xemu/hw/arm_boot.c
Lars Munch e03c22a98c arm: fix arm kernel boot for non zero start addr
Booting an arm kernel has been broken a while when booting from non zero start
address. This is due to the order of events: board init loads the kernel and
sets register 15 to the start address and then qemu_system_reset reset the cpu
making register 15 zero again.

This patch fixes the usage of the register 15 start address trick in
combination with arm_load_kernel.

Signed-off-by: Lars Munch <lars@segv.dk>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2010-05-31 19:40:41 +02:00

284 lines
8.3 KiB
C

/*
* ARM kernel loader.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licenced under the GPL.
*/
#include "hw.h"
#include "arm-misc.h"
#include "sysemu.h"
#include "loader.h"
#include "elf.h"
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
#define INITRD_LOAD_ADDR 0x00800000
/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
static uint32_t bootloader[] = {
0xe3a00000, /* mov r0, #0 */
0xe3a01000, /* mov r1, #0x?? */
0xe3811c00, /* orr r1, r1, #0x??00 */
0xe59f2000, /* ldr r2, [pc, #0] */
0xe59ff000, /* ldr pc, [pc, #0] */
0, /* Address of kernel args. Set by integratorcp_init. */
0 /* Kernel entry point. Set by integratorcp_init. */
};
/* Entry point for secondary CPUs. Enable interrupt controller and
Issue WFI until start address is written to system controller. */
static uint32_t smpboot[] = {
0xe59f0020, /* ldr r0, privbase */
0xe3a01001, /* mov r1, #1 */
0xe5801100, /* str r1, [r0, #0x100] */
0xe3a00201, /* mov r0, #0x10000000 */
0xe3800030, /* orr r0, #0x30 */
0xe320f003, /* wfi */
0xe5901000, /* ldr r1, [r0] */
0xe1110001, /* tst r1, r1 */
0x0afffffb, /* beq <wfi> */
0xe12fff11, /* bx r1 */
0 /* privbase: Private memory region base address. */
};
#define WRITE_WORD(p, value) do { \
stl_phys_notdirty(p, value); \
p += 4; \
} while (0)
static void set_kernel_args(struct arm_boot_info *info,
int initrd_size, target_phys_addr_t base)
{
target_phys_addr_t p;
p = base + KERNEL_ARGS_ADDR;
/* ATAG_CORE */
WRITE_WORD(p, 5);
WRITE_WORD(p, 0x54410001);
WRITE_WORD(p, 1);
WRITE_WORD(p, 0x1000);
WRITE_WORD(p, 0);
/* ATAG_MEM */
/* TODO: handle multiple chips on one ATAG list */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54410002);
WRITE_WORD(p, info->ram_size);
WRITE_WORD(p, info->loader_start);
if (initrd_size) {
/* ATAG_INITRD2 */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54420005);
WRITE_WORD(p, info->loader_start + INITRD_LOAD_ADDR);
WRITE_WORD(p, initrd_size);
}
if (info->kernel_cmdline && *info->kernel_cmdline) {
/* ATAG_CMDLINE */
int cmdline_size;
cmdline_size = strlen(info->kernel_cmdline);
cpu_physical_memory_write(p + 8, (void *)info->kernel_cmdline,
cmdline_size + 1);
cmdline_size = (cmdline_size >> 2) + 1;
WRITE_WORD(p, cmdline_size + 2);
WRITE_WORD(p, 0x54410009);
p += cmdline_size * 4;
}
if (info->atag_board) {
/* ATAG_BOARD */
int atag_board_len;
uint8_t atag_board_buf[0x1000];
atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
WRITE_WORD(p, (atag_board_len + 8) >> 2);
WRITE_WORD(p, 0x414f4d50);
cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
p += atag_board_len;
}
/* ATAG_END */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
}
static void set_kernel_args_old(struct arm_boot_info *info,
int initrd_size, target_phys_addr_t base)
{
target_phys_addr_t p;
const char *s;
/* see linux/include/asm-arm/setup.h */
p = base + KERNEL_ARGS_ADDR;
/* page_size */
WRITE_WORD(p, 4096);
/* nr_pages */
WRITE_WORD(p, info->ram_size / 4096);
/* ramdisk_size */
WRITE_WORD(p, 0);
#define FLAG_READONLY 1
#define FLAG_RDLOAD 4
#define FLAG_RDPROMPT 8
/* flags */
WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
/* rootdev */
WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
/* video_num_cols */
WRITE_WORD(p, 0);
/* video_num_rows */
WRITE_WORD(p, 0);
/* video_x */
WRITE_WORD(p, 0);
/* video_y */
WRITE_WORD(p, 0);
/* memc_control_reg */
WRITE_WORD(p, 0);
/* unsigned char sounddefault */
/* unsigned char adfsdrives */
/* unsigned char bytes_per_char_h */
/* unsigned char bytes_per_char_v */
WRITE_WORD(p, 0);
/* pages_in_bank[4] */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
/* pages_in_vram */
WRITE_WORD(p, 0);
/* initrd_start */
if (initrd_size)
WRITE_WORD(p, info->loader_start + INITRD_LOAD_ADDR);
else
WRITE_WORD(p, 0);
/* initrd_size */
WRITE_WORD(p, initrd_size);
/* rd_start */
WRITE_WORD(p, 0);
/* system_rev */
WRITE_WORD(p, 0);
/* system_serial_low */
WRITE_WORD(p, 0);
/* system_serial_high */
WRITE_WORD(p, 0);
/* mem_fclk_21285 */
WRITE_WORD(p, 0);
/* zero unused fields */
while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
WRITE_WORD(p, 0);
}
s = info->kernel_cmdline;
if (s) {
cpu_physical_memory_write(p, (void *)s, strlen(s) + 1);
} else {
WRITE_WORD(p, 0);
}
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
struct arm_boot_info *info = env->boot_info;
cpu_reset(env);
if (info) {
if (!info->is_linux) {
/* Jump to the entry point. */
env->regs[15] = info->entry & 0xfffffffe;
env->thumb = info->entry & 1;
} else {
env->regs[15] = info->loader_start;
if (old_param) {
set_kernel_args_old(info, info->initrd_size,
info->loader_start);
} else {
set_kernel_args(info, info->initrd_size, info->loader_start);
}
}
}
/* TODO: Reset secondary CPUs. */
}
void arm_load_kernel(CPUState *env, struct arm_boot_info *info)
{
int kernel_size;
int initrd_size;
int n;
int is_linux = 0;
uint64_t elf_entry;
target_phys_addr_t entry;
int big_endian;
/* Load the kernel. */
if (!info->kernel_filename) {
fprintf(stderr, "Kernel image must be specified\n");
exit(1);
}
if (info->nb_cpus == 0)
info->nb_cpus = 1;
env->boot_info = info;
#ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
/* Assume that raw images are linux kernels, and ELF images are not. */
kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
NULL, NULL, big_endian, ELF_MACHINE, 1);
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
&is_linux);
}
if (kernel_size < 0) {
entry = info->loader_start + KERNEL_LOAD_ADDR;
kernel_size = load_image_targphys(info->kernel_filename, entry,
ram_size - KERNEL_LOAD_ADDR);
is_linux = 1;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
info->kernel_filename);
exit(1);
}
info->entry = entry;
if (is_linux) {
if (info->initrd_filename) {
initrd_size = load_image_targphys(info->initrd_filename,
info->loader_start
+ INITRD_LOAD_ADDR,
ram_size - INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initrd '%s'\n",
info->initrd_filename);
exit(1);
}
} else {
initrd_size = 0;
}
bootloader[1] |= info->board_id & 0xff;
bootloader[2] |= (info->board_id >> 8) & 0xff;
bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR;
bootloader[6] = entry;
for (n = 0; n < sizeof(bootloader) / 4; n++) {
bootloader[n] = tswap32(bootloader[n]);
}
rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader),
info->loader_start);
if (info->nb_cpus > 1) {
smpboot[10] = info->smp_priv_base;
for (n = 0; n < sizeof(smpboot) / 4; n++) {
smpboot[n] = tswap32(smpboot[n]);
}
rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start);
}
info->initrd_size = initrd_size;
}
info->is_linux = is_linux;
qemu_register_reset(main_cpu_reset, env);
}