xemu/disas.c
Peter Crosthwaite d49190c420 disas: Remove uses of CPU env
disas does not need to access the CPU env for any reason. Change the
APIs to accept CPU pointers instead. Small change pattern needs to be
applied to all target translate.c. This brings us closer to making
disas.o a common-obj and less architecture specific in general.

Cc: Richard Henderson <rth@twiddle.net>
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: "Edgar E. Iglesias" <edgar.iglesias@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Michael Walle <michael@walle.cc>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: Leon Alrae <leon.alrae@imgtec.com>
Cc: Jia Liu <proljc@gmail.com>
Cc: Alexander Graf <agraf@suse.de>
Cc: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Cc: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
Acked-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-06-22 17:40:01 +02:00

540 lines
14 KiB
C

/* General "disassemble this chunk" code. Used for debugging. */
#include "config.h"
#include "disas/bfd.h"
#include "elf.h"
#include <errno.h>
#include "cpu.h"
#include "disas/disas.h"
typedef struct CPUDebug {
struct disassemble_info info;
CPUState *cpu;
} CPUDebug;
/* Filled in by elfload.c. Simplistic, but will do for now. */
struct syminfo *syminfos = NULL;
/* Get LENGTH bytes from info's buffer, at target address memaddr.
Transfer them to myaddr. */
int
buffer_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length,
struct disassemble_info *info)
{
if (memaddr < info->buffer_vma
|| memaddr + length > info->buffer_vma + info->buffer_length)
/* Out of bounds. Use EIO because GDB uses it. */
return EIO;
memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length);
return 0;
}
/* Get LENGTH bytes from info's buffer, at target address memaddr.
Transfer them to myaddr. */
static int
target_read_memory (bfd_vma memaddr,
bfd_byte *myaddr,
int length,
struct disassemble_info *info)
{
CPUDebug *s = container_of(info, CPUDebug, info);
cpu_memory_rw_debug(s->cpu, memaddr, myaddr, length, 0);
return 0;
}
/* Print an error message. We can assume that this is in response to
an error return from buffer_read_memory. */
void
perror_memory (int status, bfd_vma memaddr, struct disassemble_info *info)
{
if (status != EIO)
/* Can't happen. */
(*info->fprintf_func) (info->stream, "Unknown error %d\n", status);
else
/* Actually, address between memaddr and memaddr + len was
out of bounds. */
(*info->fprintf_func) (info->stream,
"Address 0x%" PRIx64 " is out of bounds.\n", memaddr);
}
/* This could be in a separate file, to save minuscule amounts of space
in statically linked executables. */
/* Just print the address is hex. This is included for completeness even
though both GDB and objdump provide their own (to print symbolic
addresses). */
void
generic_print_address (bfd_vma addr, struct disassemble_info *info)
{
(*info->fprintf_func) (info->stream, "0x%" PRIx64, addr);
}
/* Print address in hex, truncated to the width of a target virtual address. */
static void
generic_print_target_address(bfd_vma addr, struct disassemble_info *info)
{
uint64_t mask = ~0ULL >> (64 - TARGET_VIRT_ADDR_SPACE_BITS);
generic_print_address(addr & mask, info);
}
/* Print address in hex, truncated to the width of a host virtual address. */
static void
generic_print_host_address(bfd_vma addr, struct disassemble_info *info)
{
uint64_t mask = ~0ULL >> (64 - (sizeof(void *) * 8));
generic_print_address(addr & mask, info);
}
/* Just return the given address. */
int
generic_symbol_at_address (bfd_vma addr, struct disassemble_info *info)
{
return 1;
}
bfd_vma bfd_getl64 (const bfd_byte *addr)
{
unsigned long long v;
v = (unsigned long long) addr[0];
v |= (unsigned long long) addr[1] << 8;
v |= (unsigned long long) addr[2] << 16;
v |= (unsigned long long) addr[3] << 24;
v |= (unsigned long long) addr[4] << 32;
v |= (unsigned long long) addr[5] << 40;
v |= (unsigned long long) addr[6] << 48;
v |= (unsigned long long) addr[7] << 56;
return (bfd_vma) v;
}
bfd_vma bfd_getl32 (const bfd_byte *addr)
{
unsigned long v;
v = (unsigned long) addr[0];
v |= (unsigned long) addr[1] << 8;
v |= (unsigned long) addr[2] << 16;
v |= (unsigned long) addr[3] << 24;
return (bfd_vma) v;
}
bfd_vma bfd_getb32 (const bfd_byte *addr)
{
unsigned long v;
v = (unsigned long) addr[0] << 24;
v |= (unsigned long) addr[1] << 16;
v |= (unsigned long) addr[2] << 8;
v |= (unsigned long) addr[3];
return (bfd_vma) v;
}
bfd_vma bfd_getl16 (const bfd_byte *addr)
{
unsigned long v;
v = (unsigned long) addr[0];
v |= (unsigned long) addr[1] << 8;
return (bfd_vma) v;
}
bfd_vma bfd_getb16 (const bfd_byte *addr)
{
unsigned long v;
v = (unsigned long) addr[0] << 24;
v |= (unsigned long) addr[1] << 16;
return (bfd_vma) v;
}
#ifdef TARGET_ARM
static int
print_insn_thumb1(bfd_vma pc, disassemble_info *info)
{
return print_insn_arm(pc | 1, info);
}
#endif
static int print_insn_objdump(bfd_vma pc, disassemble_info *info,
const char *prefix)
{
int i, n = info->buffer_length;
uint8_t *buf = g_malloc(n);
info->read_memory_func(pc, buf, n, info);
for (i = 0; i < n; ++i) {
if (i % 32 == 0) {
info->fprintf_func(info->stream, "\n%s: ", prefix);
}
info->fprintf_func(info->stream, "%02x", buf[i]);
}
g_free(buf);
return n;
}
static int print_insn_od_host(bfd_vma pc, disassemble_info *info)
{
return print_insn_objdump(pc, info, "OBJD-H");
}
static int print_insn_od_target(bfd_vma pc, disassemble_info *info)
{
return print_insn_objdump(pc, info, "OBJD-T");
}
/* Disassemble this for me please... (debugging). 'flags' has the following
values:
i386 - 1 means 16 bit code, 2 means 64 bit code
arm - bit 0 = thumb, bit 1 = reverse endian, bit 2 = A64
ppc - bits 0:15 specify (optionally) the machine instruction set;
bit 16 indicates little endian.
other targets - unused
*/
void target_disas(FILE *out, CPUState *cpu, target_ulong code,
target_ulong size, int flags)
{
target_ulong pc;
int count;
CPUDebug s;
int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL;
INIT_DISASSEMBLE_INFO(s.info, out, fprintf);
s.cpu = cpu;
s.info.read_memory_func = target_read_memory;
s.info.buffer_vma = code;
s.info.buffer_length = size;
s.info.print_address_func = generic_print_target_address;
#ifdef TARGET_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_BIG;
#else
s.info.endian = BFD_ENDIAN_LITTLE;
#endif
#if defined(TARGET_I386)
if (flags == 2) {
s.info.mach = bfd_mach_x86_64;
} else if (flags == 1) {
s.info.mach = bfd_mach_i386_i8086;
} else {
s.info.mach = bfd_mach_i386_i386;
}
print_insn = print_insn_i386;
#elif defined(TARGET_ARM)
if (flags & 4) {
/* We might not be compiled with the A64 disassembler
* because it needs a C++ compiler; in that case we will
* fall through to the default print_insn_od case.
*/
#if defined(CONFIG_ARM_A64_DIS)
print_insn = print_insn_arm_a64;
#endif
} else if (flags & 1) {
print_insn = print_insn_thumb1;
} else {
print_insn = print_insn_arm;
}
if (flags & 2) {
#ifdef TARGET_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_LITTLE;
#else
s.info.endian = BFD_ENDIAN_BIG;
#endif
}
#elif defined(TARGET_SPARC)
print_insn = print_insn_sparc;
#ifdef TARGET_SPARC64
s.info.mach = bfd_mach_sparc_v9b;
#endif
#elif defined(TARGET_PPC)
if ((flags >> 16) & 1) {
s.info.endian = BFD_ENDIAN_LITTLE;
}
if (flags & 0xFFFF) {
/* If we have a precise definition of the instruction set, use it. */
s.info.mach = flags & 0xFFFF;
} else {
#ifdef TARGET_PPC64
s.info.mach = bfd_mach_ppc64;
#else
s.info.mach = bfd_mach_ppc;
#endif
}
s.info.disassembler_options = (char *)"any";
print_insn = print_insn_ppc;
#elif defined(TARGET_M68K)
print_insn = print_insn_m68k;
#elif defined(TARGET_MIPS)
#ifdef TARGET_WORDS_BIGENDIAN
print_insn = print_insn_big_mips;
#else
print_insn = print_insn_little_mips;
#endif
#elif defined(TARGET_SH4)
s.info.mach = bfd_mach_sh4;
print_insn = print_insn_sh;
#elif defined(TARGET_ALPHA)
s.info.mach = bfd_mach_alpha_ev6;
print_insn = print_insn_alpha;
#elif defined(TARGET_CRIS)
if (flags != 32) {
s.info.mach = bfd_mach_cris_v0_v10;
print_insn = print_insn_crisv10;
} else {
s.info.mach = bfd_mach_cris_v32;
print_insn = print_insn_crisv32;
}
#elif defined(TARGET_S390X)
s.info.mach = bfd_mach_s390_64;
print_insn = print_insn_s390;
#elif defined(TARGET_MICROBLAZE)
s.info.mach = bfd_arch_microblaze;
print_insn = print_insn_microblaze;
#elif defined(TARGET_MOXIE)
s.info.mach = bfd_arch_moxie;
print_insn = print_insn_moxie;
#elif defined(TARGET_LM32)
s.info.mach = bfd_mach_lm32;
print_insn = print_insn_lm32;
#endif
if (print_insn == NULL) {
print_insn = print_insn_od_target;
}
for (pc = code; size > 0; pc += count, size -= count) {
fprintf(out, "0x" TARGET_FMT_lx ": ", pc);
count = print_insn(pc, &s.info);
#if 0
{
int i;
uint8_t b;
fprintf(out, " {");
for(i = 0; i < count; i++) {
target_read_memory(pc + i, &b, 1, &s.info);
fprintf(out, " %02x", b);
}
fprintf(out, " }");
}
#endif
fprintf(out, "\n");
if (count < 0)
break;
if (size < count) {
fprintf(out,
"Disassembler disagrees with translator over instruction "
"decoding\n"
"Please report this to qemu-devel@nongnu.org\n");
break;
}
}
}
/* Disassemble this for me please... (debugging). */
void disas(FILE *out, void *code, unsigned long size)
{
uintptr_t pc;
int count;
CPUDebug s;
int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL;
INIT_DISASSEMBLE_INFO(s.info, out, fprintf);
s.info.print_address_func = generic_print_host_address;
s.info.buffer = code;
s.info.buffer_vma = (uintptr_t)code;
s.info.buffer_length = size;
#ifdef HOST_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_BIG;
#else
s.info.endian = BFD_ENDIAN_LITTLE;
#endif
#if defined(CONFIG_TCG_INTERPRETER)
print_insn = print_insn_tci;
#elif defined(__i386__)
s.info.mach = bfd_mach_i386_i386;
print_insn = print_insn_i386;
#elif defined(__x86_64__)
s.info.mach = bfd_mach_x86_64;
print_insn = print_insn_i386;
#elif defined(_ARCH_PPC)
s.info.disassembler_options = (char *)"any";
print_insn = print_insn_ppc;
#elif defined(__aarch64__) && defined(CONFIG_ARM_A64_DIS)
print_insn = print_insn_arm_a64;
#elif defined(__alpha__)
print_insn = print_insn_alpha;
#elif defined(__sparc__)
print_insn = print_insn_sparc;
s.info.mach = bfd_mach_sparc_v9b;
#elif defined(__arm__)
print_insn = print_insn_arm;
#elif defined(__MIPSEB__)
print_insn = print_insn_big_mips;
#elif defined(__MIPSEL__)
print_insn = print_insn_little_mips;
#elif defined(__m68k__)
print_insn = print_insn_m68k;
#elif defined(__s390__)
print_insn = print_insn_s390;
#elif defined(__hppa__)
print_insn = print_insn_hppa;
#elif defined(__ia64__)
print_insn = print_insn_ia64;
#endif
if (print_insn == NULL) {
print_insn = print_insn_od_host;
}
for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) {
fprintf(out, "0x%08" PRIxPTR ": ", pc);
count = print_insn(pc, &s.info);
fprintf(out, "\n");
if (count < 0)
break;
}
}
/* Look up symbol for debugging purpose. Returns "" if unknown. */
const char *lookup_symbol(target_ulong orig_addr)
{
const char *symbol = "";
struct syminfo *s;
for (s = syminfos; s; s = s->next) {
symbol = s->lookup_symbol(s, orig_addr);
if (symbol[0] != '\0') {
break;
}
}
return symbol;
}
#if !defined(CONFIG_USER_ONLY)
#include "monitor/monitor.h"
static int monitor_disas_is_physical;
static int
monitor_read_memory (bfd_vma memaddr, bfd_byte *myaddr, int length,
struct disassemble_info *info)
{
CPUDebug *s = container_of(info, CPUDebug, info);
if (monitor_disas_is_physical) {
cpu_physical_memory_read(memaddr, myaddr, length);
} else {
cpu_memory_rw_debug(s->cpu, memaddr, myaddr, length, 0);
}
return 0;
}
static int GCC_FMT_ATTR(2, 3)
monitor_fprintf(FILE *stream, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf((Monitor *)stream, fmt, ap);
va_end(ap);
return 0;
}
/* Disassembler for the monitor.
See target_disas for a description of flags. */
void monitor_disas(Monitor *mon, CPUState *cpu,
target_ulong pc, int nb_insn, int is_physical, int flags)
{
int count, i;
CPUDebug s;
int (*print_insn)(bfd_vma pc, disassemble_info *info);
INIT_DISASSEMBLE_INFO(s.info, (FILE *)mon, monitor_fprintf);
s.cpu = cpu;
monitor_disas_is_physical = is_physical;
s.info.read_memory_func = monitor_read_memory;
s.info.print_address_func = generic_print_target_address;
s.info.buffer_vma = pc;
#ifdef TARGET_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_BIG;
#else
s.info.endian = BFD_ENDIAN_LITTLE;
#endif
#if defined(TARGET_I386)
if (flags == 2) {
s.info.mach = bfd_mach_x86_64;
} else if (flags == 1) {
s.info.mach = bfd_mach_i386_i8086;
} else {
s.info.mach = bfd_mach_i386_i386;
}
print_insn = print_insn_i386;
#elif defined(TARGET_ARM)
print_insn = print_insn_arm;
#elif defined(TARGET_ALPHA)
print_insn = print_insn_alpha;
#elif defined(TARGET_SPARC)
print_insn = print_insn_sparc;
#ifdef TARGET_SPARC64
s.info.mach = bfd_mach_sparc_v9b;
#endif
#elif defined(TARGET_PPC)
if (flags & 0xFFFF) {
/* If we have a precise definition of the instruction set, use it. */
s.info.mach = flags & 0xFFFF;
} else {
#ifdef TARGET_PPC64
s.info.mach = bfd_mach_ppc64;
#else
s.info.mach = bfd_mach_ppc;
#endif
}
if ((flags >> 16) & 1) {
s.info.endian = BFD_ENDIAN_LITTLE;
}
print_insn = print_insn_ppc;
#elif defined(TARGET_M68K)
print_insn = print_insn_m68k;
#elif defined(TARGET_MIPS)
#ifdef TARGET_WORDS_BIGENDIAN
print_insn = print_insn_big_mips;
#else
print_insn = print_insn_little_mips;
#endif
#elif defined(TARGET_SH4)
s.info.mach = bfd_mach_sh4;
print_insn = print_insn_sh;
#elif defined(TARGET_S390X)
s.info.mach = bfd_mach_s390_64;
print_insn = print_insn_s390;
#elif defined(TARGET_MOXIE)
s.info.mach = bfd_arch_moxie;
print_insn = print_insn_moxie;
#elif defined(TARGET_LM32)
s.info.mach = bfd_mach_lm32;
print_insn = print_insn_lm32;
#else
monitor_printf(mon, "0x" TARGET_FMT_lx
": Asm output not supported on this arch\n", pc);
return;
#endif
for(i = 0; i < nb_insn; i++) {
monitor_printf(mon, "0x" TARGET_FMT_lx ": ", pc);
count = print_insn(pc, &s.info);
monitor_printf(mon, "\n");
if (count < 0)
break;
pc += count;
}
}
#endif