xemu/hw/watchdog/wdt_i6300esb.c
David Gibson 4bc7b4d566 i6300esb: Fix signed integer overflow
If the guest programs a sufficiently large timeout value an integer
overflow can occur in i6300esb_restart_timer().  e.g. if the maximum
possible timer preload value of 0xfffff is programmed then we end up with
the calculation:

timeout = get_ticks_per_sec() * (0xfffff << 15) / 33000000;

get_ticks_per_sec() returns 1000000000 (10^9) giving:

     10^9 * (0xfffff * 2^15) == 0x1dcd632329b000000 (65 bits)

Obviously the division by 33MHz brings it back under 64-bits, but the
overflow has already occurred.

Since signed integer overflow has undefined behaviour in C, in theory this
could be arbitrarily bad.  In practice, the overflowed value wraps around
to something negative, causing the watchdog to immediately expire, killing
the guest, which is still fairly bad.

The bug can be triggered by running a Linux guest, loading the i6300esb
driver with parameter "heartbeat=2046" and opening /dev/watchdog.  The
watchdog will trigger as soon as the device is opened.

This patch corrects the problem by using muldiv64(), which effectively
allows a 128-bit intermediate value between the multiplication and
division.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <1427075508-12099-3-git-send-email-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-03-25 13:38:05 +01:00

467 lines
15 KiB
C

/*
* Virtual hardware watchdog.
*
* Copyright (C) 2009 Red Hat Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* By Richard W.M. Jones (rjones@redhat.com).
*/
#include <inttypes.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/watchdog.h"
#include "hw/hw.h"
#include "hw/pci/pci.h"
/*#define I6300ESB_DEBUG 1*/
#ifdef I6300ESB_DEBUG
#define i6300esb_debug(fs,...) \
fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
#else
#define i6300esb_debug(fs,...)
#endif
/* PCI configuration registers */
#define ESB_CONFIG_REG 0x60 /* Config register */
#define ESB_LOCK_REG 0x68 /* WDT lock register */
/* Memory mapped registers (offset from base address) */
#define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */
#define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */
#define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */
#define ESB_RELOAD_REG 0x0c /* Reload register */
/* Lock register bits */
#define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */
#define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */
#define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */
/* Config register bits */
#define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */
#define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */
#define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */
/* Reload register bits */
#define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */
/* Magic constants */
#define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */
#define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */
/* Device state. */
struct I6300State {
PCIDevice dev;
MemoryRegion io_mem;
int reboot_enabled; /* "Reboot" on timer expiry. The real action
* performed depends on the -watchdog-action
* param passed on QEMU command line.
*/
int clock_scale; /* Clock scale. */
#define CLOCK_SCALE_1KHZ 0
#define CLOCK_SCALE_1MHZ 1
int int_type; /* Interrupt type generated. */
#define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */
#define INT_TYPE_SMI 2
#define INT_TYPE_DISABLED 3
int free_run; /* If true, reload timer on expiry. */
int locked; /* If true, enabled field cannot be changed. */
int enabled; /* If true, watchdog is enabled. */
QEMUTimer *timer; /* The actual watchdog timer. */
uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */
uint32_t timer2_preload;
int stage; /* Stage (1 or 2). */
int unlock_state; /* Guest writes 0x80, 0x86 to unlock the
* registers, and we transition through
* states 0 -> 1 -> 2 when this happens.
*/
int previous_reboot_flag; /* If the watchdog caused the previous
* reboot, this flag will be set.
*/
};
typedef struct I6300State I6300State;
/* This function is called when the watchdog has either been enabled
* (hence it starts counting down) or has been keep-alived.
*/
static void i6300esb_restart_timer(I6300State *d, int stage)
{
int64_t timeout;
if (!d->enabled)
return;
d->stage = stage;
if (d->stage <= 1)
timeout = d->timer1_preload;
else
timeout = d->timer2_preload;
if (d->clock_scale == CLOCK_SCALE_1KHZ)
timeout <<= 15;
else
timeout <<= 5;
/* Get the timeout in units of ticks_per_sec.
*
* ticks_per_sec is typically 10^9 == 0x3B9ACA00 (30 bits), with
* 20 bits of user supplied preload, and 15 bits of scale, the
* multiply here can exceed 64-bits, before we divide by 33MHz, so
* we use a higher-precision intermediate result.
*/
timeout = muldiv64(get_ticks_per_sec(), timeout, 33000000);
i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
}
/* This is called when the guest disables the watchdog. */
static void i6300esb_disable_timer(I6300State *d)
{
i6300esb_debug("timer disabled\n");
timer_del(d->timer);
}
static void i6300esb_reset(DeviceState *dev)
{
PCIDevice *pdev = PCI_DEVICE(dev);
I6300State *d = DO_UPCAST(I6300State, dev, pdev);
i6300esb_debug("I6300State = %p\n", d);
i6300esb_disable_timer(d);
/* NB: Don't change d->previous_reboot_flag in this function. */
d->reboot_enabled = 1;
d->clock_scale = CLOCK_SCALE_1KHZ;
d->int_type = INT_TYPE_IRQ;
d->free_run = 0;
d->locked = 0;
d->enabled = 0;
d->timer1_preload = 0xfffff;
d->timer2_preload = 0xfffff;
d->stage = 1;
d->unlock_state = 0;
}
/* This function is called when the watchdog expires. Note that
* the hardware has two timers, and so expiry happens in two stages.
* If d->stage == 1 then we perform the first stage action (usually,
* sending an interrupt) and then restart the timer again for the
* second stage. If the second stage expires then the watchdog
* really has run out.
*/
static void i6300esb_timer_expired(void *vp)
{
I6300State *d = vp;
i6300esb_debug("stage %d\n", d->stage);
if (d->stage == 1) {
/* What to do at the end of stage 1? */
switch (d->int_type) {
case INT_TYPE_IRQ:
fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
break;
case INT_TYPE_SMI:
fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
break;
}
/* Start the second stage. */
i6300esb_restart_timer(d, 2);
} else {
/* Second stage expired, reboot for real. */
if (d->reboot_enabled) {
d->previous_reboot_flag = 1;
watchdog_perform_action(); /* This reboots, exits, etc */
i6300esb_reset(&d->dev.qdev);
}
/* In "free running mode" we start stage 1 again. */
if (d->free_run)
i6300esb_restart_timer(d, 1);
}
}
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
uint32_t data, int len)
{
I6300State *d = DO_UPCAST(I6300State, dev, dev);
int old;
i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
if (addr == ESB_CONFIG_REG && len == 2) {
d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
d->clock_scale =
(data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
d->int_type = (data & ESB_WDT_INTTYPE);
} else if (addr == ESB_LOCK_REG && len == 1) {
if (!d->locked) {
d->locked = (data & ESB_WDT_LOCK) != 0;
d->free_run = (data & ESB_WDT_FUNC) != 0;
old = d->enabled;
d->enabled = (data & ESB_WDT_ENABLE) != 0;
if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
i6300esb_restart_timer(d, 1);
else if (!d->enabled)
i6300esb_disable_timer(d);
}
} else {
pci_default_write_config(dev, addr, data, len);
}
}
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
{
I6300State *d = DO_UPCAST(I6300State, dev, dev);
uint32_t data;
i6300esb_debug ("addr = %x, len = %d\n", addr, len);
if (addr == ESB_CONFIG_REG && len == 2) {
data =
(d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
(d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
d->int_type;
return data;
} else if (addr == ESB_LOCK_REG && len == 1) {
data =
(d->free_run ? ESB_WDT_FUNC : 0) |
(d->locked ? ESB_WDT_LOCK : 0) |
(d->enabled ? ESB_WDT_ENABLE : 0);
return data;
} else {
return pci_default_read_config(dev, addr, len);
}
}
static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
{
i6300esb_debug ("addr = %x\n", (int) addr);
return 0;
}
static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
{
uint32_t data = 0;
I6300State *d = vp;
i6300esb_debug("addr = %x\n", (int) addr);
if (addr == 0xc) {
/* The previous reboot flag is really bit 9, but there is
* a bug in the Linux driver where it thinks it's bit 12.
* Set both.
*/
data = d->previous_reboot_flag ? 0x1200 : 0;
}
return data;
}
static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
{
i6300esb_debug("addr = %x\n", (int) addr);
return 0;
}
static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
{
I6300State *d = vp;
i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
if (addr == 0xc && val == 0x80)
d->unlock_state = 1;
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
d->unlock_state = 2;
}
static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
{
I6300State *d = vp;
i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
if (addr == 0xc && val == 0x80)
d->unlock_state = 1;
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
d->unlock_state = 2;
else {
if (d->unlock_state == 2) {
if (addr == 0xc) {
if ((val & 0x100) != 0)
/* This is the "ping" from the userspace watchdog in
* the guest ...
*/
i6300esb_restart_timer(d, 1);
/* Setting bit 9 resets the previous reboot flag.
* There's a bug in the Linux driver where it sets
* bit 12 instead.
*/
if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
d->previous_reboot_flag = 0;
}
}
d->unlock_state = 0;
}
}
}
static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
{
I6300State *d = vp;
i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
if (addr == 0xc && val == 0x80)
d->unlock_state = 1;
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
d->unlock_state = 2;
else {
if (d->unlock_state == 2) {
if (addr == 0)
d->timer1_preload = val & 0xfffff;
else if (addr == 4)
d->timer2_preload = val & 0xfffff;
d->unlock_state = 0;
}
}
}
static const MemoryRegionOps i6300esb_ops = {
.old_mmio = {
.read = {
i6300esb_mem_readb,
i6300esb_mem_readw,
i6300esb_mem_readl,
},
.write = {
i6300esb_mem_writeb,
i6300esb_mem_writew,
i6300esb_mem_writel,
},
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const VMStateDescription vmstate_i6300esb = {
.name = "i6300esb_wdt",
/* With this VMSD's introduction, version_id/minimum_version_id were
* erroneously set to sizeof(I6300State), causing a somewhat random
* version_id to be set for every build. This eventually broke
* migration.
*
* To correct this without breaking old->new migration for older
* versions of QEMU, we've set version_id to a value high enough
* to exceed all past values of sizeof(I6300State) across various
* build environments, and have reset minimum_version_id to 1,
* since this VMSD has never changed and thus can accept all past
* versions.
*
* For future changes we can treat these values as we normally would.
*/
.version_id = 10000,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(dev, I6300State),
VMSTATE_INT32(reboot_enabled, I6300State),
VMSTATE_INT32(clock_scale, I6300State),
VMSTATE_INT32(int_type, I6300State),
VMSTATE_INT32(free_run, I6300State),
VMSTATE_INT32(locked, I6300State),
VMSTATE_INT32(enabled, I6300State),
VMSTATE_TIMER_PTR(timer, I6300State),
VMSTATE_UINT32(timer1_preload, I6300State),
VMSTATE_UINT32(timer2_preload, I6300State),
VMSTATE_INT32(stage, I6300State),
VMSTATE_INT32(unlock_state, I6300State),
VMSTATE_INT32(previous_reboot_flag, I6300State),
VMSTATE_END_OF_LIST()
}
};
static void i6300esb_realize(PCIDevice *dev, Error **errp)
{
I6300State *d = DO_UPCAST(I6300State, dev, dev);
i6300esb_debug("I6300State = %p\n", d);
d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
d->previous_reboot_flag = 0;
memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
"i6300esb", 0x10);
pci_register_bar(&d->dev, 0, 0, &d->io_mem);
/* qemu_register_coalesced_mmio (addr, 0x10); ? */
}
static WatchdogTimerModel model = {
.wdt_name = "i6300esb",
.wdt_description = "Intel 6300ESB",
};
static void i6300esb_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->config_read = i6300esb_config_read;
k->config_write = i6300esb_config_write;
k->realize = i6300esb_realize;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
k->class_id = PCI_CLASS_SYSTEM_OTHER;
dc->reset = i6300esb_reset;
dc->vmsd = &vmstate_i6300esb;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
}
static const TypeInfo i6300esb_info = {
.name = "i6300esb",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(I6300State),
.class_init = i6300esb_class_init,
};
static void i6300esb_register_types(void)
{
watchdog_add_model(&model);
type_register_static(&i6300esb_info);
}
type_init(i6300esb_register_types)