xemu/hw/mips_malta.c
ths d52fff710a Improved mini-bootloader, based on a patch by Alec Voropay.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2725 c046a42c-6fe2-441c-8c8c-71466251a162
2007-04-24 22:57:37 +00:00

824 lines
24 KiB
C

/*
* QEMU Malta board support
*
* Copyright (c) 2006 Aurelien Jarno
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#ifdef TARGET_WORDS_BIGENDIAN
#define BIOS_FILENAME "mips_bios.bin"
#else
#define BIOS_FILENAME "mipsel_bios.bin"
#endif
#ifdef TARGET_MIPS64
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
#else
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
#endif
#define ENVP_ADDR (int32_t)0x80002000
#define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
#define ENVP_NB_ENTRIES 16
#define ENVP_ENTRY_SIZE 256
extern FILE *logfile;
typedef struct {
uint32_t leds;
uint32_t brk;
uint32_t gpout;
uint32_t i2cin;
uint32_t i2coe;
uint32_t i2cout;
uint32_t i2csel;
CharDriverState *display;
char display_text[9];
SerialState *uart;
} MaltaFPGAState;
static PITState *pit;
/* Malta FPGA */
static void malta_fpga_update_display(void *opaque)
{
char leds_text[9];
int i;
MaltaFPGAState *s = opaque;
for (i = 7 ; i >= 0 ; i--) {
if (s->leds & (1 << i))
leds_text[i] = '#';
else
leds_text[i] = ' ';
}
leds_text[8] = '\0';
qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
}
/*
* EEPROM 24C01 / 24C02 emulation.
*
* Emulation for serial EEPROMs:
* 24C01 - 1024 bit (128 x 8)
* 24C02 - 2048 bit (256 x 8)
*
* Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
*/
//~ #define DEBUG
#if defined(DEBUG)
# define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
#else
# define logout(fmt, args...) ((void)0)
#endif
struct _eeprom24c0x_t {
uint8_t tick;
uint8_t address;
uint8_t command;
uint8_t ack;
uint8_t scl;
uint8_t sda;
uint8_t data;
//~ uint16_t size;
uint8_t contents[256];
};
typedef struct _eeprom24c0x_t eeprom24c0x_t;
static eeprom24c0x_t eeprom = {
contents: {
/* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
/* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
/* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
/* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
/* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
/* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
/* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
/* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
},
};
static uint8_t eeprom24c0x_read()
{
logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
return eeprom.sda;
}
static void eeprom24c0x_write(int scl, int sda)
{
if (eeprom.scl && scl && (eeprom.sda != sda)) {
logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
if (!sda) {
eeprom.tick = 1;
eeprom.command = 0;
}
} else if (eeprom.tick == 0 && !eeprom.ack) {
/* Waiting for start. */
logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
} else if (!eeprom.scl && scl) {
logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
if (eeprom.ack) {
logout("\ti2c ack bit = 0\n");
sda = 0;
eeprom.ack = 0;
} else if (eeprom.sda == sda) {
uint8_t bit = (sda != 0);
logout("\ti2c bit = %d\n", bit);
if (eeprom.tick < 9) {
eeprom.command <<= 1;
eeprom.command += bit;
eeprom.tick++;
if (eeprom.tick == 9) {
logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
eeprom.ack = 1;
}
} else if (eeprom.tick < 17) {
if (eeprom.command & 1) {
sda = ((eeprom.data & 0x80) != 0);
}
eeprom.address <<= 1;
eeprom.address += bit;
eeprom.tick++;
eeprom.data <<= 1;
if (eeprom.tick == 17) {
eeprom.data = eeprom.contents[eeprom.address];
logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
eeprom.ack = 1;
eeprom.tick = 0;
}
} else if (eeprom.tick >= 17) {
sda = 0;
}
} else {
logout("\tsda changed with raising scl\n");
}
} else {
logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
}
eeprom.scl = scl;
eeprom.sda = sda;
}
static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
{
MaltaFPGAState *s = opaque;
uint32_t val = 0;
uint32_t saddr;
saddr = (addr & 0xfffff);
switch (saddr) {
/* SWITCH Register */
case 0x00200:
val = 0x00000000; /* All switches closed */
break;
/* STATUS Register */
case 0x00208:
#ifdef TARGET_WORDS_BIGENDIAN
val = 0x00000012;
#else
val = 0x00000010;
#endif
break;
/* JMPRS Register */
case 0x00210:
val = 0x00;
break;
/* LEDBAR Register */
case 0x00408:
val = s->leds;
break;
/* BRKRES Register */
case 0x00508:
val = s->brk;
break;
/* UART Registers */
case 0x00900:
case 0x00908:
case 0x00910:
case 0x00918:
case 0x00920:
case 0x00928:
case 0x00930:
case 0x00938:
val = serial_mm_readb(s->uart, addr);
break;
/* GPOUT Register */
case 0x00a00:
val = s->gpout;
break;
/* XXX: implement a real I2C controller */
/* GPINP Register */
case 0x00a08:
/* IN = OUT until a real I2C control is implemented */
if (s->i2csel)
val = s->i2cout;
else
val = 0x00;
break;
/* I2CINP Register */
case 0x00b00:
val = ((s->i2cin & ~1) | eeprom24c0x_read());
break;
/* I2COE Register */
case 0x00b08:
val = s->i2coe;
break;
/* I2COUT Register */
case 0x00b10:
val = s->i2cout;
break;
/* I2CSEL Register */
case 0x00b18:
val = s->i2csel;
break;
default:
#if 0
printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
addr);
#endif
break;
}
return val;
}
static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MaltaFPGAState *s = opaque;
uint32_t saddr;
saddr = (addr & 0xfffff);
switch (saddr) {
/* SWITCH Register */
case 0x00200:
break;
/* JMPRS Register */
case 0x00210:
break;
/* LEDBAR Register */
/* XXX: implement a 8-LED array */
case 0x00408:
s->leds = val & 0xff;
break;
/* ASCIIWORD Register */
case 0x00410:
snprintf(s->display_text, 9, "%08X", val);
malta_fpga_update_display(s);
break;
/* ASCIIPOS0 to ASCIIPOS7 Registers */
case 0x00418:
case 0x00420:
case 0x00428:
case 0x00430:
case 0x00438:
case 0x00440:
case 0x00448:
case 0x00450:
s->display_text[(saddr - 0x00418) >> 3] = (char) val;
malta_fpga_update_display(s);
break;
/* SOFTRES Register */
case 0x00500:
if (val == 0x42)
qemu_system_reset_request ();
break;
/* BRKRES Register */
case 0x00508:
s->brk = val & 0xff;
break;
/* UART Registers */
case 0x00900:
case 0x00908:
case 0x00910:
case 0x00918:
case 0x00920:
case 0x00928:
case 0x00930:
case 0x00938:
serial_mm_writeb(s->uart, addr, val);
break;
/* GPOUT Register */
case 0x00a00:
s->gpout = val & 0xff;
break;
/* I2COE Register */
case 0x00b08:
s->i2coe = val & 0x03;
break;
/* I2COUT Register */
case 0x00b10:
eeprom24c0x_write(val & 0x02, val & 0x01);
s->i2cout = val;
break;
/* I2CSEL Register */
case 0x00b18:
s->i2csel = val & 0x01;
break;
default:
#if 0
printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
addr);
#endif
break;
}
}
static CPUReadMemoryFunc *malta_fpga_read[] = {
malta_fpga_readl,
malta_fpga_readl,
malta_fpga_readl
};
static CPUWriteMemoryFunc *malta_fpga_write[] = {
malta_fpga_writel,
malta_fpga_writel,
malta_fpga_writel
};
void malta_fpga_reset(void *opaque)
{
MaltaFPGAState *s = opaque;
s->leds = 0x00;
s->brk = 0x0a;
s->gpout = 0x00;
s->i2cin = 0x3;
s->i2coe = 0x0;
s->i2cout = 0x3;
s->i2csel = 0x1;
s->display_text[8] = '\0';
snprintf(s->display_text, 9, " ");
malta_fpga_update_display(s);
}
MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
{
MaltaFPGAState *s;
CharDriverState *uart_chr;
int malta;
s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
malta = cpu_register_io_memory(0, malta_fpga_read,
malta_fpga_write, s);
cpu_register_physical_memory(base, 0x100000, malta);
s->display = qemu_chr_open("vc");
qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
qemu_chr_printf(s->display, "+--------+\r\n");
qemu_chr_printf(s->display, "+ +\r\n");
qemu_chr_printf(s->display, "+--------+\r\n");
qemu_chr_printf(s->display, "\n");
qemu_chr_printf(s->display, "Malta ASCII\r\n");
qemu_chr_printf(s->display, "+--------+\r\n");
qemu_chr_printf(s->display, "+ +\r\n");
qemu_chr_printf(s->display, "+--------+\r\n");
uart_chr = qemu_chr_open("vc");
qemu_chr_printf(uart_chr, "CBUS UART\r\n");
s->uart = serial_mm_init(base, 3, env->irq[2], uart_chr, 0);
malta_fpga_reset(s);
qemu_register_reset(malta_fpga_reset, s);
return s;
}
/* Audio support */
#ifdef HAS_AUDIO
static void audio_init (PCIBus *pci_bus)
{
struct soundhw *c;
int audio_enabled = 0;
for (c = soundhw; !audio_enabled && c->name; ++c) {
audio_enabled = c->enabled;
}
if (audio_enabled) {
AudioState *s;
s = AUD_init ();
if (s) {
for (c = soundhw; c->name; ++c) {
if (c->enabled) {
if (c->isa) {
fprintf(stderr, "qemu: Unsupported Sound Card: %s\n", c->name);
exit(1);
}
else {
if (pci_bus) {
c->init.init_pci (pci_bus, s);
}
}
}
}
}
}
}
#endif
/* Network support */
static void network_init (PCIBus *pci_bus)
{
int i;
NICInfo *nd;
for(i = 0; i < nb_nics; i++) {
nd = &nd_table[i];
if (!nd->model) {
nd->model = "pcnet";
}
if (i == 0 && strcmp(nd->model, "pcnet") == 0) {
/* The malta board has a PCNet card using PCI SLOT 11 */
pci_nic_init(pci_bus, nd, 88);
} else {
pci_nic_init(pci_bus, nd, -1);
}
}
}
/* ROM and pseudo bootloader
The following code implements a very very simple bootloader. It first
loads the registers a0 to a3 to the values expected by the OS, and
then jump at the kernel address.
The bootloader should pass the locations of the kernel arguments and
environment variables tables. Those tables contain the 32-bit address
of NULL terminated strings. The environment variables table should be
terminated by a NULL address.
For a simpler implementation, the number of kernel arguments is fixed
to two (the name of the kernel and the command line), and the two
tables are actually the same one.
The registers a0 to a3 should contain the following values:
a0 - number of kernel arguments
a1 - 32-bit address of the kernel arguments table
a2 - 32-bit address of the environment variables table
a3 - RAM size in bytes
*/
static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
{
uint32_t *p;
/* Small bootloader */
p = (uint32_t *) (phys_ram_base + bios_offset);
stl_raw(p++, 0x0bf00006); /* j 0x1fc00018 */
stl_raw(p++, 0x00000000); /* nop */
/* Second part of the bootloader */
p = (uint32_t *) (phys_ram_base + bios_offset + 0x018);
stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, a0, low(ENVP_ADDR) */
stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a0, low(ENVP_ADDR) */
stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
stl_raw(p++, 0x3c070000 | (env->ram_size >> 16)); /* lui a3, high(env->ram_size) */
stl_raw(p++, 0x34e70000 | (env->ram_size & 0xffff)); /* ori a3, a3, low(env->ram_size) */
/* Load BAR registers as done by YAMON */
stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
#ifdef TARGET_WORDS_BIGENDIAN
stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
#else
stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
#endif
stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
#else
stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
#endif
stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
#else
stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
#endif
stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
#else
stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
#endif
stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
#else
stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
#endif
stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
#else
stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
#endif
stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
/* Jump to kernel code */
stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
stl_raw(p++, 0x03e00008); /* jr ra */
stl_raw(p++, 0x00000000); /* nop */
}
static void prom_set(int index, const char *string, ...)
{
va_list ap;
int32_t *p;
int32_t table_addr;
char *s;
if (index >= ENVP_NB_ENTRIES)
return;
p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
p += index;
if (string == NULL) {
stl_raw(p, 0);
return;
}
table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
stl_raw(p, table_addr);
va_start(ap, string);
vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
va_end(ap);
}
/* Kernel */
static int64_t load_kernel (CPUState *env)
{
int64_t kernel_entry, kernel_low, kernel_high;
int index = 0;
long initrd_size;
ram_addr_t initrd_offset;
if (load_elf(env->kernel_filename, VIRT_TO_PHYS_ADDEND,
&kernel_entry, &kernel_low, &kernel_high) < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
env->kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
initrd_offset = 0;
if (env->initrd_filename) {
initrd_size = get_image_size (env->initrd_filename);
if (initrd_size > 0) {
initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
if (initrd_offset + initrd_size > env->ram_size) {
fprintf(stderr,
"qemu: memory too small for initial ram disk '%s'\n",
env->initrd_filename);
exit(1);
}
initrd_size = load_image(env->initrd_filename,
phys_ram_base + initrd_offset);
}
if (initrd_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
env->initrd_filename);
exit(1);
}
}
/* Store command line. */
prom_set(index++, env->kernel_filename);
if (initrd_size > 0)
prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
PHYS_TO_VIRT(initrd_offset), initrd_size,
env->kernel_cmdline);
else
prom_set(index++, env->kernel_cmdline);
/* Setup minimum environment variables */
prom_set(index++, "memsize");
prom_set(index++, "%i", env->ram_size);
prom_set(index++, "modetty0");
prom_set(index++, "38400n8r");
prom_set(index++, NULL);
return kernel_entry;
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
/* The bootload does not need to be rewritten as it is located in a
read only location. The kernel location and the arguments table
location does not change. */
if (env->kernel_filename) {
env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
load_kernel (env);
}
}
static
void mips_malta_init (int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
char buf[1024];
unsigned long bios_offset;
int64_t kernel_entry;
PCIBus *pci_bus;
CPUState *env;
RTCState *rtc_state;
/* fdctrl_t *floppy_controller; */
MaltaFPGAState *malta_fpga;
int ret;
mips_def_t *def;
qemu_irq *i8259;
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
cpu_model = "R4000";
#else
cpu_model = "4KEc";
#endif
}
if (mips_find_by_name(cpu_model, &def) != 0)
def = NULL;
env = cpu_init();
cpu_mips_register(env, def);
register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
qemu_register_reset(main_cpu_reset, env);
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
/* Map the bios at two physical locations, as on the real board */
bios_offset = ram_size + vga_ram_size;
cpu_register_physical_memory(0x1e000000LL,
BIOS_SIZE, bios_offset | IO_MEM_ROM);
cpu_register_physical_memory(0x1fc00000LL,
BIOS_SIZE, bios_offset | IO_MEM_ROM);
/* Load a BIOS image except if a kernel image has been specified. In
the later case, just write a small bootloader to the flash
location. */
if (kernel_filename) {
env->ram_size = ram_size;
env->kernel_filename = kernel_filename;
env->kernel_cmdline = kernel_cmdline;
env->initrd_filename = initrd_filename;
kernel_entry = load_kernel(env);
env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
write_bootloader(env, bios_offset, kernel_entry);
} else {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
ret = load_image(buf, phys_ram_base + bios_offset);
if (ret < 0 || ret > BIOS_SIZE) {
fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
buf);
exit(1);
}
}
/* Board ID = 0x420 (Malta Board with CoreLV)
XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
map to the board ID. */
stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
/* Init internal devices */
cpu_mips_irq_init_cpu(env);
cpu_mips_clock_init(env);
cpu_mips_irqctrl_init();
/* FPGA */
malta_fpga = malta_fpga_init(0x1f000000LL, env);
/* Interrupt controller */
/* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
i8259 = i8259_init(env->irq[2]);
/* Northbridge */
pci_bus = pci_gt64120_init(i8259);
/* Southbridge */
piix4_init(pci_bus, 80);
pci_piix3_ide_init(pci_bus, bs_table, 81, i8259);
usb_uhci_init(pci_bus, 82);
piix4_pm_init(pci_bus, 83);
pit = pit_init(0x40, i8259[0]);
DMA_init(0);
/* Super I/O */
i8042_init(i8259[1], i8259[12], 0x60);
rtc_state = rtc_init(0x70, i8259[8]);
if (serial_hds[0])
serial_init(0x3f8, i8259[4], serial_hds[0]);
if (serial_hds[1])
serial_init(0x2f8, i8259[3], serial_hds[1]);
if (parallel_hds[0])
parallel_init(0x378, i8259[7], parallel_hds[0]);
/* XXX: The floppy controller does not work correctly, something is
probably wrong.
floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd_table); */
/* Sound card */
#ifdef HAS_AUDIO
audio_init(pci_bus);
#endif
/* Network card */
network_init(pci_bus);
/* Optional PCI video card */
pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
ram_size, vga_ram_size);
}
QEMUMachine mips_malta_machine = {
"malta",
"MIPS Malta Core LV",
mips_malta_init,
};