;
|
|
env->nr_threads = smp_threads;
|
|
env->stopped = 1;
|
|
if (kvm_enabled()) {
|
|
qemu_kvm_start_vcpu(env);
|
|
} else {
|
|
qemu_tcg_init_vcpu(env);
|
|
}
|
|
}
|
|
|
|
void cpu_stop_current(void)
|
|
{
|
|
if (cpu_single_env) {
|
|
cpu_single_env->stop = 0;
|
|
cpu_single_env->stopped = 1;
|
|
cpu_exit(cpu_single_env);
|
|
qemu_cond_signal(&qemu_pause_cond);
|
|
}
|
|
}
|
|
|
|
void vm_stop(RunState state)
|
|
{
|
|
if (!qemu_thread_is_self(&io_thread)) {
|
|
qemu_system_vmstop_request(state);
|
|
/*
|
|
* FIXME: should not return to device code in case
|
|
* vm_stop() has been requested.
|
|
*/
|
|
cpu_stop_current();
|
|
return;
|
|
}
|
|
do_vm_stop(state);
|
|
}
|
|
|
|
/* does a state transition even if the VM is already stopped,
|
|
current state is forgotten forever */
|
|
void vm_stop_force_state(RunState state)
|
|
{
|
|
if (runstate_is_running()) {
|
|
vm_stop(state);
|
|
} else {
|
|
runstate_set(state);
|
|
}
|
|
}
|
|
|
|
static int tcg_cpu_exec(CPUState *env)
|
|
{
|
|
int ret;
|
|
#ifdef CONFIG_PROFILER
|
|
int64_t ti;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PROFILER
|
|
ti = profile_getclock();
|
|
#endif
|
|
if (use_icount) {
|
|
int64_t count;
|
|
int decr;
|
|
qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
|
|
env->icount_decr.u16.low = 0;
|
|
env->icount_extra = 0;
|
|
count = qemu_icount_round(qemu_clock_deadline(vm_clock));
|
|
qemu_icount += count;
|
|
decr = (count > 0xffff) ? 0xffff : count;
|
|
count -= decr;
|
|
env->icount_decr.u16.low = decr;
|
|
env->icount_extra = count;
|
|
}
|
|
ret = cpu_exec(env);
|
|
#ifdef CONFIG_PROFILER
|
|
qemu_time += profile_getclock() - ti;
|
|
#endif
|
|
if (use_icount) {
|
|
/* Fold pending instructions back into the
|
|
instruction counter, and clear the interrupt flag. */
|
|
qemu_icount -= (env->icount_decr.u16.low
|
|
+ env->icount_extra);
|
|
env->icount_decr.u32 = 0;
|
|
env->icount_extra = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void tcg_exec_all(void)
|
|
{
|
|
int r;
|
|
|
|
/* Account partial waits to the vm_clock. */
|
|
qemu_clock_warp(vm_clock);
|
|
|
|
if (next_cpu == NULL) {
|
|
next_cpu = first_cpu;
|
|
}
|
|
for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
|
|
CPUState *env = next_cpu;
|
|
|
|
qemu_clock_enable(vm_clock,
|
|
(env->singlestep_enabled & SSTEP_NOTIMER) == 0);
|
|
|
|
if (cpu_can_run(env)) {
|
|
r = tcg_cpu_exec(env);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(env);
|
|
break;
|
|
}
|
|
} else if (env->stop || env->stopped) {
|
|
break;
|
|
}
|
|
}
|
|
exit_request = 0;
|
|
}
|
|
|
|
void set_numa_modes(void)
|
|
{
|
|
CPUState *env;
|
|
int i;
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
if (node_cpumask[i] & (1 << env->cpu_index)) {
|
|
env->numa_node = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void set_cpu_log(const char *optarg)
|
|
{
|
|
int mask;
|
|
const CPULogItem *item;
|
|
|
|
mask = cpu_str_to_log_mask(optarg);
|
|
if (!mask) {
|
|
printf("Log items (comma separated):\n");
|
|
for (item = cpu_log_items; item->mask != 0; item++) {
|
|
printf("%-10s %s\n", item->name, item->help);
|
|
}
|
|
exit(1);
|
|
}
|
|
cpu_set_log(mask);
|
|
}
|
|
|
|
void set_cpu_log_filename(const char *optarg)
|
|
{
|
|
cpu_set_log_filename(optarg);
|
|
}
|
|
|
|
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
|
|
{
|
|
/* XXX: implement xxx_cpu_list for targets that still miss it */
|
|
#if defined(cpu_list_id)
|
|
cpu_list_id(f, cpu_fprintf, optarg);
|
|
#elif defined(cpu_list)
|
|
cpu_list(f, cpu_fprintf); /* deprecated */
|
|
#endif
|
|
}
|
|
|
|
CpuInfoList *qmp_query_cpus(Error **errp)
|
|
{
|
|
CpuInfoList *head = NULL, *cur_item = NULL;
|
|
CPUState *env;
|
|
|
|
for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
CpuInfoList *info;
|
|
|
|
cpu_synchronize_state(env);
|
|
|
|
info = g_malloc0(sizeof(*info));
|
|
info->value = g_malloc0(sizeof(*info->value));
|
|
info->value->CPU = env->cpu_index;
|
|
info->value->current = (env == first_cpu);
|
|
info->value->halted = env->halted;
|
|
info->value->thread_id = env->thread_id;
|
|
#if defined(TARGET_I386)
|
|
info->value->has_pc = true;
|
|
info->value->pc = env->eip + env->segs[R_CS].base;
|
|
#elif defined(TARGET_PPC)
|
|
info->value->has_nip = true;
|
|
info->value->nip = env->nip;
|
|
#elif defined(TARGET_SPARC)
|
|
info->value->has_pc = true;
|
|
info->value->pc = env->pc;
|
|
info->value->has_npc = true;
|
|
info->value->npc = env->npc;
|
|
#elif defined(TARGET_MIPS)
|
|
info->value->has_PC = true;
|
|
info->value->PC = env->active_tc.PC;
|
|
#endif
|
|
|
|
/* XXX: waiting for the qapi to support GSList */
|
|
if (!cur_item) {
|
|
head = cur_item = info;
|
|
} else {
|
|
cur_item->next = info;
|
|
cur_item = info;
|
|
}
|
|
}
|
|
|
|
return head;
|
|
}
|
|
|
|
void qmp_memsave(int64_t addr, int64_t size, const char *filename,
|
|
bool has_cpu, int64_t cpu_index, Error **errp)
|
|
{
|
|
FILE *f;
|
|
uint32_t l;
|
|
CPUState *env;
|
|
uint8_t buf[1024];
|
|
|
|
if (!has_cpu) {
|
|
cpu_index = 0;
|
|
}
|
|
|
|
for (env = first_cpu; env; env = env->next_cpu) {
|
|
if (cpu_index == env->cpu_index) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (env == NULL) {
|
|
error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
|
|
"a CPU number");
|
|
return;
|
|
}
|
|
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
error_set(errp, QERR_OPEN_FILE_FAILED, filename);
|
|
return;
|
|
}
|
|
|
|
while (size != 0) {
|
|
l = sizeof(buf);
|
|
if (l > size)
|
|
l = size;
|
|
cpu_memory_rw_debug(env, addr, buf, l, 0);
|
|
if (fwrite(buf, 1, l, f) != l) {
|
|
error_set(errp, QERR_IO_ERROR);
|
|
goto exit;
|
|
}
|
|
addr += l;
|
|
size -= l;
|
|
}
|
|
|
|
exit:
|
|
fclose(f);
|
|
}
|
|
|
|
void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
|
|
Error **errp)
|
|
{
|
|
FILE *f;
|
|
uint32_t l;
|
|
uint8_t buf[1024];
|
|
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
error_set(errp, QERR_OPEN_FILE_FAILED, filename);
|
|
return;
|
|
}
|
|
|
|
while (size != 0) {
|
|
l = sizeof(buf);
|
|
if (l > size)
|
|
l = size;
|
|
cpu_physical_memory_rw(addr, buf, l, 0);
|
|
if (fwrite(buf, 1, l, f) != l) {
|
|
error_set(errp, QERR_IO_ERROR);
|
|
goto exit;
|
|
}
|
|
addr += l;
|
|
size -= l;
|
|
}
|
|
|
|
exit:
|
|
fclose(f);
|
|
}
|
|
|
|
void qmp_inject_nmi(Error **errp)
|
|
{
|
|
#if defined(TARGET_I386)
|
|
CPUState *env;
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
cpu_interrupt(env, CPU_INTERRUPT_NMI);
|
|
}
|
|
#else
|
|
error_set(errp, QERR_UNSUPPORTED);
|
|
#endif
|
|
}
|